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Abstract. Dual-Primal FETI methods are nonoverlapping domain decomposition methods
where some of the continuity constraints across subdomain boundaries are required to hold through-
out the iterations, as in primal iterative substructuring methods, while most of the constraints are
enforced by Lagrange multipliers, as in one-level FETI methods. The purpose of this article is to
develop strategies for selecting these constraints, which are enforced throughout the iterations, such
that good convergence bounds are obtained, which are independent of even large changes in the
stiffnesses of the subdomains across the interface between them. A theoretical analysis is provided
and condition number bounds are established which are uniform with respect to arbitrarily large
jumps in the Young’s modulus of the material and otherwise only depend polylogarithmically on the
number of unknowns of a single subdomain.
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1. Introduction. We will consider iterative substructuring methods with La-
grange multipliers for the elliptic system of linear elasticity. The algorithms be-
long to the family of dual-primal FETI (finite element tearing and interconnection)
methods which was introduced for linear elasticity problems in the plane in [8] and
then extended to three dimensional elasticity problems in [9]. In dual-primal FETI
(FETI-DP) methods, some continuity constraints on primal displacement variables
are required to hold throughout the iterations, as in primal iterative substructuring
methods, while most of the constraints are enforced by the use of dual Lagrange mul-
tipliers, as in the older one-level FETI algorithms. The primal constraints should
be chosen so that the local problems become invertible. They also provide a coarse
problem and they should be selected so that the iterative method converges rapidly.
We also wish to use relatively few, and effective, primal constraints since the they
represent a global part of the preconditioner which is relatively difficult to parallelize.

More recently, the family of algorithms for scalar elliptic problems in three dimen-
sions was extended and a theory was provided in [15, 16]; see also [24, Section 6.4].
It was shown that the condition number of the dual-primal FETI methods can be
bounded polylogarithmically as a function of the dimension of the individual subre-
gion problems and that the bounds can otherwise be made independent of the number
of subdomains, the mesh size, and jumps in the coefficients. In the case of the elliptic
system of partial differential equations arising from linear elasticity, essential changes
in the selection of the primal constraints have to be made in order to obtain the same
quality bounds for elasticity problems as in the scalar case. Special emphasis will be
given to developing robust condition number estimates with bounds which are inde-
pendent of arbitrarily large jumps of the material coefficients. For benign coefficients,
without large jumps, it is sufficient to select an appropriate set of edge averages as
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primal constraints to obtain good bounds, whereas for arbitrary coefficient distribu-
tions, additional primal first order moments and constraints at some of the vertices
are also required. We note that there is extensive and ongoing experimental work on
dual-primal FETI methods for linear elasticity; cf. [11]. The results obtained so far,
using the algorithms developed in this paper, are quite promising.

We note that our results and strategies of selecting constraints immediately carry
over to the more recently developed Neumann-Neumann methods with constraints,
known as the BDDC algorithms; cf. [3, 18, 19]. This is so, since Mandel, Dohrmann,
and Tezaur [19] have shown that for any given set of constraints, the BDDC and
FETI-DP methods have almost all their eigenvalues in common; see also Fragakis
and Papadrakakis [10] for earlier experimental work. We note that the results of [19]
are obtained by algebra alone and that the authors do not address the question on
how best to select the set of primal constraints.

The remainder of this article is organized as follows. In Section 2, we introduce
the equations of linear elasticity in three dimensions and provide different Korn in-
equalities which are needed in our analysis. In Section 3, we introduce our domain
decomposition and some geometric notation as well as the associated finite element
spaces. In Section 4, we introduce our family of dual-primal FETI methods in an
abstract setting and in Section 5, we establish certain conditions which will allow us
to establish good bounds. In Section 6, we discuss two different possibilities of im-
plementing our FETI-DP algorithms, one using global optional Lagrange multipliers
and another where a change of basis is applied. In Section 7, we collect some auxiliary
technical lemmas which are needed in our convergence analysis which is presented in
Section 8. In a final subsection, we outline possible strategies of selecting a sufficiently
rich set of constraints.

We note that some of the results of this paper have previously been presented in
a conference article; cf. [14].

2. The equations of linear elasticity and Korn inequalities. The equa-
tions of linear elasticity model the displacement of a linear elastic material under the
action of external and internal forces. The elastic body occupies a domain Ω ⊂ IR3,
which is assumed to be polyhedral and of diameter one. We denote its boundary by
∂Ω and assume that one part of it, ∂ΩD, is clamped, i.e., with homogeneous Dirichlet
boundary conditions, and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to a surface
force g, i.e., a natural boundary condition. We can also introduce a body force f , e.g.,
gravity. With H1(Ω) := (H1(Ω))3, the appropriate space for a variational formula-
tion is the Sobolev space H1

0
(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The linear

elasticity problem consists in finding the displacement u ∈ H1
0
(Ω, ∂ΩD) of the elastic

body Ω, such that

∫

Ω

G(x)ε(u) : ε(v)dx +

∫

Ω

G(x)β(x) div u div v dx = 〈F,v〉 ∀v ∈ H1

0
(Ω, ∂ΩD).(1)

Here G and β are material parameters which depend on the Young’s modulus E > 0
and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and β = ν/(1 − 2ν).
(The coefficients are also referred to as the Lamé parameters.) In this article, we only
consider the case of compressible elasticity, which means that the Poisson ratio ν is
bounded away from 1/2. Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the linearized strain
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tensor, and

ε(u) : ε(v) =

3∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=

∫

Ω

fT v dx +

∫

∂ΩN

gT v dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=

∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (Gβ div u, div v)L2(Ω).

We will also use the standard Sobolev space norm

‖u‖H1(Ω) :=
(
|u|2H1(Ω) + ‖u‖2

L2(Ω)

)1/2

with ‖u‖2
L2(Ω) :=

3∑

i=1

∫

Ω

|ui|
2dx, and |u|2H1(Ω) :=

3∑

i=1

‖∇ui‖
2
L2(Ω). We note that if we

rescale our region by a dilation, the two terms of the full H1−norm scale differently
and we should introduce a factor 1/H2 in front of the square of the L2−norm if the
diameter of the region is on the order of H. It is obvious that the bilinear form a(·, ·)
is continuous with respect to ‖ · ‖H1(Ω), although the bound depends on the Lamé
parameters. Continuity follows from the elementary inequalities

|(div (u), div (v))L2(Ωi)| ≤ |u|H1(Ωi) |v|H1(Ωi) ∀u,v ∈ H1(Ωi),

|(ε(u), ε(v))L2(Ωi)| ≤ |u|H1(Ωi) |v|H1(Ωi) ∀u,v ∈ H1(Ωi).
(2)

However, proving ellipticity is less trivial but it can be established from Korn’s first
inequality; see, e.g., Ciarlet [2].

Lemma 1 (Korn’s first inequality). Let Ω ⊂ IR3 be a Lipschitz domain.
Then, there exists a positive constant C = C(Ω, ∂ΩD) > 0, invariant under dilation,
such that

|u|2H1(Ω) ≤ C (ε(u), ε(u))L2(Ω) ∀u ∈ H1

0
(Ω, ∂ΩD).

The wellposedness of the linear system (1) follows immediately from the continuity
and ellipticity of the bilinear form a(·, ·).

It follows from Korn’s first inequality that ‖ε(u)‖L2(Ω) is equivalent to |u|H1(Ω) on
H1

0
(Ω, ∂ΩD). This result is not directly valid for the case of purely natural boundary

conditions when we work with the entire space H1(Ω). This case is of interest when
considering floating subregions, i.e., those that do not touch ∂ΩD. However, a G̊arding
inequality is provided by Korn’s second inequality. This inequality will only be needed
for our purposes on subdomains on which the Lamé parameters are assumed to be
homogeneous, i.e., do not vary greatly.

Lemma 2 (Korn’s second inequality). Let Ω ⊂ IR3 be a Lipschitz domain
of diameter one. Then, there exists a positive constant C = C(Ω), such that

‖u‖2
H1(Ω) ≤ C ((ε(u), ε(u))L2(Ω) + ‖u‖2

L2(Ω)) ∀u ∈ H1(Ω).
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There are several proofs; see, e.g., Nitsche [22].
We can now derive a Korn inequality on the space {u ∈ H1(Ω) : u ⊥ ker (ε)}.

The null space ker (ε) is the space of rigid body motions and orthogonality is defined
with respect to the L2−inner product. Thus, the linearized strain tensor of u and its
divergence vanish only for the elements of the space spanned by the three translations

r1 :=




1
0
0


 , r2 :=




0
1
0


 , r3 :=




0
0
1


 ,(3)

and the three rotations

r4 :=
1

H




x2 − x̂2

−x1 + x̂1

0


 , r5 :=

1

H




−x3 + x̂3

0
x1 − x̂1


 , r6 :=

1

H




0
x3 − x̂3

−x2 + x̂2


 .(4)

Here x̂ ∈ Ω and H denotes the diameter of Ω. The shift of the origin makes the basis
for the space of rigid body modes well conditioned and the scaling and shift make the
L2(Ω)−norms of these six functions scale in the same way with H . We will also use
the notation rk = (rkl)l=1,2,3, k = 1, . . . , 6, with rkℓ the ℓ-th component of the k-th
rigid body mode.

