
A Marketplace for Cloud Resources

Thomas A. Henzinger
IST Austria

tah@ist.ac.at

Anmol V. Singh
IST Austria

anmol.tomar@ist.ac.at

Vasu Singh
IST Austria

vasu.singh@ist.ac.at
Thomas Wies

IST Austria
thomas.wies@ist.ac.at

Damien Zufferey
IST Austria

damien.zufferey@ist.ac.at

ABSTRACT
Cloud computing is an emerging paradigm aimed to offer
users pay-per-use computing resources, while leaving the
burden of managing the computing infrastructure to the
cloud provider. We present a new programming and pric-
ing model that gives the cloud user the flexibility of trad-
ing execution speed and price on a per-job basis. We dis-
cuss the scheduling and resource management challenges for
the cloud provider that arise in the implementation of this
model. We argue that techniques from real-time and em-
bedded software can be useful in this context.

Categories and Subject Descriptors
H.1 [Information Systems]: Models and Principles; D.2.6
[Software Engineering]: Programming Environments

General Terms
Design, Performance

Keywords
Cloud computing, IaaS, pricing models, large-scale schedul-
ing, worst-case execution time

1. INTRODUCTION
Computing services that are provided by datacenters over

the internet are now commonly referred to as cloud comput-
ing. Cloud computing covers different services: infrastruc-
ture as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS). For example, IaaS is provided
by the Amazon Elastic Compute Cloud (EC2) [1], PaaS is
provided by the Google App Engine [6], and SaaS is provided
by Force.com [14]. Today, while pricing models for PaaS and
SaaS are oriented towards benefiting the customer, the pric-
ing models for IaaS are oriented towards covering the costs
incurred by the service provider. A good example of this
is the Amazon EC2 pricing model. Here a user, instead of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

paying for actual CPU-hours, has to pay for the hours she
rents the machines, no matter whether the machines are idle
or busy. An IaaS provider wants to gain revenue for the time
its machines are rented, and not just for the time they are
being used. Both Amazon EC2 [1] and Microsoft Windows
Azure [17] charge fixed prices for computing power, storage,
and data transfer. Recently, there has been an effort to de-
velop a programming and pricing model, called FlexPRICE [7],
which brings together a long-term pricing contract prefer-
able to the IaaS provider, and a job-oriented pricing model
preferable to the IaaS user.

1.1 FlexPRICE
We illustrate the working of FlexPRICE using an example.

Imagine that a user wants to use ImageMagick [8] to apply
an image transformation on a set of images in a data store.
The transformation is composed of the ImageMagick trans-
forms paint, emboss, and average. To every image she first
applies the paint and emboss transforms separately, produc-
ing two new intermediate images. Then she uses the average
transform to average the intermediate images together with
the original image into a single new output image. The final
image is stored back into the data store. This is a MapRe-
duce job [4]. All the transformations are mappers. The
reducer is an identity function.

A user writes a job. Figure 1 shows the description of
this job in a language that enables the user to describe jobs
as data flow graphs. A job consists of schemas that de-
scribe templates of tasks, and connections that describe the
primary inputs and outputs of the job, and how the tasks
interact. In a task description the user specifies estimates
for the task’s resource requirements, such as execution time
and memory consumption. These requirements can be spec-
ified as simple functions in terms of the size of input data
objects. For instance, in our example the user specifies that
each paint task requires around 20 seconds per MB of the
size of the input image. As we shall discuss later, worst-
case execution time (WCET) analysis [13, 16] may be more
reliable than user provided estimates for execution time.

The cloud computes a price curve. Once a user sub-
mits a job to the cloud, the cloud uses the data store queries
specifying the primary inputs of the job to expand the job
description into an execution plan. The execution plan is
a directed acyclic graph of tasks (instantiated schemas) and
data objects (instantiated connections). Figure 2 shows part
of an execution plan for the job in Figure 1: each of the three
task schemas results in one task per image that is stored in
the data bucket img_buc.

