
Boolean Heaps

Andreas Podelski and Thomas Wies

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{podelski,wies}@mpi-inf.mpg.de

Abstract. We show that the idea of predicates on heap objects can be
cast in the framework of predicate abstraction. This leads to an alterna-
tive view on the underlying concepts of three-valued shape analysis by
Sagiv, Reps and Wilhelm. Our construction of the abstract post operator
is analogous to the corresponding construction for classical predicate ab-
straction, except that predicates over objects on the heap take the place
of state predicates, and boolean heaps (sets of bitvectors) take the place
of boolean states (bitvectors). A program is abstracted to a program
over boolean heaps. For each command of the program, the correspond-
ing abstract command is effectively constructed by deductive reasoning,
namely by the application of the weakest precondition operator and an
entailment test. We thus obtain a symbolic framework for shape analysis.

1 Introduction

The transition graph of a program is formed by its states and the transitions
between them. The idea of predicate abstraction [6] (used in a tool such as
SLAM [2]) is to abstract a state by its evaluation under a number of given
state predicates; each edge between two concrete states in the transition graph
gives rise to an edge between the two corresponding abstract states. One thus
abstracts the transition graph to a graph over abstract states.

For a program manipulating pointers, each state is represented by a heap

graph. A heap graph is formed by the allocated objects in the heap and pointer
links between them. The idea of three-valued shape analysis [13] is to apply to the
heap graph the same abstraction that we have applied to the transition graph.
One abstracts an object in the heap by its evaluation under a number of heap

predicates ; edges between concrete objects in the heap graph give rise to edges
between the corresponding abstract objects. One thus abstracts a heap graph to
a graph over abstract objects.

The analogy between predicate abstraction and the abstraction proposed in
three-valued shape analysis is remarkable. It does not seem helpful, however,
when it comes to the major challenge: how can one compute the abstraction of
the transition graph when states are heap graphs and the abstraction is defined
on objects of the heap graph? This paper answers a refinement of this question,
namely whether the abstraction can be defined and computed in the formal setup
and with the basic machinery of predicate abstraction.

Our technical contributions that are needed to accomplish this task are sum-
marized as follows:



– We omit explicit edges between abstract objects in the abstract state, since
we observe that one can also encode edge relations implicitly using appropri-
ate heap predicates on objects. This makes it possible to define the abstract
post operator by local updates of the values of heap predicates.

– We show that one can implement the abstraction by a simple source-to-
source transformation of a pointer program to an abstract finite-state pro-
gram which we call a boolean heap program. This transformation is analogous
to the corresponding transformation in predicate abstraction, except that
predicates over objects on the heap take the place of state predicates and
boolean heaps (sets of bitvectors) take the place of boolean states (bitvec-
tors).

– We formally identify the post operator of a boolean heap program as an
abstraction of the best abstract post operator on an abstract domain of
formulas. For each command of the program, the corresponding abstract
command is constructed by the application of a weakest precondition opera-
tor on heap predicates and an entailment test (implemented by a syntactic
substitution resp. by a call to a theorem prover).

Outline. In Section 2 we give related work; in particular, we summarize the key
concepts of predicate abstraction. Section 3 gives the algorithmic description of
our analysis. Section 4 defines the formal semantics of programs manipulating
pointers. In Section 5 we give a theory of heap predicates that extends the no-
tion of state predicates and state predicate transformers to predicates on heap
objects and heap predicate transformers. Section 6 provides a formal definition
of our analysis in the framework of abstract interpretation. In Section 7 we for-
mally identify the abstract system described in Section 3 as a composition of
additional abstraction functions with the best abstract post operator on our ab-
stract domain. Section 8 concludes. Omitted proofs can be found in the extended
version of this paper1.

2 Related Work

In [13] Sagiv, Reps and Wilhelm describe a parametric framework to shape anal-
ysis based on three-valued logic. They abstract sets of states by three-valued logi-
cal structures. The abstraction is defined in terms of equivalence classes of objects
in the heap that are induced by a finite set of predicates on heap objects. We
use several ideas from this approach. In particular, there is a strong connection
between their abstract domain and ours: a translation from three-valued logical
structures, as they arise in [13], into formulas in first-order logic is given in [15].
Shape analysis constraints [10] extend this translation to a boolean algebra of
state predicates that is isomorphic to the class of three-valued logical structures
in [13]; our abstract domain is a fragment of shape analysis constraints.