We now introduce two alternative inner products in H1(Ω), for a region Ω of
diameter one,

(u,v)E1 := (ε(u), ε(v))L2(Ω) + (u,v)L2(Ω)

and

(u,v)E2 := (ε(u), ε(v))L2(Ω) +

6∑

i=1

(u, ri)L2(Σ)(v, ri)L2(Σ),

where

(u, ri)L2(Σ) =

∫

Σ

uT ridx.(5)

Here, Σ ⊂ ∂Ω is assumed to have positive measure. By Lemma 2, ‖ · ‖E1 , given by
the inner product (·, ·)E1 , is a norm and so, by construction, is ‖ · ‖E2 . These norms
are equivalent:

Lemma 3. Let Ω ⊂ IR3 be a Lipschitz domain of diameter one and let Σ ⊂ ∂Ω
be of positive measure. Then, there exist constants 0 < c ≤ C < ∞, such that

c ‖u‖E1 ≤ ‖u‖E2 ≤ C ‖u‖E1 ∀u ∈ H1(Ω).

Proof. The proof of the right inequality follows immediately from the Cauchy–
Schwarz inequality and a simple trace theorem. The left inequality is proven by
contradiction and by using Rellich’s theorem as in a proof of generalized Poincaré–
Friedrichs inequalities, cf., e.g., Nečas [21, Chap. 2.7]. For such an argument, it is
important that the linear functionals li(u) = (u, ri)L2(Σ) be bounded on H1(Ω); this
is a consequence of a Cauchy-Schwarz inequality and the same trace theorem.

2
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Using analogous arguments, combined with Lemma 2, we obtain:
Lemma 4. Let Ω ⊂ IR3 be a Lipschitz domain of diameter one and let Σ ⊂ ∂Ω

be of positive measure. Then, there exists a positive constant C > 0, such that

|u|2H1(Ω) + ‖u‖2
L2(Σ) ≤ C

(
(ε(u), ε(u))L2(Ω) + ‖u‖2

L2(Σ)

)
∀u ∈ H1(Ω).

Using (2) and Lemmas 2 and 3, in combination with a scaling argument, we obtain
a Korn inequality on a subspace of H1(Ω).

Lemma 5. Let Ω ⊂ IR3 be a Lipschitz domain. Then, there exists a constant
c > 0, invariant under dilation, such that

c |u|H1(Ω) ≤ ‖ε(u)‖L2(Ω) ≤ |u|H1(Ω),

where u ∈ {v ∈ H1(Ω) : (v, r)L2(Σ) = 0 ∀r ∈ ker (ε)}.
In the following, we will make extensive use of trace spaces equipped with trace

norms. We therefore recall some definitions. We will first consider scalar valued
Sobolev spaces. Let Σ, again, be a subset of ∂Ω with positive measure. Then, a
seminorm, which is equivalent to |·|H1/2(Σ) on H1/2(Σ), can be defined for u ∈ H1/2(Σ)
as

inf
v∈H1(Ω)
v|Σ=u

|v|H1(Ω).

Clearly, |u|2
H1/2(Σ)

:=
∑3

i=1 |ui|2H1/2(Σ)
defines a seminorm on the product trace space

H1/2(Σ) := (H1/2(Σ))3. Another useful seminorm on H1/2(Σ) is given by

|u|E(Σ) := inf
v∈H1(Ω)
v|Σ=u

‖ε(v)‖L2(Ω).

We will denote by uharm and uelast ∈ {v ∈ H1(Ω) : v|Σ = u} the harmonic
and elastic extension of u, respectively, defined by |uharm|H1(Ω) = |u|H1/2(Σ) and

‖ε(uelast)‖L2(Ω) = |u|E(Σ). From Lemma 4, we immediately see that for u ∈ H1/2(Σ)

|u|2
H1/2(Σ)

+ ‖u‖2
L2(Σ) ≤ |uelast|2H1(Ω) + ‖u‖2

L2(Σ)

≤ 1/c
(
‖ε(uelast)‖

2
L2(Ω) + ‖u‖2

L2(Σ)

)

= 1/c
(
|u|2E(Σ) + ‖u‖2

L2(Σ)

)
.

(6)

Using these estimates and a standard scaling argument, we also have a Korn inequality
on the trace space H1/2(Σ).

Lemma 6. Let Ω ⊂ IR3 be a Lipschitz domain of diameter H and Σ ⊂ ∂Ω be
an open subset with positive surface measure. Then, there exists a constant C > 0,
invariant under dilation, such that

|u|2H1/2(Σ) +
1

H
‖u‖2

L2(Σ) ≤ C

(
|u|2E(Σ) +

1

H
‖u‖2

L2(Σ)

)

where u ∈ H1/2(Σ).
We also have the following Korn inequality.
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Lemma 7. Let Ω ⊂ IR3 be a Lipschitz domain of diameter H and Σ ⊂ ∂Ω be
an open subset with positive surface measure. There exists a positive constant C,
independent of H, such that

inf
r∈ker (ε)

‖u− r‖2
L2(Σ) ≤ C H |u|2E(Σ) ∀u ∈ H1/2(Σ).

Proof. We first prove the lemma for a domain Ω of unit diameter. Let u ∈
H1/2(Σ) be arbitrary but fixed and let r ∈ ker (ε) be the minimizing rigid body
mode, for which (u − r, ri)L2(Σ) = 0, i = 1, . . . , 6. Then, by using a standard trace
theorem, and Lemmas 2 and 3, we obtain

‖u− r‖2
L2(Σ) ≤ C (|(u − r)elast|

2
H1(Ω) + ‖(u − r)elast‖

2
L2(Ω))

≤ C (|u − r|2E(Σ) + ‖(u− r)elast‖
2
L2(Ω))

≤ C (|u − r|2E(Σ) +

6∑

i=1

((u − r, ri)L2(Σ))
2)

= C |u|2E(Σ).

We now obtain the result using a standard scaling argument.
2

3. Finite elements and geometry. We will only consider compressible elastic
materials. It then follows from Lemma 1 that the bilinear form a(·, ·) is uniformly
elliptic and uniformly continuous. It is therefore sufficient to discretize our elliptic
problem (1) by low order, conforming finite elements, e.g., linear or trilinear elements.

Let us assume that a triangulation τh of Ω is given which is shape regular and has a
typical diameter of h. We denote by Wh := Wh(Ω) ⊂ H1

0
(Ω, ∂ΩD) the corresponding

conforming finite element space of finite element functions. The corresponding discrete
problem is then

a(uh,vh) = 〈F,vh〉 ∀vh ∈ Wh.(7)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains Ωi, i =

1, . . . , N , each of which is the union of finite elements with matching finite element
nodes on the boundaries of neighboring subdomains across the interface Γ. The in-
terface Γ is the union of subdomain faces, edges, all of them regarded as open sets,
and subdomain vertices. Faces are sets which are shared by two subregions, edges
normally by more than two subregions, and vertices are endpoints of edges. Vectors
of interior variables will be equipped with the subscript I. We denote the faces of Ωi

by F ij , its edges by E ik, and its vertices by V il. Subdomain vertices that lie on ∂ΩN

are part of Γ, while subdomain faces that are part of ∂ΩN are not; the nodes on those
faces will always be treated as interior. If Γ intersects ∂ΩN along an edge common to
the boundaries of only two subdomains, we will normally regard it as part of the face
common to this pair of subdomains; if there are more than two subdomains, it will
be regarded as an edge of Γ. Similarly, we will regard a subdomain vertex on ∂ΩN

part of an interior edge unless there are several such edges that end at the vertex. In
the latter case, we treat the vertex the same way as a vertex in the interior of the
domain. We note that any subdomain the boundary of which does not intersect ∂ΩD
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is a floating subdomain, i.e., a subdomain for which only natural boundary conditions
are imposed.

These geometrical entities can also be defined in terms of certain equivalence
classes. Let us denote the sets of nodes on ∂Ω, ∂Ωi, and Γ by ∂Ωh, ∂Ωi,h, and Γh,
respectively. For any interface nodal point x ∈ Γh, we define

Nx := {j ∈ {1, . . . , N} : x ∈ ∂Ωj},

i.e., Nx is the set of indices of all subdomains with x in the closure of the subdomain.
Associated with the nodes of the finite element mesh, we have a graph, the nodal

graph, which represents the node-to-node adjacency. For a given node x ∈ Γh, we
denote by Ccon(x) the connected component of the nodal subgraph, defined by Nx,
to which x belongs. For two interface points x, y ∈ Γh, we introduce an equivalence
relation by

x ∼ y :⇐⇒ Nx = Ny and y ∈ Ccon(x).

We can now describe faces, edges, and vertices using their equivalence classes. Here,
|G| denotes the cardinality of the set G. We find that

x ∈ F :⇐⇒ |Nx| = 2
x ∈ E :⇐⇒ |Nx| ≥ 3 and ∃y ∈ Γh, y 6= x, such that y ∼ x
x ∈ V :⇐⇒ |Nx| ≥ 3 and 6 ∃y ∈ Γh, such that x ∼ y.