// schemas
mapper pnt ([i1]) ([o1]) {
duration 20 * i1
memory 200
o1 = i1
binary ’convert -paint 10’

}
mapper emb ([i1]) ([o1]) {
duration 10 * i1
memory 200
o1 = i1
binary ’convert -emboss 10’

}
mapper avg ([i1], [i2], [i3]) ([o1]) {
duration 3 * (i1 + i2 + i3)
memory 200
o1 = i1
binary ’convert -average’

}
// connections
pnt.o1 = avg.i1
emb.o1 = avg.i2
pnt.i1 = match * from img_buc
emb.i1 = match * from img_buc
avg.i3 = match * from img_buc
avg.o1 = store $avg.i3 into res_buc

Figure 1: Job description for a composed image
transformation that is applied to a set of images in
a data store

Using the specified resource estimates, the cloud provider
computes a selection of possible schedules for executing the
execution plan on the cloud. Note that while some schedules
may parallelize the mapper (transformation) tasks, some
schedules may execute the mappers sequentially. Different
schedules have different finish times. The cloud provider has
an associated pricing model to quote prices of the schedules.
The pricing model indicates the price of computation per
unit time and the setup price per machine, and the price
of data transfer per unit size. An important aspect of the
pricing model is a time discount factor, which lets the cloud
provider offer a discount for delayed execution. This allows
users to get their jobs executed for a cheaper price if they are
willing to wait, and provides an opportunity for the cloud
to dynamically schedule the user job in dull periods of re-

Tasks
Task id Duration Memory
1 180 s 200 MB
2 60 s 200 MB
3 54 s 200 MB
...

Objects
Object id Source Destination Size
1 img buc/1.jpg 1.i1 6 MB
2 img buc/1.jpg 2.i1 6 MB
3 img buc/1.jpg 3.i1 6 MB
4 1.o1 3.i2 6 MB
5 2.o1 3.i3 6 MB
6 3.o1 res buc/1.jpg 6 MB
...

Figure 2: An execution plan for the user job in Fig-
ure 1

Figure 3: A price curve as presented by FlexPRICE to
the user

source utilization. After computing the different schedules
and their prices, the cloud provider presents these schedules
to the user in the form of a price curve as shown in Figure 3.
Intuitively, the price curve represents the tradeoff between
the finish time and price of execution of the job. Moreover,
the price curve hides from the user, the execution details
like the number of machines used, and the time of execution
of individual tasks.

The user chooses an execution. The user may choose
any point on the price curve. Let the point have a deadline
d and a price p. The chosen point results in the following
contract between the user and the cloud provider: If every
task of the job meets the user-specified duration, the cloud
provider must finish the job before time d, and not charge
the user more than p. Note that at this point, we do not
formulate the consequences of a task exceeding its specified
duration.

1.2 Benefits of FlexPRICE
We now highlight the benefits of FlexPRICE. It offers an

economic advantage and ease of use for the user. Moreover,
FlexPRICE helps to improve the predictability of the resource
usage for the cloud provider.

Economic benefits. The core idea of FlexPRICE is to allow
the cloud provider to discount delayed computation, and let
users choose the price and deadline of their jobs. While the
delay brings greater predictability of resource utilization for
the provider (as described below), the discount benefits the
user. If a user is willing to wait, she can execute the job at
a lower price with FlexPRICE.

Secondly, current cloud providers like Amazon EC2 [1]
charge users with a per-hour billing granularity. This gener-
ates an inequality in the average price of jobs per unit time.
Smaller jobs that are short of a full hour pay a higher average
price. This discourages the user to exploit parallelism when
the tasks of the job are small. Ideally, the user would like to
pay for the actual amount of computation done. Except for
the overheads of parallelization, the price of a parallel sched-
ule should not differ from that of a sequential schedule. The
finer per-second billing granularity used by FlexPRICE bene-
fits the user.

Simpler view of the cloud. In addition to the economic
advantage, FlexPRICE offers users a simple programming in-
terface to the underlying computing resources. Such an in-
terface is appealing to the user who now only sees what is
important to her (e.g. deadline, price), and does not see

co
m

pu
tin

g
lo

ad

time

A

B

C

D

Figure 4: FlexPRICE offers greater predictability of
resource utilization for the cloud provider

what she does not care about (e.g., the precise schedule of
the job). Thus, FlexPRICE offers a simple abstraction of the
cloud infrastructure to the user.