1 available on the web at http://www.mpi-inf.mpg.de/~wies/papers/

boolean-heaps-extended.pdf
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In [16] a symbolic algorithm is presented that can be used for shape analysis
à la [13]. It is based on an assume operation that is implemented using a de-
cision procedure. The assume operation allows inter-procedural shape analysis
based on assume-guarantee reasoning. Moreover, assume can be instantiated to
compute best abstraction functions, most-precise post operators, and the meet
operation for abstract domains of three-valued logical structures. In our frame-
work we do not depend on an intermediate representation of sets of states in
terms of three-valued logical structures. We work exclusively on formulas.

PALE [12] is a Hoare-style system for the analysis of pointer programs that
is based on weak monadic second order logic over trees. Its degree of automation
is restricted, because loops in the program have to be manually annotated with
loop invariants. Also the class of data structures that PALE is able to handle
is restricted to graph types [9]. In our approach we synthesize loop invariants
automatically. Furthermore, our analysis is not restricted a priori to a particular
class of data structures; which data structures our analysis is able to treat only
depends on the capabilities of the underlying theorem prover that is used to
compute the abstraction.

Software model checkers such as SLAM [2] use predicate abstraction [6]
to abstract the concrete transition system into a finite-state boolean program.
A state of the resulting boolean program, i.e. an abstract state, is given by a
bitvector over the abstraction predicates. Each transition of the concrete system
gives rise to a corresponding simultaneous update of the predicate values in the
boolean program.

General scheme

Concrete command:
c

Example

Concrete command:

var x : integer

x := x+ 1

State predicates:
P = {p1, . . . , pn}

State predicates:

p1
def
= x = 0, p2

def
= x > 0

Abstract boolean program:

var p1, . . . , pn : boolean

for each pi ∈ P do

if wp
#
c pi then pi := true

else if wp
#
c (¬pi) then pi := false

else pi := ∗

Abstract boolean program:

var p1, p2 : boolean

if false then p1 := true

else if p1 ∨ p2 then p1 := false

else p1 := ∗

if p1 ∨ p2 then p2 := true

else if ¬p1 ∧¬p2 then p2 := false

else p2 := ∗

Fig. 1. Construction of a boolean program from a concrete command via predicate
abstraction. All predicates are updated simultaneously. The value ’*’ stands for non-
deterministic choice.
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Figure 1 shows the transformation of a concrete command to the corre-
sponding predicate updates in the abstract boolean program. The actual ab-
straction step lies in the computation of wp# c p – the best boolean under-
approximation (in terms of abstraction predicates) of the weakest precondition
of predicate p and command c (for example false is the best under-approximation
of wp#(x := x + 1) (x = 0) with respect to p1 and p2). One of the advantages
of predicate abstraction is that the computation of this operator can be done
offline in a pre-processing step (using a decision procedure or theorem prover).
Therefore, one has a clear separation between the abstraction phase and the
actual fixed point computation of the analysis.

There are several approaches that use classical predicate abstraction for shape
analysis; see e.g. [5] and [1]. As discussed in [11], if one wants to gain the same
precision with classical predicate abstraction as for the abstract domain proposed
in [13] then in general one needs an exponential number of state predicates
compared to the number of predicates on heap objects that are used in [13].
This seems to be the major drawback of using standard predicate abstraction
for shape analysis. We solve this problem by combining the core ideas from
both frameworks. In particular, we use Cartesian abstraction in a way that is
reminiscent of the approach described in [3]. However, we restrict our attention
to safety properties, whereas in [1] also liveness properties are considered.

3 Boolean Heap Programs

Our analysis proceeds as follows: (1) we choose a set of predicates over heap
objects for the abstraction (defining the abstract domain); (2) we construct an
abstract finite-state program in analogy to predicate abstraction (the abstract
post operator); and (3) we apply finite-state model checking to the abstract
program (the fixed point computation). In the following we explain in detail
how the abstract domain and the construction of the abstract program look like.