In our theoretical analysis, we assume that each subregion Ωi is the union of a
number of shape regular tetrahedral coarse elements and that the number of such
tetrahedra is uniformly bounded for each subdomain. Therefore, the subregions are
not very thin and we can also easily show that the diameters of any pair of neighboring
subdomains are comparable. In such a case, our definition of faces, edges, and vertices
conform with our basic geometric intuition. On the other hand, for subdomains
generated by an automatic mesh partitioner, the situation can be quite complicated.
We can, e.g., have several edges with the same index set Nx or an edge and a vertex
with the same Nx. In practice, we can also have situations when there are not enough
edges and potential edge constraints for some subdomains. Then, we have to use
constraints on some extra edges on ∂ΩN , which otherwise would be regarded as part
of a face; see above.

We denote the standard finite element space of continuous, piecewise linear func-
tions on Ωi by Wh(Ωi); we always assume that these functions vanish on ∂ΩD. For
simplicity, we assume that the triangulation of each subdomain is quasi uniform. The
diameter of Ωi is Hi, or generically, H . We denote the corresponding finite element
trace spaces by W(i) := Wh(∂Ωi∩Γ), i = 1, . . . , N, and by W :=

∏N
i=1 W(i) the asso-

ciated product space. We will often consider elements of W, which are discontinuous
across the interface.

For each subdomain Ωi, we define the local stiffness matrix K(i), which we view as
an operator on Wh(Ωi). On the product space

∏N
i=1 Wh(Ωi), we define the operator

K as the direct sum of the local stiffness operators K(i), i.e.,

K :=

N⊕

i=1

K(i).(8)

In an implementation, K corresponds to a block diagonal matrix since, so far, there
is no coupling across the interface. The finite element approximation of the elliptic
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problem is continuous across Γ and we denote the corresponding subspace of W by

Ŵ. We note that while the stiffness matrix K and its Schur complement, obtained
after eliminating the variables interior to the subregions, which corresponds to the

product space W, are singular if there are any floating subdomains, those of Ŵ are
not.

In the present study, as in others of FETI–DP methods, we also work with sub-

spaces W̃ ⊂ W for which sufficiently many constraints are enforced so that the result-
ing leading diagonal block matrix of the FETI saddle point problem, to be introduced
in (20), though no longer block diagonal, is strictly positive definite. These are called
primal constraints and in our discussion they usually consist of certain edge averages
and first order moments, which have common values across the interface of neigh-
boring subdomains, and possibly of constraints at well chosen subdomain vertices (or
other nodes), for which a partial subassembly is carried out. One of the benefits of

working in W̃, rather than in W, will be that certain related Schur complements, S̃ε

and Sε, are strictly positive definite; cf. (10) and (12).

We further introduce two subspaces, ŴΠ ⊂ Ŵ and W̃∆, corresponding to a

primal and a dual part of the space W̃. These subspaces play an important role in
the description and analysis of our iterative method. We note that the dual subspace
W̃∆ will be directly associated with jumps across the interface and with the Lagrange
multipliers that are introduced to eliminate these jumps. The direct sum of these

spaces equals W̃, i.e.,

W̃ = ŴΠ ⊕ W̃∆.(9)

The second subspace, W̃∆, is the direct sum of local subspaces W̃
(i)
∆ of W̃, where

each subdomain Ωi contributes a subspace W̃
(i)
∆ ; only its i-th component in the sense

of the product space W̃ is non trivial.
We now define certain Schur complement operators by using a variational formu-

lation; for a matrix representation, see Section 6. Here, 〈·, ·〉 will denote the ℓ2−inner

product. We first define Schur complement operators S
(i)
ε , i = 1, . . . , N , operating on

W(i), by

〈S(i)
ε w(i),w(i)〉 = min〈K(i)v(i),v(i)〉 ∀w(i) ∈ W(i),(10)

where we take the minimum over all v(i) ∈ Wh(Ωi) with v(i)
|Γ = w(i). We can now

define the Schur complement Sε operating on W as the direct sum of the local Schur
complements

Sε :=

N⊕

i=1

S(i)
ε .(11)

Next, we introduce a positive definite Schur complement S̃ε, operating on W̃∆, by a

variational problem: for all w∆ ∈ W̃∆,

〈S̃εw∆,w∆〉 = min
wΠ∈ŴΠ

〈Sε(w∆ + wΠ),w∆ + wΠ〉.(12)

We note that any Schur complement of a positive definite, symmetric matrix is always
associated with such a variational problem. We also obtain, analogously, a reduced
right hand side f̃∆, from the load vectors associated with the individual subdomains.
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We now consider the relation between the Schur complement of the elasticity
stiffness matrix, Sε, and S the one arising from discretizing a vector valued Laplace
operator scaled by the values of G. Obviously, S can also be defined as the direct sum
of local Schur complements

S :=

N⊕

i=1

S(i),(13)

where the S(i) are again given by a variational argument as in (10), using the discrete,
scaled, vector valued Laplace operator instead of K(i). We furthermore introduce
bilinear forms which represent the contributions of the individual subdomains to the
bilinear from a(u,v):

a(u,v) :=

N∑

i=1

ai(u,v)

with Gi := Ei

1+νi
, βi := νi

1−2νi
, and

ai(u,v) := Gi

(
(ε(u), ε(v))L2(Ωi) + βi(div (u), div (v)L2(Ωi)

)
.

We will assume that Gi and βi are constant on the subdomain Ωi. We obviously have
for u ∈ Wh.

|u|2Sε
≤ max

i=1,...,N
(1 + βi) |u|

2
S .(14)

In order to define certain scaling operators, we need to define weighted counting
functions δi for each subdomain Ωi. These are functions in the scalar finite element
trace space on ∂Ωi. They are defined, for γ ∈ [1/2,∞), by

δi(x) :=

∑
j∈Nx

Gγ
j (x)

Gγ
i (x)

, x ∈ ∂Ωi,h ∩ Γh.(15)

Here, as before, Nx is the set of indices of the subregions which have x on its boundary.
This formula can also be used for material coefficients Gi which vary over the boundary
of the subdomains but in our theory, we only consider the case when the coefficients
are constant in each subdomain. We note that any node of Γh belongs either to a face
common to two subdomains, to an edge common to at least three subregions, or is a
vertex of several substructures. The pseudo inverses δ†i are defined as

δ†i (x) = δ−1
i (x), x ∈ ∂Ωi,h ∩ Γh.(16)

We further introduce an extension operators RT
i : W(i) → Ŵ, such that the contin-

uous global function RT
i wi ∈ Ŵ shares the nodal values with wi on ∂Ωi,h ∩ Γh and

vanishes at all other nodes of Γh. We note that these functions provide a partition of
unity:

∑

i

RT
i (δ†i (x)1) ≡ 1 ∀x ∈ Γh,(17)

where 1 ∈ Ŵ is the vector valued function with components equal to one at every
point of Γh.

For γ ≥ 1/2, we can easily show that

Gi(δ
†
k)2 ≤ min(Gi, Gk).(18)
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4. The dual-primal FETI method. We reformulate the original finite ele-

ment problem, reduced to the degrees of freedom of the second subspace W̃∆, as a
minimization problem with constraints given by the requirement of continuity across

all of Γh: find u∆ ∈ W̃∆, such that

J(u∆) := 1
2 〈S̃εu∆,u∆〉 − 〈̃f∆,u∆〉 → min

B∆u∆ = 0

}
.(19)

The jump operator B∆ operates on W̃ and enforces pointwise continuity of the dual
displacement degrees of freedom. At possible primal vertices, continuity is already

enforced by subassembly and a jump operator applied to a function from W̃ would
automatically be zero at these special degrees of freedom.

By introducing a set of Lagrange multipliers λ ∈ V := range (B∆), to enforce
the constraints B∆u∆ = 0, we obtain a saddle point formulation of (19):

[
S̃ε BT

∆

B∆ O

] [
u∆

λ

]
=

[
f̃∆
0

]
.(20)

We note that we can add any element from ker (BT
∆) to λ without changing the

displacement solution u∆.
Since S̃ε is invertible, we can eliminate u∆ and obtain the following system for

the Lagrange multiplier variables:

Fλ = d.(21)

Here, our new system matrix F is defined by

F := B∆S̃−1
ε BT

∆(22)

and the new right hand side by d := B∆S̃−1
ε f̃∆. Algorithmically, S̃ε is only needed

in terms of S̃−1
ε times a vector w∆ ∈ W̃∆ and such an operation can be excecuted

relatively inexpensively; see Section 6. The operator F will obviously depend on the

choice of the subspaces ŴΠ and W̃∆.
To define the FETI-DP Dirichlet preconditioner, we need to introduce scaled

jump operators

BD,∆ := [B
(1)
D,∆, . . . , B

(N)
D,∆].

Here, the B
(i)
D,∆ are defined as follows: each row of B

(i)
∆ with a nonzero entry cor-

responds to a Lagrange multiplier connecting the subdomain Ωi with a neighboring

subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. Multiplying each such row of B
(i)
∆ with

δ†j (x) gives us B
(i)
D,∆.