Greater predictability. Cloud providers prefer to have
a knowledge of the load profile, that is, the distribution of
input jobs in time. This is evident from the renting policies
of Amazon EC2. For example, to rent more than twenty in-
stances, one has to seek permission from Amazon [1]. Sim-
ilarly, renting a large number of instances requires a long-
term contract. In practical scenarios, a cloud provider may
not be able to predict the number of input jobs in the future.
The input job sequence may exhibit a high variance, depend-
ing upon the user behavior: there might be peak durations
when many users simultaneously submit jobs and dull peri-
ods when there are no input jobs (see curve A in Figure 4).
The flexibility that FlexPRICE offers to IaaS users results in
better predictability of the cloud resource usage. FlexPRICE
allows users to choose different execution deadlines for their
jobs. If some users agree to delay the computation for a
lower price, FlexPRICE can schedule the computation in the
dull hours, in effect, balancing the overall load on the sys-
tem. This allows FlexPRICE to reduce the variance in the
computing requirements as depicted by curve D in Figure 4.
Note that to serve the users according to the input load, the
cloud provider has to provision resources as depicted by line
B. However, if users choose execution with FlexPRICE, the
resource provisioning requirement drops to line C.

Implementing a platform like FlexPRICE requires to solve
many challenging problems. This paper formalizes the prob-
lem and discusses the challenges involved in the implemen-
tation. We discuss how many of these challenges relate to
research problems in real-time and embedded systems. Fur-
thermore, we present a basic prototype to solve the schedul-
ing problem that arises in FlexPRICE.

2. FRAMEWORK
We start with a formal description of the problem. We

first describe a cloud infrastructure. Then, we formalize ex-
ecution plans and schedules of execution plans on the cloud
infrastructure.

2.1 Cloud
A cloud is a term used broadly for the infrastructure of

a datacenter – cpus, network, and other peripherals. In our

10

5 10

n3, 4n2, 4

n1, {f1, f2}

π : cc(n) = S(n)
tc(l) = 0
sc(n) = 0
λ = 0.5

Figure 5: An example cloud

model, we represent a cloud as a fully connected graph of
networked computation and data nodes. We assume that
there exists a communication link between each pair of nodes.
We also assume that each link has an individual bandwidth
and the data transfer on one link does not affect the other
links. This assumption allows us to separate the orthogonal
issue of distribution of total bandwidth across the links from
our work.

Let F represent the set of data files in the cloud. These
files are primary inputs and outputs for the user jobs. For-
mally, we define a cloud as C = 〈N,L, S,B, data, π〉 where

• N = Nd∪Nc is the set of nodes, where Nd is the set of
data store nodes, and Nc is the set of compute nodes,

• L = N ×N is the set of communication links between
the nodes,

• the function S : Nc → N represents the speed of the
compute nodes in the cloud,

• the function B : L → N represents the bandwidth of
every link in the cloud,

• the function data : Nd → 2F represents the set of files
stored on every data node, and

• the pricing model π determines how users are charged
for using the cloud. The pricing model is formally
defined later.

Example. Figure 5 shows an example of a cloud. The cloud
is depicted by the graph in the upper part of the figure. The
numbers on the links represent their respective bandwidths.
The compute nodes, shown in rectangles, contain an identi-
fier and their respective speed. The data node, shown in an
ellipse, contains an identifier and its data files.

2.2 Execution plan
Users submit jobs to be executed on the cloud. Using the

data store, the job is unfolded to obtain an execution plan
as described in the example in Section 1.1. An execution
plan is a graph consisting of independent tasks as nodes and
data transfers between them as edges. A task corresponds
to a piece of computation in a user program. An object is a
piece of data that is transfered from one task to another.

Formally, an execution plan is a directed acyclic graph
(DAG) E = 〈T,O,D,Z,file〉 where

• T = Td ∪ Tc is the set of tasks, where Td is a set of
data tasks and Tc is a set of computation tasks,

5

5

5

10

In Out

t1

t2

T D file
In - f1

t1 12 -
t2 24 -

Out - f2

Figure 6: An execution plan

• O ⊆ T × T is the set of objects between the tasks,

• D : Tc → N gives the duration of the computation
tasks on a unit speed node in time units,

• Z : O → N gives the size of the objects in terms of the
unit data size, and

• file : Td → F specifies the files associated with the data
tasks.

Intuitively, the data tasks represent the reading of the pri-
mary inputs and the writing of the final outputs.
Example. Figure 6 shows an example of an execution plan.
The numbers on the edges represent the size of the objects.
The compute tasks are shown in rectangles and the data
tasks in circles. The adjacent table lists the duration of
the computation tasks and the files associated with the data
tasks.

2.3 Schedule
A schedule maps the set of tasks in an execution plan to

nodes and starting time of execution on the nodes. Formally,
given an execution plan E and a cloud C, a schedule σ : T →
N×Q+ assigns tasks of E to the nodes in C, at specific start
times.