For an abstract domain given by graphs over abstract objects it is difficult to
compute the abstract post operator as an operation on the whole abstract state.
Instead one would like to represent the abstract post operator corresponding
to a pointer command by local updates. Local means that one updates each
abstract object in isolation. However, pointer commands update pointer fields.
The problem is: how can one account for the update of pointer fields by local
updates on abstract objects?

The key idea is that we use a set of abstract objects to represent an abstract
state, i.e. we omit edges between abstract objects. A state s is represented by
a set of abstract objects, if every concrete object in s is represented by one ab-
stract object in the set. Instead of having explicitly-encoded pointer relations in
the abstract state, pointer information is implicitly encoded using appropriate
predicates on heap objects for the abstraction. In particular, the presence or
absence of an edge between two abstract objects can be encoded into heap pred-
icates on objects. Adding these predicates to the set of abstraction predicates
will preserve this information in the abstraction; see [14].
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General scheme

Concrete command:
c

Example

Concrete command:

var x, y, z : list

x.next := y

Unary heap predicates:
P = {p1(v), . . . , pn(v)}

Unary heap predicates:

p1(v)
def
= x = v, p2(v)

def
= y = z

p3(v)
def
= next(v) = z

Boolean heap program:

var V : set of bitvectors over P

for each p ∈ V do

for each pi ∈ P do

if p |= hwp
#
c pi

then p.pi := true

else if p |= hwp
#
c (¬pi)

then p.pi := false

else p.pi := ∗

Boolean heap program:

var V : set of bitvectors over {p1, p2, p3}

for each p ∈ V do

if p |= p1 then p.p1 := true

else if p |= ¬p1 then p.p1 := false

if p |= p2 then p.p2 := true

else if p |= ¬p2 then p.p2 := false

if p |= ¬p1 ∧ p3 ∨ p1 ∧ p2 then

p.p3 := true

else if p |= ¬(¬p1 ∧ p3 ∨ p1 ∧ p2)

then p.p3 := false

Fig. 2. Transformation of a concrete command into a boolean heap program.

The set of abstract objects defining the abstract state is represented by a
set of bitvectors over abstraction predicates; we call such a set of bitvectors a
boolean heap. We abstract a pointer program by a boolean heap program as de-
fined in Fig. 2. The construction naturally extends the one used in predicate
abstraction which is given in Fig. 1. The difference is that a state of the abstract
program is not given by a single bitvector, but by a set of bitvectors, i.e a boolean
heap. Transitions in boolean heap programs change the abstract state via local
updates on abstract objects (p.pi := true) rather than global updates on the
whole abstract state (pi := true). Consequently, we replace the abstraction of
the weakest precondition operator on state predicates wp# by the abstraction of
a weakest precondition operator on heap predicates hwp#. While causing only
a moderate loss of precision, this construction avoids the exponential blowup
in the construction of the abstract program that occurs when standard pred-
icate abstraction is used to simulate a graph based abstract domain with an
appropriate set of state predicates.

In the rest of the paper we give a formal account of boolean heap programs.
In particular, we make precise what it means to compute the operator hwp#.
Furthermore, we identify the post operator that corresponds to a boolean heap
program as an abstraction of the best abstract post operator on boolean heaps.
This way we identify the points in the analysis where we can lose precision.
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4 Pointer Programs

We consider the language of pointer programs defined in Fig. 3. In order to
highlight our main observations, we make several simplifications: (1) we do not
model the program counter; (2) we do not consider allocation or deallocation
of objects; and (3) we do not treat null pointers explicitly; in particular, we do
not treat dereferences of null pointers. However, none of these simplifications
imposes inherent restrictions of our results.

A state of the program is represented as a logical structure over the vocab-
ulary of program variables Var and pointer fields Field . Since we do not treat
allocation and deallocation of objects, we fix a set of objects Heap that is not
changed during program execution and serves as the common universe of all
program states. Therefore, a state degenerates to an interpretation function, i.e.
a valuation of program variables to elements of Heap and pointer fields to total
functions over Heap. Note that we define states as a Cartesian product of inter-
pretation functions, but for notational convenience we implicitly project to the
appropriate component function when a symbol is interpreted in a state.