As in Klawonn and Widlund [13, Section 5], we solve the dual system (21) using
the preconditioned conjugate gradient algorithm with the preconditioner

M−1 := PBD,∆SεB
T
D,∆PT ,(23)

where P is the ℓ2-orthogonal projection from range (BD,∆) onto V = range (B∆),
i.e., P removes the component from ker (BT

∆) of an element in range (BD,∆). We
note that P and PT are only needed for the theoretical analysis to guarantee that the
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preconditioned residuals will belong to V; cf. remark after (20). The projections can
be dropped in the implementation; cf. the argument at the end of this section.

This definition of M−1 clearly depends on the choice of the subspaces ŴΠ and

W̃∆.
The FETI-DP method is the standard preconditioned conjugate gradient algo-

rithm for solving the preconditioned system

M−1Fλ = M−1d.

Algorithm 1.
(i) Initialization: r0 := d− Fλ0

(ii) Iterate for k = 1, 2, . . ., until convergence,

zk−1 := M−1rk−1

βk :=
〈zk−1, rk−1〉

〈zk−2, rk−2〉
[β1 := 0]

pk := zk−1 + βkpk−1 [p1 := z0]

αk :=
〈zk−1, rk−1〉

〈pk, Fpk〉

λk := λk−1 + αkpk

rk := rk−1 − αkFpk

We note that in the implementation of our preconditioner M−1, we can drop the
projection operator P and its transpose as can be seen by the following argument.
Applying BD,∆SεB

T
D,∆ to an element from V results in a vector µ which can be written

as a sum µ = µ0+µ1 of components µ0 ∈ ker (BT
∆) and µ1 ∈ V = range (B∆). When

F is applied to µ, the component Fµ0 vanishes and we also have Fµ ∈ V. Examining
Algorithm 1, we can also easily see that dropping P and PT only affects the computed
Lagrange multiplier solution but not the computed displacements. The residuals rk

are always in V and it is easy to show that the αk and βk are not affected.

5. Selection of constraints. In order to control the rigid body modes of a
subregion, we need at least six constraints. To get an understanding of the type of
primal constraints that are required to make our preconditioner effective, it is useful
to examine two special cases.

In the first, we assume that we have two subdomains made of the same material,
which have a face in common and are surrounded by subdomains made of a material
with much smaller Young’s modulus E. Such a problem will clearly have six low
energy modes corresponding to the rigid body modes of the union of the two special
subdomains. Any preconditioner that has less than six linearly independent primal
constraints across that face will have at least seven low energy modes and will be far
from spectrally equivalent to the original finite element model.

In the second case, we again consider two subdomains surrounded by subdomains
with much smaller stiffnesses, i.e., Young’s moduli. We now assume that the two
special subdomains share only an edge. In this case, there are seven low energy
modes of the finite element model corresponding to the same rigid body modes as
before and an additional one. The new mode corresponds to a relative rotation of
the two subdomains around their common edge. We conclude that in such a case, we
should introduce five linearly independent primal constraints related to the special
edge.
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In the convergence theory presented in Section 8, we will first assume that the
requirement of the first special case is met for each face, i.e., there are at least six
linearly independent edge constraints for each face of the interface. Any such face will
be called fully primal, cf. Definition 1. We note that any such edge constraint will
serve as a constraint for every face adjacent to the edge in question. We do not have
to make every face fully primal but, for every face, we have to have an acceptable face
path, cf. Definition 3 and Section 8.3. We also note that using only constraints based
on averages over faces might not always lead to a robust algorithm with respect to
jumps in the stiffnesses of different materials; see [16, 12].

For coefficient distributions with only modest jumps across the interface Γ and
for some special decompositions, we are able to work exclusively with edge averages;
cf. Section 8.1. To be able to treat general coefficient distributions with arbitrarily
large jumps, we also need first order moments, in addition to the averages, on certain
edges such as those in the second special case discussed above. All these constraints
will be written in terms of inner products of rigid body modes and the displacement
over individual edges. There will be only five linearly independent constraints of this
type since, restricted to an edge, one rotational rigid body mode is always linearly
dependent of the others. This can be seen easily by a direct computation or by a
change of coordinates such that the chosen edge coincides with the x1−axis of the
Cartesian coordinate system; then the third rotation r6 will vanish and the relevant
first order moments are with respect to the second and third displacement compo-
nents. Such an edge with three edge average constraints and two first order moment
constraints will be called fully primal, cf. Definition 2. An edge will be called primal
if there is at least one constraint, expressed in terms of an average, for at least one of
its displacement components. As with the fully primal faces, we do not have to make
every edge fully primal. Instead, we can make sure that there is an acceptable face
path; cf. Definition 3. Finally, to be able to treat the most general distribution of
coefficients, it can be necessary to make some vertices primal and we need the concept
of an acceptable vertex path; cf. Definition 4.

Definition 1 (Fully primal face). Let F ij be a face. A set fm, m = 1, . . . , 6,
of linearly independent linear functionals on W(i) is called a set of primal constraint
functionals on that face if it has the following properties:

(i) |fm(w(i))|2 ≤ C H−1
i (1 + log(Hi/hi)){|w(i)|2

H1/2(Fij)
+ 1

Hi
‖w(i)‖2

L2(Fij)}

(ii) fm(rl) = δml ∀m, l = 1, . . . , 6, rl ∈ ker (ε).

Such a face is called a fully primal face.
We will sometimes write fFij

m instead of fm. As an example of functionals fm,
as considered in Definition 1, we can use appropriately chosen linear combinations of
certain edge averages, gn, of components of the displacement,

gn(w(i)) :=

∫
Eik w

(i)
ℓ dx∫

Eik 1dx
, n = 1, . . . , 6,

for a function w(i) = (w
(i)
1 , w

(i)
2 , w

(i)
3 ) ∈ W(i) and appropriately chosen edges E ik

which belong to the boundary of the face F ij . We can show that in order to obtain
six linearly independent linear functionals associated with a rectangular face F ij , we
have to work with at least three different edges E ik.

The functionals g1, . . . , g6, provide a basis of the dual space (ker (ε))′. There also
exists a dual basis of (ker (ε))′, which we denote by f1, . . . , f6, defined by fm(rl) =
δml, m, l = 1, . . . , 6; thus, there exist βlk ∈ IR, l, k = 1, . . . , 6, such that for w ∈ W(i),
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we have

fm(w) =

6∑

n=1

βmngn(w), m = 1, . . . , 6.(24)

Using a Cauchy-Schwarz inequality, we obtain

|gm(w(i))|2 ≤ C H−1
i ‖w(i)‖2

L2(Eik).

We can then show, by using Lemma 11, that

‖w(i)‖2
L2(Eik) ≤ C (1 + log(Hi/hi)) (|w(i)|2H1/2(Fij) +

1

Hi
‖w(i)‖2

L2(Fij)).

Thus, the first requirement of Definition 1 is satisfied for the functionals fm.
It is also possible to construct five of the functionals fm in Definition 1 using five

constraints, three averages and two first order moments, on one single edge. Before
we discuss this possibility, we introduce the definition of a fully primal edge.

Definition 2 (Fully primal edge). Let F ij be a face and E ik an edge which
belongs to the boundary of F ij. A set fm, m = 1, . . . , 5, of linearly independent linear
functionals on W(i) is called a set of primal constraint functionals on the edge E ik if
it has the following properties:

(i) |fm(w(i))|2 ≤ C H−1
i (1 + log(Hi/hi)){|w(i)|2

H1/2(Fij)
+ 1

Hi
‖w(i)‖2

L2(Fij)}

(ii) fm(rl) = δml ∀m, l = 1, . . . , 5, rl ∈ ker (ε).

Such an edge is called a fully primal edge.

We will sometimes write fEik

m instead of fm. We recall that the rigid body modes
r1, . . . , r6, restricted to an edge provide only five linearly independent vectors, since
one rotation is always linearly dependent of other rigid body modes. In our arguments,
we will assume that we have used an appropriate change of coordinates such that the
edge under consideration coincides with the x1-axis; the special rotation is then r6. As
an example of functionals fm, as required in Definition 2, we can use appropriate linear
combinations of certain edge averages and first order moments of the components of
the displacement given by

gn(w(i)) :=
(w(i), rn)L2(Eik)

(rn, rn)L2(Eik)

, n ∈ {1, . . . , 5}.(25)

Using a Cauchy-Schwarz inequality, we obtain

|gn(w(i))|2 ≤
‖w(i)‖2

L2(Eik)

‖rn‖2
L2(Eik)

.

We can now proceed exactly as in the case of the fully primal faces and construct the
functionals fm in terms of a dual basis of (ker (ε))

′

. Then, the second requirement of
Definition 2 is again immediately satisfied by construction and the first requirement
follows again from Lemma 11.

We do not have to require that every face and edge be fully primal but we need
the concept of an acceptable face path for those that are not.