In general, an execution plan can be executed on a cloud
with many different schedules. Let Σ be the set of all sched-
ules of the execution plan E on cloud C. We define a schedul-
ing algorithm by the function A : C × E → 2Σ. Intuitively,
a scheduling algorithm takes a cloud and an execution plan,
and returns a set of possible schedules.

Given an execution plan E = 〈T,O,D,Z,file〉, a cloud
C = 〈N,L, S,B, data, π〉, and a schedule σ for E on C, we
say that the schedule σ is well-formed if all of the following
hold:

• for every compute task tc ∈ Tc, we have nc ∈ Nc,
where σ(tc) = (nc, s) for some s ∈ Q+

• for every compute node n ∈ Nc, there do not exist
tasks t and t′ such that σ(t) = (n, s) and σ(t′) = (n, s′)
and s′ < s+D(t)/S(n)

• for every data task td ∈ Td, we have nd ∈ Nd and
file(td) ∈ data(nd) where σ(td) = (nd, s) for some s ∈
Q+

• for every object (t1, t2) ∈ O where t1 ∈ Tc, we have

s2 > s1 +
D(t1)

S(n1)
+

Z((t1, t2))

B((n1, n2))

where (n1, s1) = σ(t1) and (n2, s2) = σ(t2)

• for every object (t1, t2) ∈ O where t1 ∈ Td, we have

s2 > s1 +
Z((t1, t2))

B((n1, n2))

where (n1, s1) = σ(t1) and (n2, s2) = σ(t2)

Informally, every compute task is scheduled on a compute
node and is isolated from other compute tasks on the node,
every data task is scheduled at a data node where the task’s
data file exists, and every task is scheduled to start at a time
when all predecessor tasks are finished and there is sufficient
delay for their outputs to reach the task.

2.4 Pricing model
A pricing model π of a cloud C determines how a user is

charged for executing a schedule on the cloud. Formally, π
is a tuple 〈cc, tc, sc, λ〉 where

• the cc : Nc → Q determines the computation cost for
unit time execution on a given node,

• the function tc : L → Q computes the data transfer
cost for transferring a unit size object over a given
communication link,

• the function sc : N → Q determines the setup cost for
each node, and

• λ ∈ Q denotes the time discount factor for the cloud.

Example. The lower part of Figure 5 shows the pricing model
of the cloud. The computation costs of a task on a node are
linear in the speed of the node. There are no transfer and
no setup costs. The time discount factor is 0.5.

Given a pricing model π, we define a function price Pπ :
Σ → Q that gives the price incurred by the cloud for exe-
cuting a schedule for a given execution plan. The price of a
schedule is given by the sum of its total computation costs,
total data transfer costs, and total setup costs, scaled by the
time discount factor. Formally, the function Pπ is defined
as follows:

Pπ(σ) = e−λ·t0 · P ′π(σ)

where

t0 = min
t∈T

σ(t)#2, and

P ′π(σ) =
X
t∈T

cc(σ(t)#1) ·D(t)

+
X

(t1,t2)∈O

tc(σ(t1)#1, σ(t2)#1) · Z((t1, t2))

+
X

n∈un(σ)

sc(n)

Here x#i denotes projection of a tuple x to its i-th compo-
nent. The set of used nodes un(σ) of a schedule σ is defined
by un(σ) = {σ(t)#1 | t ∈ T}.

3. CHALLENGES
Solving the scheduling problem in this setting requires to

address many issues. First of all, the scheduling requires an
estimate of the duration for all tasks. Given the duration,
efficient static scheduling techniques need to be developed
that scale with the size of the cloud. As tasks may finish in a
fraction of the assigned duration, the cloud needs to deploy
dynamic scheduling in order to optimize the execution. We
discuss these issues one by one.

3.1 Estimation of task duration
To schedule the tasks in the cloud, we require the users

to provide an estimate of how long the tasks may last in
the worst case. To successfully execute the whole execution
plan, it is essential to finish every task within its assigned
duration. Thus, it is important to allocate sufficient dura-
tion for every task. On the other hand, note that both the
price and the finish time of the job depend on the individ-
ual durations of the tasks. Thus, it is important that the
duration is not arbitrarily large as it affects the price curve
presented to the user. So, a conservative bound on the worst
case execution time is essential. This forms an interesting
application area of the research in WCET analysis [13, 16].