The transition relation of a pointer program gives rise to the definition of
the standard predicate transformers. The predicate transformers post (strongest
postcondition) and wp (weakest precondition) are defined as usual.

5 Heap Predicates

We will abstractly represent sets of program states using formulas. We consider
a logic given with respect to the signature of program variables Var and pointer
fields Field . Terms in formulas are built from constant symbols x ∈ Var that are
interpreted as heap objects and function symbols f ∈ Field that are interpreted
as functions on heap objects. Formulas are interpreted in states (together with
a variable assignment for the free variables). The following discussion is not
restricted to a particular logic. The only further assumption we make is that the
logic is closed under syntactic substitutions.

Formulas may contain free first-order variables v1, . . . , vn. There are two
equivalent ways to define the denotation of such formulas. As a running example
consider the formula ϕ(v) with free variable v given by:

ϕ(v) ≡ f(v) = z .

The intuitive way of defining the denotation [[ϕ(v)]] of ϕ(v) is a function mapping
a state s to the set of heap objects that when assigned to the free variable v
satisfy ϕ in s:

λ s ∈ State . { o ∈ Heap | s f o = s z } .

For technical reasons we use an equivalent definition. Namely, we define [[ϕ(v)]]
as a function mapping an object o to the set of all states in which ϕ holds if v
is assigned to o:

[[ϕ(v)]] = λ o ∈ Heap . { s ∈ State | s f o = s z } .
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Syntax of expressions and commands:

x ∈ Var − set of program variables

f ∈ Field − set of pointer fields

e ∈ OExp ::= x | e.f

b ∈ BExp ::= e1 = e2 | ¬b | b1 ∧ b2

c ∈ Com ::= e1 := e2 | assume(b)

Semantics of expression and commands:

o ∈ Heap − nonempty set of allocated objects

s ∈ State
def
= (Var → Heap) × (Field → Heap → Heap)

[[x]] s
def
= s x

[[e.f ]] s
def
= s f ([[e]] s)

[[e1 = e2]] s
def
= [[e1]] s = [[e2]] s

[[¬b]] s
def
= ¬([[b]] s)

[[b1 ∧ b2]] s
def
= [[b1]] s ∧ [[b2]] s

[[x := e]] s s′
def
= s

′ = s[x 7→ [[e]] s]

[[e1.f := e2]] s s
′ def

= s
′ = s[f 7→ (s f)[[[e1]] s 7→ [[e2]] s]]

[[assume(b)]] s s′
def
= [[b]] s ∧ s = s

′

Predicate transformers:

post,wp ∈ Com → 2State → 2State

post c S
def
= { s′ | ∃s. [[c]] s s′ ∧ s ∈ S }

wp c S
def
= { s | ∀s′. [[c]] s s′ ⇒ s

′ ∈ S }

Fig. 3. Syntax and semantics of pointer programs.
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Definition 1 (Heap Formulas and Heap Predicates). Let ϕ(v) be a for-

mula with n free first-order variables v = (v1, . . . , vn). The denotation [[ϕ(v)]] of

ϕ(v) is defined by:

[[ϕ(v)]]
def
= λ o ∈ Heapn

. { s ∈ State | s, [v 7→ o] |= ϕ(v) } .

We call the denotation [[ϕ(v)]] an n-ary heap predicate. The set of all heap

predicates is given by:

HeapPred [n]
def
= Heapn → 2State .

We skip the parameter n for heap predicates whenever this causes no confusion.
Moreover, we consider 0-ary heap predicates as state predicates and call closed
heap formulas state formulas.

We want to implement predicate transformers (which are operations on sets
of states) through operations on heap formulas. However, heap formulas denote
heap predicates rather than sets of states. We now exploit the fact that for a
heap predicate p we have that p o is a set of states. This allows us to generalize
the predicate transformers from sets of states to heap predicates.