Definition 3 (Acceptable face path). Consider a pair of subdomains (Ωi, Ωk)
which have a face or an edge in common. An acceptable face path{Ωi,Ωj1 , . . . , Ωjn , Ωk}
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for this pair is a path from Ωi to Ωk, via a uniformly bounded number of other sub-
domains Ωjq , q = 1, . . . , n, such that the coefficients Gjq of Ωjq satisfy the condition

TOL ∗ Gjq ≥ min(Gi, Gk) q = 1, . . . , n,(26)

for some tolerance TOL. The path can pass from one subdomain to another only
through a fully primal face; cf. Figure 1.

fully primal

fully
primal
face

fully primal

face

dual
face

faceGi

Gl

Gl Gl

Gj2

Gj3

Gk

Gj1

Gk
��
��
��
��

��
��
��
��

������������

fully primal

fully primal

face

facefully primal
face

fully
primal
face

fully
primal
face

fully
primal
face

dual edge

Gi

Gl

Gl Gl

Gl

Gj2

Gj3

Gk

Gj1

Fig. 1. Examples of acceptable face paths (planar cut): dual face (left) and dual edge (right).

We note that any fully primal face has a trivial acceptable face path. An edge
should either be fully primal or have an acceptable face path.

Finally, we have to consider vertices, where we need to control only translational
rigid body modes. A vertex is primal if the three displacement components are con-
tinuous. These variables are then global and this is reflected in the subassembly of
the stiffness matrix of the preconditioner. We do not have to make a vertex primal if
for every pair of subregions, which have the vertex in common, there is an acceptable
vertex path.

Definition 4 (Acceptable vertex path). Consider a pair of subdomains
(Ωi, Ωk), which have a vertex in common. An acceptable vertex path {Ωi, Ωj1 , . . . , Ωjn , Ωk}
from Ωi to Ωk, is a path via a uniformly bounded number of other subdomains Ωjq , q =
1, . . . , n, such that the coefficients Gjq of Ωjq satisfy the condition

TOL ∗ Gjq ≥
hi

Hi
min(Gi, Gk) q = 1, . . . , n,(27)

for some tolerance TOL. We can only pass from one subdomain to another through
a fully primal face.

We will assume that for each pair (Ωi, Ωk), which has a face, an edge or a vertex, in
common, there either exists an acceptable path as in Definitions 3 and 4, respectively,
with a modest tolerance TOL and that the path does not exceed a prescribed length,
or that the face or edge are fully primal or the vertex primal. (In Subsection 8.4,
we will look in more detail at the consequences of long paths.) If TOL becomes too
large for a certain face, edge, or vertex or if the length of the acceptable path exceeds
a given uniform bound, we should make the face or edge fully primal, or the vertex
primal; cf. Figure 2 for an example where certain vertices should be made primal.

We note that the bounds for the primal constraint functionals in Definitions 1
and 2 will allow us to prove almost uniform bounds for the condition number of
our algorithms. If point constraints were to replace the edge constraints, this would
not be possible. We note that while we will work with functionals which are not
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Fig. 2. Example of a decomposition where no acceptable vertex path exists for the vertices which
connect the black subdomains, which have much larger coefficients than those of the white. These
vertices should be made primal.

uniformly bounded, the growth of these bounds is quite modest when H/h grows.
These growth factors will appear in the main theorem as is customary for many
domain decomposition methods. We also note that the logarithmic factors cannot be
eliminated if we wish to obtain a result which is uniform with respect to arbitrary
variations of the Lamé parameters.

Finally, we define the spaces ŴΠ and W̃∆ =
⊕N

i=1 W̃
(i)
∆ . For the definition

of these spaces, we will use certain standard scalar finite element cutoff functions
θFij , θEik , and θVil . The first two equal one on F ij and E ik, respectively, and van-
ish elsewhere on Γh; the cutoff function θVil equals one at the vertex and vanishes
elsewhere on the interface. Additionally, for an edge, we denote by mEik a linear
function which equals 1 at one end of the edge and −1 at the other. The first space,

ŴΠ, is spanned component by component by the nodal finite element functions θVil

which are associated with vertices V il that have been chosen to be primal, by the
cutoff functions θEik for the primal edges, and for fully primal edges by θEik and

Ih(mEikθEik). Each such primal constraint is associated with a basis element of ŴΠ;
all these functions are continuous across the interface Γ. For each subdomain Ωi, we

then define a subspace W̃
(i)
∆ by those functions in W(i) which vanish at the primal

variables, i.e., these functions vanish at primal vertices and have zero averages over
primal edges and additionally certain zero first order moments over fully primal edges.
More details will be provided especially in Section 8.

6. Linear algebra aspects of the FETI-DP method. In this section, we first
introduce matrix representations of the operators used in the description of our FETI-
DP algorithm and given in Section 4. We then describe two ways of implementing
these algorithms.

The matrix representing the jump operator B∆ is constructed from {0, 1,−1},
in such a way that the values of the solution u∆, associated with more than one
subdomain, coincide when B∆u∆ = 0. These constraints are very simple and just
express that the nodal values coincide across the interface; in comparison with the
one-level FETI method, cf. [13], we can drop some of the constraints, in particular
those associated with the primal vertices. However, we will otherwise use all possible
constraints and thus work with a fully redundant set of Lagrange multipliers as in
[13, Section 5]; cf. also [23]. Thus, for an edge node common to four subdomains,
we will use six constraints rather than choosing just three. To define the FETI-DP
Dirichlet preconditioner, we also need to introduce a matrix representation of the
scaled jump operator BD,∆; this is done by scaling the contributions of B∆ from
individual subdomains. Additionally, we add a zero column to BD,∆ for each primal
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vertex variable.
Let us now consider the matrix representation of our preconditioner M−1. We

need the matrix form of Sε; this is a Schur complement matrix, which is obtained
from the block diagonal matrix K, (8), by eliminating the interior variables. The
associated block–diagonal matrix is given by

Sε := diagN
i=1(S

(i)
ε ).

Each local stiffness matrix can be written as

K(i) =

[
K

(i)
II K

(i)T
ΓI

K
(i)
ΓI K

(i)
ΓΓ

]
.

Then, each local Schur complement matrix S
(i)
ε can be written as

S(i)
ε = K

(i)
ΓΓ − K

(i)
ΓI (K

(i)
II )−1K

(i)T
ΓI .

Thus, we can compute Sε times a vector w∆ ∈ W̃∆ by solving local Dirichlet problems
and forming some sparse matrix-vector products. Our preconditioner is then given in
matrix form by

M−1 = PBD,∆SεB
T
D,∆PT .

Finally, we have to consider the system matrix F = B∆S̃−1
ε BT

∆. We have to describe

how the edge (and face) constraints can be implemented and how S̃−1
ε times a vector

can be computed efficiently. There are two different approaches to the edge and face
constraints, one using optional Lagrange multipliers, which will form a part of the
global, coarse problem, and the other which uses a change of basis; cf. Subsections
6.1 and 6.2, respectively. The second approach generally leads to smaller and compu-
tationally more efficient coarse problems; with this approach, the invertibility of the
local problems and the positive definiteness of the entire problem can be guaranteed
without any vertex constraints. In fact, vertex constraints are only needed for prob-
lems with very challenging distributions of the material coefficients. We will outline
two different ways of implementing the change of basis; we can either explicitly carry
out the basis transformation on the primal and fully primal edges for both the primal
and dual displacement variables, or one can apply the transformation explicitly only
for the primal displacement variables and use local Lagrange multipliers to enforce
zero edge averages and first order moments for the dual displacements. The latter
approach has the advantage of retaining more of the original sparsity of the stiffness
matrices.

6.1. An implementation using global optional Lagrange multipliers. We
first briefly review the approach taken by Farhat, Lesoinne, and Pierson in [9]. They
assume that a sufficient number of vertices have been chosen as primal variables such
that the stiffness matrix which results from K by partial assembly at those vertices
is invertible even without any additional primal constraints. In two dimensions, such
a set of vertex constraints is sufficient to obtain a fast and scalable algorithm but in
three dimensions, to be competitive, we have to choose a primal space, which also
ensures that certain face and/or edge averages and first order moments are the same
across the interface. This approach can be implemented by introducing additional
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optional Lagrange multipliers originating from constraints of the form

Q∆B∆u∆ =

N∑

i=1

Q∆B
(i)
∆ u

(i)
∆ = 0.(28)

Here, Q∆ is a rectangular matrix which has as many columns as there are Lagrange
multipliers. It has one row for each primal constraint, which is not related to a
vertex and the matrix Q∆ is constructed such that (28) guarantees that certain linear
combinations of the rows of B∆u∆ vanish. Thus, these linear combinations are directly
related to the constraints of the primal edges and faces; (28) forces appropriate edge
averages and first order moments at fully primal edges or faces to have common values
across the interface. We note that this approach could also be used for common face
averages at selected faces across the interface; here we will work exclusively with edge
averages and moments.

Let us now order the unknowns such that the interior and dual variables come
first, grouped together in blocks by the subdomains and denoted with the subscript r,
and that the primal vertices, with the subscript c, are ordered last. We note that the
matrix K̃ is partially assembled with respect to the primal vertices. Thus, we have

K̃ :=




Krr K̃T
cr QT

r

K̃cr K̃cc O
Qr O O


 ,

where

Krr :=




K
(1)
rr O

. . .