3.2 Hardness of scheduling
In order to sample the space of possible schedules for an

execution plan, we need to solve optimization problems sub-
ject to multiple objective functions. Many of the optimiza-
tion problems in the domain of scheduling are NP-hard [12].
For example, given a cloud C and an execution plan E, com-
puting the deadline-optimal or price-optimal schedule are
NP-hard problems. Similarly, given a maximum deadline
(resp. price), computing the cheapest (resp. fastest) sched-
ule are shown to be NP-hard problems. Thus, instead of
computing optimal schedules we use scheduling heuristics
that produce good approximations of the optimal schedules.

The literature on static scheduling techniques is relevant
in this context. Work on static multiprocessor scheduling
dates back to 1977 [15], where the problem of scheduling a
directed acyclic graph of tasks to two processors is solved
using network-flow algorithms. Further research in this di-
rection focused on scheduling distributed applications on a
network of homogeneous processors [10]. A wide range of
static scheduling heuristics have been classified and rigor-
ously studied [9].

3.3 Size of the cloud
The scheduling heuristics usually scale linearly in the size

of the cloud and the execution plan. However, due to the
large size of the cloud, the computation of the schedules
may pose large overheads. We therefore must decouple the
complexity of the employed scheduling algorithms from the
size of the cloud. We may use abstract representations of
the cloud in order to reduce the scheduling overheads, as
we discuss later in our prototype in Section 4.1. Techniques
from model checking using abstraction refinement [3] can
also be borrowed in this context. For example, given a cloud
C, we may first build an abstraction Ca of the cloud. Given
an execution plan E, we first find a schedule σ on the cloud
Ca. Then, we check whether σ is well-formed on C. If not,
we refine the abstraction Ca of the cloud, and recompute a
new schedule for E.

3.4 Dynamic scheduling techniques
The statically computed schedules depend on the user’s

estimation or the worst-case execution analysis of the tasks.
Thus, the static schedules only give rough upper bound
guidelines for the execution. There are indeed many oppor-
tunities to further optimize the statically computed sched-
ules at runtime. For example, when tasks finish long before
their estimated durations, other tasks whose dependencies
are already met may be used to fill the emerging idle time
slots. Such dynamic rescheduling is essential for achieving

good utilization of the resources. Techniques from run-time
scheduling can be applied in this context. For example,
backfilling is a common technique that pulls forward the
execution of tasks to optimize the performance [11, 5].

We now present our prototype solution that addresses the
challenges in scheduling of FlexPRICE. At this point, we do
not look into the WCET analysis, and rely on user provided
task durations for scheduling.

4. OUR PROTOTYPE
We build a prototype scheduler that relies on a combi-

nation of static and dynamic scheduling. Also, to reduce
overhead, we use an abstract representation of the cloud.

4.1 Static scheduler
Scheduling heuristics. Based on the existing litera-
ture on scheduling heuristics, we implemented the following
schedulers: (i) a greedy scheduler which takes two tuning pa-
rameters α and β and at every step chooses the node which
minimizes the sum of α times the price of the assignment and
β times the starting time of the assigned task. Tuning the
parameters α and β gives a whole spectrum of greedy sched-
ules from fast expensive schedules to slow cheap schedules,
(ii) a deadline division scheduler [19] which takes a dead-
line as a parameter and applies a distribution of the dead-
line over task partitions, where a partition is a set of con-
nected tasks in the job, (iii) a clustering scheduler based on
the Dominant Sequence Clustering (DSC) algorithm [18] for
scheduling task DAGs on multiprocessors. Different heuris-
tics vary in the optimization parameters, and thus generate
many different schedules.

Abstract cloud representation. The amount of time re-
quired to compute the schedules should be low. It should not
increase as the number of nodes in the cloud increases. To
achieve this, we abstract the information about the nodes
and keep a succinct representation of a cloud. Generally,
several nodes have a similar configuration in a cloud, and
there are only a few configurations. To start with, we treat
each configuration as an equivalence class, and thus repre-
sent a cloud by a set of these classes.

Instead of choosing a node to schedule a task, our heuris-
tics first choose an equivalence class of nodes. In a second
step, the scheduler returns the node in that equivalence class
that can fetch the input objects from the predecessor tasks
at the earliest. Note that as we sort the tasks in the topo-
logical order, the predecessors of a task are scheduled before
a task is scheduled. We sort the nodes in every equiva-
lence class in the order of earliest availability. Note that the
abstraction of the cloud gives an overapproximation of the
cloud, that may result in less optimal solutions than those
obtained with the concrete cloud representation.