Definition 2 (Heap Predicate Transformers). The predicate transformers

post and wp are lifted to heap predicate transformers as follows:

hpost, hwp ∈ Com → HeapPred → HeapPred

hpost c p
def
= λ o . post c (p o)

hwp c p
def
= λ o . wp c (p o) .

Since the heap predicate transformers are obtained from the standard pred-
icate transformers via a simple lifting, their characteristic properties are pre-
served. In particular, the following proposition holds.

Proposition 1. Let c be a command. The heap predicate transformers hpost

and hwp form a Galois connection on the boolean algebra of heap predicates, i.e.

for all p, p′ ∈ HeapPred [n] and o ∈ Heapn:

hpost c p o ⊆ p′ o ⇐⇒ p o ⊆ hwp c p′ o .

The operator hwp is one of the ingredients that we need to construct boolean
heap programs. Therefore, it is important that it can be characterized in terms of
a syntactic operation on formulas. Ideally this operation does not introduce ad-
ditional quantifiers. Such a characterization of hwp exists, because the transition
relation is deterministic. For the command c = (x.f := y) we have e.g.:

hwp c [[ϕ(v)]] = λ o . { s | ∀s′. [[c]] s s′ ⇒ s′ ∈ ([[ϕ(v)]] o) }

= [[ϕ(v)[f := λ v . if v = x then y else f(v)]]]

= [[v = x ∧ y = z ∨ v 6= x∧ f(v) = z]] .

The resulting formula denotes the object in a state s whose f -successor is pointed
to by z in the successor state of s under c. The correctness of the above trans-
formation is justified by the following proposition.
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Proposition 2. Let ϕ(v) be a heap formula. The operator hwp applied to the

denotation of ϕ(v) reduces to a syntactic operation:

hwp (x := e) [[ϕ(v)]] = [[ϕ(v)[x := e]]]

hwp (e1.f := e2) [[ϕ(v)]] = [[ϕ(v)[f := λ v . if v = e1 then e2 else f(v)]]]

hwp (assume(b)) [[ϕ(v)]] = [[b → ϕ(v)]] .

Note that the lambda terms do not cause any problems even if we restrict
to first-order logics. The function symbols that are substituted by lambda terms
always occur in β-redexes, i.e. as in the example above, it is always possible to
rewrite the result of the substitution to an equivalent lambda-free formula.

Due to Prop. 2 it is convenient to overload hwp both to a function on heap
predicates as well as a function on heap formulas. Whenever we apply hwp to a
heap formula we refer to the corresponding syntactic operation given in Prop. 2.

6 Heap Predicate Abstraction

We systematically construct an abstract post operator by following the frame-
work of abstract interpretation [4]. Hence, we need to provide an abstract do-
main, as well as an abstraction and meaning function.

We propose an abstract domain that is given by a set of state formulas and
is parameterized by unary heap predicates. For the rest of the paper we fix
a particular finite set of unary heap predicates P . We consider P to be given
as a set of heap formulas with one dedicated free variable v. For notational
convenience we consider P to be closed under negation.

Definition 3 (Boolean Heaps). A boolean heap over P is a formula Ψ of the

form:

Ψ = ∀v.
∨

i

Ci(v)

where each Ci(v) is a conjunction of heap predicates in P. We denote the set of

all boolean heaps over P by BoolHeap.

In order to allow our analysis to treat joins in the control flow adequately,
we take the disjunctive completion over boolean heaps as our abstract domain.

Definition 4 (Abstract Domain). The abstract domain over P is the pair

〈AbsDom, |=〉, where AbsDom is given by all disjunctions of boolean heaps:

AbsDom
def
= {

∨

Ψ∈F

Ψ | F ⊆fin BoolHeap } .

The partial order |= on elements in AbsDom is the entailment relation on for-

mulas.
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A boolean heap can be represented as a set of bitvectors over P , one bit-
vector for each conjunction. Hence, it is easy to see that the abstract domain is
isomorphic to sets of sets of bitvectors over P . Moreover, the abstract domain is
finite and both closed under disjunctions and conjunctions2. Therefore, it forms
a complete lattice.