O K
(N)
rr


 , K(i)

rr :=

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K̃T

cr :=




K
(1)T
cr R

(1)T
c

...

K
(N)T
cr R

(N)T
c


 ,

K̃cc =

N∑

i=1

R(i)
c K(i)

cc R(i)
c

T
, Qr := [Q(1)

r . . .Q(N)
r ], and Q(i)

r := [O Q∆B
(i)
∆ ].

Here, we denote by R
(i)
c the matrix which performs the partial assembly at the relevant

primal vertices and K̃cc is the submatrix which is assembled at the primal vertices.
The resulting leading two by two block of K̃ is thus non singular. Using the notation

Br := [B
(1)
r . . . B

(N)
r ] with B

(i)
r := [O B

(i)
∆ ], for a matrix with same structure as Qr

and introducing Lagrange multipliers λ ∈ range (Br), we can reformulate the original
finite element problem as follows




Krr K̃T
cr QT

r BT
r

K̃cr K̃cc O O
Qr O O O
Br O O O







ur

uc

µ

λ


 =




fr
fc
0
0


 .

We can now derive the unpreconditioned FETI-DP linear system by eliminating the
variables ur,uc, and µ to obtain Fλ = d. In order to exploit the sparsity of K̃, the
Schur complement S̃ε is never built explicitly. In fact, we only need to be able to
compute the action of S̃−1

ε on a vector f∆. This can be done in a computationally
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efficient way as described at the end of Section 6.2. We note that although the
elimination of the interior and dual variables ur leads to an indefinite system with
respect to the primal variables uc and the optional global Lagrange multipliers µ,
it can still be solved without pivoting for stability. Instead, we can symmetrically
reorder a large leading principal minor of our matrices so as to maintain sparsity.
Since the argument is the same as for a variant described in the next section, we refer
to the discussion at the end of Section 6.2.

6.2. An implementation using a change of basis. As a second approach,
we present a method which uses a change of basis to force certain edge averages and
first order moments to vanish. This change of basis will introduce the edge averages
and moments as new primal variables and explicitly separate the dual from the pri-
mal variables. As a consequence, this will allow us to write our system matrix in a
block structured form with respect to the interior, dual, and primal variables. Two
variants are discussed, one where the transformation is carried out for the primal and
selected dual displacement variables and a second one, where local Lagrange multipli-
ers are used to enforce certain zero edge averages and moments instead of explicitly
performing the change of basis for the associated dual displacement variables. Both
approaches generally lead to smaller and computationally more efficient coarse prob-
lems. Such an implementation also works for face constraints instead of or in addition
to edge constraints but since in this article we only consider edge based algorithms,
we restrict ourselves to the case of edges only.

6.2.1. First approach. We first describe the approach using an explicit change
of basis. As a result, the dual displacement vectors should have zero edge averages
over primal edges and the selected displacement components and additionally zero
first order edge moments over fully primal edges. In addition, we introduce these

averages and moments as primal variables in ŴΠ.
We first describe how the transformation matrix for such a change of basis can be

built. We first consider the unknowns uE on a fully primal edge E . It is sufficient to
describe the transformation of a single component of uE = (uT

1,E , uT
2,E, uT

3,E)T subject
to two constraints; we note that the edge average constraints are constructed for each
of the three components whereas the constraints of first order moments are only used
for two appropriately chosen components; cf. Section 5. For simplicity, we drop the
subscripts indicating the component and consider only a scalar vector of unknowns
uE = (u1 . . . uN)T . We define a transformation matrix TE which performs the desired
change of basis. In the new basis, we introduce the edge average ūa

E and the first
order edge moment ūm

E as new variables. Additionally, the representation of the dual
part of uE in the new basis should have a zero edge average and a zero first order edge
moment. Our transformation matrix TE performs the change of basis from the new
basis to the original nodal basis. If we denote the edge unknowns in the new basis by
ûE , we will have

uE = TE ûE ,

where

TE = [t1 . . . tN−2tN−1tN ].

We consider an edge component with two constraints and can define TE in terms of
second-order differences. The first N − 2 vectors tj are defined by first setting the
j-th vector tj to zero at all but the j-th and its next two components. We set the j-th
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entry to one and define the next two entries such that tj has a zero average and a
zero first order moment. The vector tN−1 is defined as being one at each mesh point
of that edge and the last vector, tN , is obtained by evaluating, at the mesh points,
the linear function m which is orthogonal to tN−1 in the L2-inner product; cf. the
definition of mEik at the end of Section 5.

A similar construction can be carried out for a primal edge. Then, only edge
averages are introduced as new variables and the remaining new variables should
have zero edge average. In this case the first N − 1 columns of TE are defined by
setting all except for the j-th and (j+1)-th component to zero and making its average
zero. The last column tN is then obtained by setting all entries to one.

Such a transformation can be constructed separately for each component of uE =
(uT

1,E, uT
2,E , uT

3,E)T and for each edge with primal edge constraints. We denote the
resulting transformation, which operates on all relevant components of uE and all

relevant edges, by T
(i)
E . The transformation for all variables of one subdomain Ωi is

then of the form

T (i) =




I O O
O I O

O O T
(i)
E


 ,

where we assume that the variables are ordered interior variables first, interface
variables not related to the (fully) primal edges second, and the variables on the
(fully) primal edges last, i.e., a typical vector of nodal unknowns is of the form

[u
(i)T
I ,u

(i)T

Γ
,u

(i)T
E ]T . We note that T

(i)
E is a direct sum of the relevant transforma-

tion matrices associated with the primal and fully primal edges of that subdomain;

T
(i)
E is a block-diagonal matrix where each block represents the transformation for a

component of a primal or fully primal edge.

Decomposing the subdomain stiffness matrices K(i) in the same manner, we ob-
tain

K(i) =




K
(i)
II K

(i)

IΓ
K

(i)
IE

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE

K
(i)
EI K

(i)

EΓ
K

(i)
EE




Using the transformation u(i) = T (i)û(i), we obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)

IΓ
K

(i)
IET

(i)
E

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE
T

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)

EΓ
T

(i)T
E K

(i)
EET

(i)
E




The averages and moments are now new primal variables. We note that there might
be additional primal variables, e.g., selected primal vertices. The primal variables

belonging to Ωi are denoted by û
(i)
Π and the remaining, dual displacement variables

by û
(i)
∆ . By construction, the new dual displacement variables û

(i)
∆ satisfy the zero

edge average and moment properties. Using this decomposition of the unknowns

into interior, dual, and primal displacement variables, the transformation matrix T
(i)
E

can be written as [T
(i)
∆E

T
(i)
ΠE

]. Here, the indices ∆E and ΠE indicate the dual and
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primal displacement variables associated with the primal edges constraints. Using
this notation, we obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)

IΓ
K

(i)
I∆E

T
(i)
∆E

K
(i)
IΠE

T
(i)
ΠE

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

Γ∆E
T

(i)
∆E

K
(i)

ΓΠE
T

(i)
ΠE

T
(i)T
∆E

K
(i)
∆EI T

(i)T
∆E

K
(i)

∆EΓ
T

(i)T
∆E

K
(i)
∆E∆E

T
(i)
∆E

T
(i)T
∆E

K
(i)
∆EΠE

T
(i)
ΠE

T
(i)T
ΠE

K
(i)
ΠEI T

(i)T
ΠE

K
(i)

ΠEΓ
T

(i)T
ΠE

K
(i)
ΠE∆E

T
(i)
∆E

T
(i)T
ΠE

K
(i)
ΠEΠE

T
(i)
ΠE



.

If we denote the primal vertices by a subscript ΠV and the remaining dual displace-

ment variables by a subscript ∆, we can then write u
(i)

Γ
= [u

(i)T
∆ u

(i)T
ΠV

]T . Using this

splitting for the local stiffness matrices K(i) accordingly, ordering the primal variables

u
(i)
ΠV

and u
(i)
ΠE

last, and combining them as primal variables u
(i)
Π = [u

(i)T
ΠV

,u
(i)T
ΠE

]T , we
obtain

T (i)T K(i)T (i) =




K
(i)
II K

(i)T

∆I K
(i)T

ΠI

K
(i)

∆I K
(i)

∆∆ K
(i)T

Π∆

K
(i)

ΠI K
(i)

Π∆ K
(i)

ΠΠ


 .

Here, we denote the transformed matrices by an overline. If we now assemble the
primal contributions of each transformed K(i) and order the primal variables last, we
obtain

K̃ :=




K
(1)
II K

(1)

I∆ K̃
(1)T
ΠI

K
(1)

∆I K
(1)

∆∆ K̃
(1)T
Π∆

. . .
...

K
(N)
II K

(N)

I∆ K̃
(N)T
ΠI

K
(N)

∆I K
(N)

∆∆ K̃
(N)T
Π∆

K̃
(1)
ΠI K̃

(1)
Π∆ · · · K̃

(N)
ΠI K̃

(N)
Π∆ K̃ΠΠ




=:

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
.