4.2 Dynamic scheduler
We use a combination of different dynamic scheduling

techniques. The compute nodes make local scheduling deci-
sions by dynamically reordering assigned tasks. Larger idle
slots on individual nodes are reported back to the central
static scheduler which then reschedules entire pending jobs
to fill free slots.

Backfilling. The compute nodes play an important role in
optimizing the scheduling. We rely on techniques of back-
filling [11, 5] to dynamically optimize the task-level schedul-

Job Execution plan 12 node cloud 80 node cloud

#tasks #objects Overhead Schedules Overhead Schedules

Gene Sequencing

11 22 FM: 0.012 F: (1041, 881.66) 0.023 F: (449, 2209.37)

PC: 0.413 S: (12437, 283.32) 0.701 S: (12434, 98.91)

21 42 FM: 0.029 F: (1080, 1732.58) 0.039 F: (466, 4334.71)

PC: 0.632 S: (12904, 684.90) 0.982 S : (12906, 194.42)

Machine Learning

183 550 FM: 0.223 F: (16, 60.43) 0.450 F: (6. 113.49)

PC: 4.021 S: (212, 15.11) 7.970 S: (164, 6.34)

6711 7732 FM: 8.811 F: (166, 856.46) 14.670 F: (20, 2018.98)

PC: 256.866 S: (2310, 235.87) 346.988 S: (1498, 97.10)

Population Genetics

22 45 FM: 0.021 F: (1254, 5280.18) 0.042 F: (504, 13200.14)

PC: 0.613 S: (17544, 1599.43) 0.961 S: (25044, 627.69)

210 421 FM: 0.236 F: (10004, 44641.29) 0.495 F: (1254, 103216.87)

PC: 4.112 S: (145044, 16156.28) 8.102 S: (122544, 6159.20)

Image Processing

401 802 FM: 0.328 F: (498, 2345.70) 0.820 F: (66, 5524.51)

PC: 10.840 S: (7272, 1115.15) 24.896 S: (6244, 315.87)

2005 2406 FM: 1.507 F: (1341, 6872.08) 2.908 F: (147, 15352.13)

PC: 50.555 S: (20049, 2918.50) 94.715 S: (17377, 941.92)

Table 1: Evaluation of the static scheduler. We consider two execution plans for every class of jobs. We
give the schedule computation overhead in seconds for both modes: Fastest scheduling mode (FM) and Price
curve mode (PC). For each case, we list the fastest and the slowest schedule obtained in the price curve
mode: a schedule is expressed as (D, P), where D is the finish time (in seconds) of the job, and P is the price
(in cents) of the job.

ing. A task may finish earlier than its assigned duration,
and this optimization enables possibly recollecting the re-
maining reserved time interval for the task, thus expanding
the free interval on a compute node. Every compute node
maintains a priority queue for all tasks that are scheduled
on it, ordered by the task start times. When a task finishes
earlier than its specified duration, the compute node checks
whether the next task in the queue has to start immedi-
ately. This check is essential to avoid possible interference
with other schedules on the node. When a task is chosen
for backfilling, and in addition, there are already sufficient
resources available, then it is immediately executed. Other-
wise, the compute node informs the static scheduler that the
completed task finished before the estimated time. This in-
formation is then used by the static scheduler to update the
state of the symbolic cloud, and allow job-level rescheduling.
The backfilling strategy ensures that the static scheduler is
only informed about sufficiently large idle intervals between
scheduled tasks.

Rescheduling of jobs. Intuitively, the user choice reflects
the amount of freedom to the scheduler in execution. After
a schedule is chosen by a user, the user is informed about
the maximum duration and the maximum price the user has
to pay. The schedule is sent to the compute nodes only if
the schedule starts within a threshold, say a few minutes. If
the schedule is not starting within the threshold, the static
scheduler adds the job to a queue of jobs that are candi-
dates for rescheduling. For example, due to backfilling, the
scheduler might find new slots and start jobs scheduled in
the future at an earlier time.

Load profiling. The rescheduler is a key to reducing load
variability. In the same spirit as [2] we use some knowledge
about the expected load of the system to maximize the num-
ber of users the cloud can serve. The scheduler maintains a
profile of job input through time. The rescheduler enables
dynamic scheduling which leads to reduced load variability.
The load profiler triggers the rescheduling if the expected
load goes below a certain threshold. The rescheduler checks
for jobs scheduled during a peak duration, and pulls the job
to the current time. As the rescheduler never pushes a job
into the future, the guarantees of duration given to the user
are met for all jobs.