The meaning function γ that maps elements of the abstract domain to sets
of states is naturally given by the denotation function, i.e. each formula Ψ of the
abstract domain is mapped to the set of its models:

γ ∈ AbsDom → 2State

γ Ψ
def
= [[Ψ ]] .

The abstraction function α is determined by:

α ∈ 2State → AbsDom

α S
def
=

∧
{Ψ ∈ AbsDom | S ⊆ [[Ψ ]] } .

The function γ distributes over conjunctions and is thus a complete meet mor-
phism. Together with the fact that we defined α as the best abstraction function
with respect to γ, we can conclude that α and γ form a Galois connection be-
tween concrete and abstract domain:

〈2State ,⊆〉
α−→
←−γ
〈AbsDom, |=〉 .

If we consider a state s, the abstraction function α maps the singleton {s}
to the smallest boolean heap that is valid in s. This boolean heap describes the
boolean covering of heap objects with respect to the heap predicates P .

In order to describe these smallest boolean coverings, we assign an abstract

object αs(o) to every object o and state s. This abstract object is given by a
monomial (complete conjunction) of heap predicates and represents the equiva-
lence class of all objects that satisfy the same heap predicates as o in s:

αs(o)
def
=

∧
{ p(v) ∈ P | s, [v 7→ o] |= p(v) } .

The smallest boolean heap that abstracts s consists of all abstract objects αs(o)
for objects o ∈ Heap. Formally, the abstraction of a set of states S is characterized
as follows:

α S ≡
∨

s∈S

∀v.
∨

o∈Heap

αs(o) .

7 Cartesian Abstraction

According to [4] the best abstract post operator post# is given by the compo-
sition of α, post and γ. In the following, we fix a command c and consider all

2 Conjunctions distribute over the universal quantifiers in boolean heaps.
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o αs1
(o)

Heap

oαs2
(o)

Heap

Fig. 4. The boolean heaps for two states s1 and s2. The same object o ∈ Heap falls
into different equivalence classes αs1

(o) and αs2
(o) for each of the states s1 and s2.

This leads to a different boolean covering of the set Heap in the two states and hence
to different boolean heaps.

applications of predicate transformers with respect to this particular command.
Using the characterization of α from the previous section, we get:

post#(Ψ)
def
= α ◦ post ◦γ(Ψ) ≡

∨

s∈[[Ψ ]]

∀v.
∨

o∈Heap

αpost({s})(o) .

In order to compute the image of Ψ under post# we need to check for each
boolean heap whether it appears as one of the disjuncts in post#(Ψ). Given that
n is the number of (positive) heap predicates in P , considering all 22n

boolean
heaps explicitly results in a doubly-exponential running time for the computation
of post#. Therefore, our goal is to develop an approximation of the best abstract
post operator that can be easily implemented. However, we require this operator
to be formally characterized in terms of an abstraction of post#.

Since the best abstract post operator distributes over disjunctions, we char-
acterize the abstraction of post# on boolean heaps rather than their disjunctions.
In the following, consider the boolean heap Ψ given by:

Ψ = ∀v.ψ(v) .

As illustrated in Fig. 5, the problem is that even if we apply post# to the single
boolean heap Ψ , its image under post# will in general be a disjunction of boolean
heaps. We first abstract a disjunction of boolean heaps by a single boolean heap.
This is accomplished by merging all coverings represented by boolean heaps
in post#(Ψ) into a single one. That means the resulting single boolean heap
represents a covering of all objects for all states that are models of post#(Ψ).

We define the best abstractions of the heap predicate transformers with re-
spect to the set of all boolean combinations of heap predicates in P (denoted by
BC(P)):

hpost#(ψ(v))
def
=

∧
{ϕ(v) ∈ BC(P) | ψ(v) |= hwp(ϕ(v)) }

hwp#(ψ(v))
def
=

∨
{ϕ(v) ∈ BC(P) | ϕ(v) |= hwp(ψ(v)) } .
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Heap

Ψ = ∀v.ψ(v)

post# ∨

Heap

hpost#

post#(Ψ)

Heap

Heap

∀v. hpost#(ψ(v))

Fig. 5. Application of post# to a single boolean heap Ψ and its approximation using
hpost#.