To compute u∆ = S̃−1
ε f∆, we solve the linear system

K̃u = f̂ ,(29)

with

u :=

[
uB

ũΠ

]
:=




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

ũΠ




and f̂ :=

[
fB
0

]
:=




f
(1)
I

f
(1)

∆
...

f
(N)
I

f
(N)

∆

0




.

Elimination of the interior and dual displacement variables yields a Schur complement
S̃Π. We note that this elimination can be carried out in parallel across the subdomains
since the related matrix is block-diagonal. We have,

S̃Π := K̃ΠΠ − K̃ΠBK
−1

BBK̃T
ΠB.
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The Schur complement S̃Π represents the global part of our preconditioner; its size
equals the number of primal variables. Since this number typically is not very large,
S̃Π is explicitly built and factored. We now have all the ingredients for computing
the solution of the linear system (29) which, by one step of block Gauss elimination,
transforms into

[
KBB K̃T

ΠB

O S̃Π

] [
uB

ũΠ

]
=

[
fB

−K̃ΠBK
−1

BBfB

]
.

6.2.2. Second approach. Although our transformation only affects the sparsity
of our stiffness matrices relatively slightly, we will now describe an alternative way of
enforcing the condition of zero averages and moments by local Lagrange multipliers.
We note that the block-diagonal matrix KBB will not be as sparse as before the
change of variables. We will not explicitly build the matrix KBB but we will instead
enforce the average constraints with additional, local Lagrange multipliers µ(i). To
derive this local system, let us consider the bilinear form associated with a local block
from KBB . We have

u
(i)T
B K

(i)

BBu
(i)
B =

[
u

(i)
I

u
(i)
∆

]T

 K

(i)
II K

(i)T

∆I

K
(i)

∆I K
(i)

∆∆



[

u
(i)
I

u
(i)
∆

]

=




u
(i)
I

u
(i)
∆

0




T



K
(i)
II K

(i)T

∆I K
(i)T

ΠI

K
(i)

∆I K
(i)

∆∆ K
(i)T

Π∆

K
(i)

ΠI K
(i)

Π∆ K
(i)

ΠΠ







u
(i)
I

u
(i)
∆

0




= [u
(i)T
I u

(i)T
∆ 0T ] T (i)T K(i)T (i) [u

(i)T
I u

(i)T
∆ 0T ]T .

We first consider the case when there are no primal vertices and the only primal
variables are edge averages and moments. Clearly, the last bilinear form on the right
hand side minimizes the same energy as

u(i)T K(i)u(i)

under the constraint Q(i)u(i) = 0, where the local constraint matrices Q(i) force the
edge averages and moments over the primal edges to vanish. The Q(i) can be derived
in the same fashion as in Section 6.1; the only difference is that they are now defined
locally.

If we also have primal vertices, we have to change K(i) slightly such that the
homogeneous Dirichlet boundary conditions at the primal vertices are built in. This
can be done either by setting the corresponding columns and rows to zero except for
the diagonal elements, which are set to one, or these variables are eliminated and all
further computations are carried out with the reduced matrix. In the following, we
will always tacitly assume, without changing the notation, that one of these transfor-
mations has been carried out if we have primal vertices.

Thus, every time we have to solve a system with a local block from KBB, we
instead solve a system




K
(i)
II K

(i)
IΓ O

K
(i)
ΓI K

(i)
ΓΓ Q(i)T

O Q(i) O







u
(i)
I

u
(i)
Γ

µ(i)


 =




0

f
(i)
Γ

0


 .(30)
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We denote the matrix on the left hand side by K
(i)
Q . We note that each K

(i)
Q is

invertible but that its leading two by two block is not (unless we have sufficiently
many primal vertices). We therefore choose at least six auxiliary degrees of freedom
for each subdomain if there are no primal vertices or otherwise fewer, according to
the number of primal vertices. We order these auxiliary variables last in the leading

two by two block of K
(i)
Q . Any such auxiliary variable can be associated with the

interface or the interior of the subdomain. If the auxiliary variables are distributed
between interior and boundary variables, some pivoting on small subsystems might
be necessary. We indicate the auxiliary variables with an index A and the remaining
interior variables with an index IA. We now only discuss the case when all auxiliary
variables are exclusively chosen among the interior variables, since in this case, no
pivoting is necessary to maintain stability; we are freee to pivot for sparsity in the
upper two by two block in (31). Denoting by PA an appropriate permutation matrix
which exchanges columns corresponding to the local Lagrange multipliers and the

auxiliary variables, we have the following representation of K
(i)
Q :

PT
A K

(i)
Q PA =




K
(i)
IAIA

K
(i)
IAΓ | O K

(i)
IAA

K
(i)T
IAΓ K

(i)
ΓΓ | Q

(i)T
Γ K

(i)
ΓA

−−− −−− −−− −−−

O Q
(i)
Γ | O O

K
(i)T
IAA K

(i)T
ΓA | O K

(i)
AA




=:

[
K̆

(i)
II K̆

(i)
IA

K̆
(i)T
IA K̆

(i)
AA

]
.(31)

We now again carry out one step of block Gaussian elimination and obtain the sym-
metric, indefinite Schur complement

S
(i)
A := K̆

(i)
AA − K̆

(i)T
AI

(
K̆

(i)
II

)−1

K̆
(i)
IA.

This matrix is invertible since it is a Schur complement of an invertible matrix. We also
define additional Schur complements, which are only needed for theoretical purposes

to show that pivoting is not needed to factor S
(i)
A ,

S
(i)
ΓΓ := K

(i)
ΓΓ − K

(i)
ΓIA

(K
(i)
IAIA

)−1K
(i)
IAΓ,

S
(i)
ΓA := K

(i)
ΓA − K

(i)
ΓIA

(K
(i)
IAIA

)−1K
(i)
IAA,

S
(i)
AA := K

(i)
AA − K

(i)
AIA

(K
(i)
IAIA

)−1K
(i)
IAA.

The two Schur complements S
(i)
ΓΓ and S

(i)
AA are both symmetric, positive definite since

they are obtained from such matrices. By a direct computation, S
(i)
A has the form

S
(i)
A =

[
−Q

(i)
Γ (S

(i)
ΓΓ)−1Q

(i)T
Γ −Q

(i)
Γ (S

(i)
ΓΓ)−1S

(i)
ΓA

−S
(i)T
ΓA (S

(i)
ΓΓ)−1Q

(i)T
Γ S

(i)
AA − S

(i)
AΓ(S

(i)
ΓΓ)−1S

(i)
AΓ

]
=:

[
−A −BT

−B C

]
.

If we assume that Q
(i)
Γ has full column rank, which means that we only use non-

redundant local Lagrange multipliers, then the matrix A is symmetric, positive defi-
nite. The matrix C is symmetric, positive semidefinite since it is a Schur complement
of a positive semidefinite stiffness matrix. Thus, C + BA−1BT is symmetric positive
semidefinite as well. But since it is also a Schur complement of the invertible matrix

S
(i)
A , it is even positive definite.
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We conclude that, although the Schur complement S
(i)
A is indefinite, it can still

be solved without pivoting if the elimination is carried out blockwise, eliminating the
local Lagrange multipliers before the auxiliary displacement variables.

In order to obtain the best possible sparsity, we can also allow for an arbitrary
symmetric permutation of the rows and columns associated with the indices IA and

Γ since such a permutation keeps the Schur complement S
(i)
A the same. This can be

easily seen by a direct computation where the permutation matrices cancel when the
Schur complement is built for the permuted block matrix.

To finally decide if the transformation of basis should be carried out for the dual
displacement variables or if local Lagrange multipliers should be used has to be studied
further by extensive numerical experiments.

7. Some auxiliary lemmas. The purpose of this section is to provide some
technical lemmas which are needed in our convergence analysis in Section 8. These
results are borrowed from [5, 7, 6]; see also [24, Sections 4.4 and 4.6] for an ex-
position of this material. Here, we formulate them using trace spaces on the sub-
domain boundaries, i.e., H1/2(∂Ωi) instead of the spaces H1(Ωi) and discrete har-
monic extensions; given the well–known equivalence of the norms, nothing essentially
new needs to be proven. In our proofs, we will work with the S–norm defined by
|u|2S =

∑N
i=1 |u

(i)|2
S(i) and |u(i)|2

S(i) = 〈S(i)u(i), u(i)〉. A proof of the equivalence of the

S(i)- and the H1/2(∂Ωi)-semi–norms of elements of W (i) can be found already in [1]
for the case of piecewise linear elements and two dimensions and the tools necessary
to extend this result to more general finite elements are provided in [25]; in our case,
we of course have to multiply |u(i)|2

H1/2(∂Ωi)
by the factor Gi.

We also recall that we can define the H
1/2
00 (Γ̃)−norm, Γ̃ ⊂ ∂Ωi, of an element of

W (i) which is supported in Γ̃, as the H1/2(∂Ωi)−norm of the function extended by
zero on ∂Ωi,h \ Γ̃h.

The first lemma can, essentially, be found in Dryja, Smith, and Widlund [5,
Lemma 4.4]; see also [24, Lemma 4.25].