4.3 Evaluation
We evaluated the static scheduler of our prototype us-

ing several jobs from different computing domains: gene se-
quencing, machine learning, population genetics, and image
processing. All jobs are MapReduce jobs, however the num-
ber of tasks and objects in the execution plan varies for every
job.

Table 1 plots the time required by our scheduler to obtain
the schedules, and the details of the fastest and the slowest
schedules obtained. We run the scheduler in two modes:
fastest mode to get the fastest schedule, and price curve
mode to get a range of schedules. We consider two cloud
scenarios: one of 12 nodes with two different configurations,
and another of 80 nodes with six different configurations.
Note that computing the price curve is time-consuming for
the largest jobs we consider. In future work, we plan to use
abstract representation for the execution plan so that our
scheduler can handle large jobs with low overheads.

5. CONCLUSION
FlexPRICE is a novel approach to scheduling jobs on the

cloud by separating the concerns of the end users and the
cloud provider and bridging the gap between the pricing
needs of the two sides. The idea is to abstract away the
unnecessary details from the user – namely, the scheduling
complexity – and give her the illusion of using a large sin-
gle computer. The features a user is interested in, like the
price and the deadline of execution, are kept transparent to
her that allows her to choose her preferred execution. Leav-
ing the responsibility of scheduling the jobs with the cloud
provider enables the provider to achieve good utilization of
the cloud resources.

However, finding different schedules favorable both to the
user and the cloud provider requires to solve many challeng-
ing problems, like estimating the job execution times and
scheduling tasks at the massive scale of a cloud. We believe
that several pieces of research in embedded and real-time
systems can be applicable to these problems.

6. REFERENCES
[1] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2.

[2] A. Bestavros. Load profiling: a methodology for
scheduling real-time tasks in a distributed system. In
ICDCS ’97: Proceedings of the 17th International
Conference on Distributed Computing Systems
(ICDCS ’97), page 449, Washington, DC, USA, 1997.
IEEE Computer Society.

[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. Communications of
the ACM, pages 107–113, 2008.

[5] D. G. Feitelson and A. M. Weil. Utilization and
predictability in scheduling the IBM SP2 with
backfilling. In IPPS/SPDP, pages 542–546, 1998.

[6] Google App Engine.
http://code.google.com/appengine/.

[7] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and
D. Zufferey. FlexPRICE: Flexible provisioning of
resources in a cloud environment. In IEEE
International Conference on Cloud Computing
CLOUD. IEEE, 2010.

[8] ImageMagick. http://www.imagemagick.org.

[9] Y.-K. Kwok and I. Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys, pages
406–471, 1999.

[10] C.-H. Lee and K. G. Shin. Optimal task assignment in
homogeneous networks. IEEE Transactions on
Parallel and Distributed Systems, pages 119–129, 1997.

[11] D. A. Lifka. The ANL/IBM SP scheduling system. In
Job Scheduling Strategies for Parallel Processing,
pages 295–303, 1995.

[12] C. Papadimitrious and M. Yannakakis. Towards an
architecture-independent analysis of parallel
algorithms. In STOC ’88: Proceedings of the twentieth
annual ACM symposium on Theory of computing,
pages 510–513, New York, NY, USA, 1988. ACM.

[13] P. P. Puschner and A. Burns. Guest editorial: A
review of worst-case execution-time analysis.
Real-Time Systems, 18(2/3):115–128, 2000.

[14] Enterprise cloud computing.
http://www.salesforce.com/platform.

[15] H. S. Stone. Multiprocessor scheduling with the aid of
network flow algorithms. IEEE Transactions on
Software Engineering, pages 85–93, 1977.

[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution time problem—overview of
methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 7(3), 2008.

[17] Windows Azure Platform.
http://www.microsoft.com/windowsazure.

[18] T. Yang and A. Gerasoulis. DSC: Scheduling parallel
tasks on an unbounded number of processors. IEEE
Transactions on Parallel and Distributed Systems,
pages 951–967, 1994.

[19] J. Yu, R. Buyya, and C. K. Tham. Cost-based
scheduling of scientific workflow application on utility
grids. In International Conference on e-Science and
Grid Computing, pages 140–147. IEEE Computer
Society, 2005.