By Prop. 1 and the definition of hpost# respectively hwp# it is easy to see that
these two operators again form a Galois connection on the set of all boolean
combinations of heap predicates in P .

Formally, the approximation of the best abstract post that we described
above corresponds to the application of the best abstraction of the operator
hpost to the heap formula ψ(v).

Proposition 3. Let Ψ = ∀v.ψ(v) be a boolean heap. Applying hpost# to ψ(v)
results in an abstraction of post#(Ψ):

post#(Ψ) |= ∀v. hpost#(ψ(v)) .

Since the operator hpost# again distributes over disjunctions, we can com-
pute the new covering by applying hpost# locally to each disjunct in ψ(v). That
is, if ψ(v) is given as a disjunction of abstract objects:

ψ(v) =
∨

i

Ci(v)

then for each Ci(v) we compute the new covering hpost#(Ci(v)) of objects rep-
resented by Ci(v) for the states satisfying post#(Ψ).

However, computing this localized post operator is still an expensive oper-
ation. The result of hpost# applied to an abstract object will in general be a
disjunction of abstract objects. We face the same problem as before: we would
have to consider all 2n monomials over heap predicates, in order to compute the
precise image of a single abstract object under hpost#.

A disjunction of conjunctions over abstraction predicates can be represented
as a set of bitvectors. In the context of predicate abstraction one uses Cartesian
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abstraction to approximate sets of bitvectors [3]. For a set of bitvectors repre-
sented by a boolean formula ψ(v), the Cartesian abstraction αCart(ψ(v)) is given
by the smallest conjunction over abstraction predicates that is implied by ψ(v):

αCart(ψ(v))
def
=

∧
{ p(v) ∈ P | ψ(v) |= p(v) } .

o1
o2

Heap

C

hpost#

o1

o2

hpost#(C)

Heap

αCart

o1

o2

αCart ◦ hpost#(C)

Heap

Fig. 6. Application of hpost# to a single abstract object C and the approximation
under αCart.

Figure 6 sketches the idea of Cartesian abstraction in our context. It abstracts
all abstract objects in the image under the operator hpost# by a single conjunc-
tion. Composing the operator hpost# with the Cartesian abstraction function
gives us our final abstraction of the best abstract post operator.

Definition 5 (Cartesian Post). Let Ψ = ∀v.
∨

i Ci(v) be a boolean heap. The

Cartesian post of Ψ is defined as follows:

post
#
Cart(Ψ)

def
= ∀v.

∨

i

αCart ◦ hpost#(Ci(v)) .

We extend the Cartesian post to a function on AbsDom in the natural way by

pushing it over disjunctions of boolean heaps.

Theorem 1 (Soundness of Cartesian Post). The Cartesian post is an ab-

straction of post#:

∀Ψ ∈ BoolHeap. post#(Ψ) |= post
#
Cart(Ψ) .

Proof. Let Ψ = ∀v.
∨

i Ci(v) be a boolean heap. The statement follows immedi-
ately from Prop. 3 and the fact that for every Ci(v) we have Ci(v) |= αCart(Ci(v)).

Theorem 2 (Characterization of Cartesian Post). Let Ψ = ∀v.
∨

iCi(v)
be a boolean heap. The Cartesian post of Ψ is characterized as follows:

post
#
Cart(Ψ) ≡ ∀v.

∨

i

∧
{ p(v) ∈ P | Ci(v) |= hwp#(p(v)) } .
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Proof. Using the fact that hpost# and hwp# form a Galois connection (∗) we
have:

post
#
Cart(Ψ) ≡ ∀v.

∨

i

αCart ◦ hpost#(Ci(v)) Def. of post
#
Cart

≡ ∀v.
∨

i

∧
{ p(v) ∈ P | hpost#(Ci(v)) |= p(v) } Def. of αCart

≡ ∀v.
∨

i

∧
{ p(v) ∈ P | Ci(v) |= hwp#(p(v)) } by (∗) .

Summarizing the above result, the image of a boolean heap Ψ under post
#
Cart

is constructed by updating for each monomial Ci in Ψ the values of all heap
predicates in Ci. These updates are computed by checking for each heap predi-
cate p whether Ci implies the weakest precondition of p or its negation. Hence,
the Cartesian post operator post

#
Cart corresponds to a boolean heap program as

it is defined in Fig. 2. The crucial part in the construction of the boolean heap
program lies in the computation of the operator hwp#. It is implemented using
a syntactic operation on formulas (the operator hwp) and by calls to a theorem
prover for the entailment tests.

Discussion. Already the first abstraction of the best abstract post operator that
we gave above can be formally characterized in terms of a Cartesian abstraction.
This leads to a slightly more precise abstraction of post#; see [14] for details.
However, this abstraction is more expensive and introduces a dependency of the
operator hwp

# on the abstract state Ψ for which we compute the post. This
dependency violates our goal to have a decoupling of the abstraction phase from
the fixed point computation of the analysis.

Focus and Coerce. Cartesian abstraction does not introduce an additional loss
of precision as long as the abstract system behaves deterministically, i.e. every
abstract object is mapped again to a single abstract object under the operator
hpost#. However, for some commands, e.g. when one iterates over a recursive
data structure, the abstract system will behave inherently nondeterministically.
In some cases the loss of precision that is caused by this nondeterminism can-
not be tolerated. A similar problem occurs in the context of three-valued shape
analysis. In [13] so called focus and coerce operations are used to solve this prob-
lem. These operations split three-valued logical structures according to weakest
preconditions of predicates and thereby handle the nondeterminism in the ab-
straction.

Though the focus and coerce operations are conceptually difficult, it is possi-
ble to define a simple corresponding splitting operation in our framework. This
operation can be explained in terms of a temporary refinement of the abstract
domain. Namely, for splitting one first refines the abstraction by adding new
abstraction predicates given by the weakest preconditions of the abstraction
predicates that cause the nondeterminism. The refinement causes a splitting
of abstract objects and boolean heaps, such that each abstract object in each
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boolean heap has precise information regarding the weakest preconditions of
the problematic predicates. This guarantees that the Cartesian post computes
precise updates for these predicates. After computing the Cartesian post the re-
sult is mapped back to the original abstract domain by removing the previously
added predicates. For a more detailed discussion again see [14].

8 Conclusion

We showed how the abstraction originally proposed in three-valued shape anal-
ysis can be constructed in the framework of predicate abstraction. The conse-
quences of our results are:

– a different view on the underlying concepts of three-valued shape analysis.

– a framework of symbolic shape analysis. Symbolic means that the abstract
post operator is an operation over formulas and is itself constructed solely
by deductive reasoning.

– a clear phase separation between the computation of the abstraction and
the computation of the fixed point. Among other potential advantages this
allows the offline computation of the abstract post operator.

– the possibility to use efficient symbolic methods such as BDDs or SAT
solvers. In particular, the abstract post operator itself can be represented
as a BDD.

Our framework does not a priori impose any restrictions on the data struc-
tures implemented by the analyzed programs. Such restrictions only depend on
the capabilities of the underlying theorem prover which is used for the entail-
ment tests. There is ongoing research on how to adapt or extend existing theorem
provers and decision procedures to the theories that are needed in the context of
shape analysis; see e.g. [7, 8]. This is a challenging branch for further research.

Another direction for future work is to study refinements of our abstract
domain that are even closer to the abstract domain used in three-valued shape
analysis. Evidently our framework extends from unary heap predicates to heap
predicates of arbitrary arity. If we allow binary relations over heap objects in the
abstract domain, we obtain the universal fragment of shape analysis constraints
[10].

Extending the abstract domain to the full boolean algebra of shape analysis
constraints and thus having exactly the same precision as using three-valued
logical structures is more involved. In that case we allow both universally and
existentially quantified boolean combinations of heap predicates as base formulas
for our abstract domain. Normal forms of conjunctions of these base formulas are
an extension of boolean heaps. They correspond to possible boolean coverings
of objects with nonempty monomials over heap predicates. These normal forms
can again be represented as sets of bitvectors over heap predicates. However, in
this case it is not clear how Cartesian abstraction can be applied in a way that
is similar to the case where we restrict to the universal fragment.
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