Lemma 8. Let θFij be the finite element function that is equal to 1 at the nodal
points on the face F ij , which is common to two subregions Ωi and Ωj, and that

vanishes on (∂Ωi,h ∪ ∂Ωj,h) \ F ij
h . Furthermore, let φ be a linear function on Ωi.

Then,

|Ih(θFij φ)|2H1/2(∂Ωi)
≤ C(1 + log(Hi/hi))Hi‖φ‖

2
L∞(Fij).

The same bounds also hold for the other subregion Ωj.
The following result can, essentially, be found in Dryja, Smith, and Widlund [5,

Lemma 4.5] in Dryja [4, Lemma 3] or in [24, Lemma 4.24].
Lemma 9. Let θFij be the function introduced in Lemma 8 and let Ih denote the

interpolation operator onto the finite element space Wh(Ωi). Then, for all u ∈ W (i),

‖Ih(θFij u)‖2

H
1/2
00 (Fij)

≤ C(1 + log(Hi/hi))
2
(
|u|2H1/2(Fij) +

1

Hi
‖u‖2

L2(Fij)

)
.

We will also need two additional results which are used to estimate the contribu-
tions to our bounds from the edges of Ωi. For the next lemma, see Dryja, Smith, and
Widlund [5, Lemma 4.7] or [24, Lemma 4.19].

Lemma 10. Let θEik be the cutoff function associated with the edge E ik. Then,
for all u ∈ W (i),

|Ih(θEiku)|2H1/2(∂Ωi)
≤ C‖u‖2

L2(Eik).
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This result follows by an elementary estimate of the energy norm of the zero
extension of the boundary values and by noting that the harmonic extension has a
smaller energy.

We will also need a Sobolev-type inequality for finite element functions, see Dryja
and Widlund [6, Lemma 3.3] or Dryja [4, Lemma 1] or [24, Lemma 4.17].

Lemma 11. Let E ik be any edge of Ωi, which forms part of the boundary of a face
F ij ⊂ ∂Ωi. Then, for all u ∈ W (i),

‖u‖2
L2(Eik) ≤ C(1 + log(Hi/hi))

(
|u|2H1/2(Fij) +

1

Hi
‖u‖2

L2(Fij)

)
.

The next lemma can be found in Toselli and Widlund [24, Lemma 4.28].
Lemma 12. Let V il be a vertex of a substructure Ωi and let u ∈ W (i). Then,

|u(V il)θVil |2H1/2(∂Ωi)
≤ C (|u|2H1/2(∂Ωi)

+ 1/Hi‖u‖
2
L2(∂Ωi)

).

8. Convergence analysis. As in [15], the two different Schur complements, S̃ε

and Sε, introduced in Section 4, play an important role in the analysis of the dual–

primal iterative algorithm. Both operate on the second subspace W̃∆ and we also

recall that S̃ε represents a global problem while Sε does not. For u∆ ∈ W̃∆, we define
the following seminorm, cf. (12),

|u∆|
S̃ε

:= 〈S̃εu∆,u∆〉
1/2

.(32)

Let V := range (B∆) be the space of Lagrange multipliers. As in [13, Section 5], we
introduce a projection

P∆ := BT
D,∆B∆.

A simple computation shows, see [13, Lemma 4.2], that P∆ preserves the jump of

any function u∆ ∈ W̃∆, i.e.,

B∆P∆u∆ = B∆u∆(33)

and we also have P∆u = 0 ∀u ∈ Ŵ.
Let x ∈ Γh and let w∆ ∈ W̃∆. We borrow the following formula from [13, (4.4)]:

(P∆w∆)(i)(x) =
∑

j∈Nx

δ†j (w
(i)
∆ (x) − w

(j)
∆ (x)), x ∈ ∂Ωi,h ∩ Γh.(34)

Here, Nx is the set of indices of the subregions which have the node x on its boundary.
We note that the coefficients in this expression are constant on the set of nodal
points of each face and each edge of ∂Ωi, and that this formula is independent of the
particular choice of B∆. We can now show that our preconditioner is invertible.

Lemma 13. The preconditioner M−1 is invertible whenever S̃ε is.
Proof. We first note that any null vector of Sε is a piecewise rigid body mode. A

nonsingular S̃ε means that we have enough primal constraints across the interface Γ
to rule out any nontrivial vector of this kind. These constraints can all be formulated
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as linear functionals operating on jumps, w(i) − w(j), of w ∈ W̃ . It is also easy to
see that any null vector µ = B∆w of M−1 corresponds to a null vector P∆w of Sε,
which therefore must be a piecewise rigid body mode. The vector P∆w must satisfy
all the same constraints as w ∈ W̃ since w − P∆w is continuous and thus has no
jumps across Γ. The set of constraints satisfied by w ∈ W̃ is therefore inherited by
P∆w and since this vector is a piecewise rigid body mode, it must vanish.

2

In our proof of Theorem 1, we will use representation formulas for F and M, which
will allow us to carry out our analysis in the space of displacement variables. The
representation formula for F is given in the next lemma; see also Klawonn, Widlund,
and Dryja [15, p. 175] or Mandel and Tezaur [20]. In the proof of the next lemma, we

will use the fact that Ŵ is the null space of B∆.
Lemma 14. For any λ ∈ V, we have

〈Fλ, λ〉 = sup
06=v∈W̃

〈λ, B∆v〉2

|v|2Sε

.

Proof. Using the definition of F , we find

〈Fλ, λ〉 = 〈S̃−1
ε BT

∆λ, BT
∆λ〉

= |S̃−1/2
ε BT

∆λ|2

= sup
06=w∆∈W̃∆

〈S̃
−1/2
ε BT

∆λ,w∆〉2

|w∆|2

= sup
06=v∆∈W̃∆

〈λ, B∆v∆〉2

|v∆|2
S̃ε

= sup
06=v∆∈W̃∆

〈λ, B∆v∆〉2

inf
v

Π
∈ŴΠ

|v∆ + vΠ|
2
Sε

= sup
06=v∈W̃

〈λ, B∆v〉2

|v|2Sε

2

A similar formula holds for M ; it only differs in the denominator from the one for F .
Lemma 15. For any λ ∈ V, we have

〈Mλ, λ〉 = sup
06=v∈W̃

〈λ, B∆v〉2

|P∆v|2Sε

.

Proof. Using the definition of M−1 and of the projection P , see (23) and the
following lines, and the fact that PT ν = Pν = ν for ν ∈ V, we obtain

〈Mλ, λ〉 = |M1/2λ|2

= sup
µ∈V

〈M1/2λ, µ〉2

|µ|2

= sup
ν∈V

〈λ, ν〉2

〈M−1ν, ν〉
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= sup
ν∈V

〈λ, ν〉2

〈SεBT
D,∆ν, BT

D,∆ν〉

= sup
v∈W̃

〈λ, B∆v〉2

〈SεBT
D,∆B∆v, BT

D,∆B∆v〉

2

For a proof of the lower bound in our main theorem, we will use the following lemma:

Lemma 16. For any µ ∈ V, there exists a w∆ ∈ W̃∆ such that µ = B∆w∆ and

(I − P∆)w∆ ∈ ŴΠ. In addition, zw = P∆w∆ ∈ W̃ and µ = B∆zw.
Proof. Let µ be an arbitrary element in V. Since V = range (B∆), there are

many elements u∆ ∈ W̃∆, such that µ = B∆u∆. Given any such u∆, we write it as

u∆ = P∆u∆ + E∆u∆,

where E∆ = I − P∆. While E∆u∆ ∈ Ŵ, it is not necessarily an element in the

subspace ŴΠ. But since Ŵ ⊂ W̃ and using (9), we can always write it as the sum
of its dual and primal components

E∆u∆ = (E∆u∆)∆ + (E∆u∆)Π,

where (E∆u∆)∆ ∈ W̃∆ and (E∆u∆)Π ∈ ŴΠ. We denote by ŵΠ the primal compo-
nent (E∆u∆)Π and we define

w∆ := P∆u∆ + ŵΠ.

The resulting element w∆ is in the dual subspace W̃∆. This follows directly from

w∆ = P∆u∆ + ŵΠ = u∆ − (E∆u∆)∆

and the fact that the right hand side, by construction, is in W̃∆. Since ŵΠ is contin-
uous across the interface, B∆w∆ = µ follows directly from (33). We can finally define

zw with the right properties as a sum of two elements in W̃∆ and ŴΠ, respectively:

zw := w∆ + (P∆w∆ − w∆) = P∆w∆ ∈ W̃.

The proof is concluded by using (33).
2

We now require P∆ to satisfy a stability condition which we will prove for different
cases in the further course of the paper; see Subsections 8.1, 8.2, and 8.3.

Condition 1. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.

Using Condition 1 and the three previous lemmas, we can now prove our condition
number estimate.

Theorem 1. The condition number satisfies

κ(M−1F ) ≤ C max(1, TOL) (1 + log(H/h))2.

Here, C is independent of h, H, γ, and the values of the Gi.
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Proof. We have to estimate the smallest eigenvalue λmin(M−1F ) from below and
the largest eigenvalue λmax(M−1F ) from above. We will show that

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C max(1, TOL) (1 + log(H/h))2〈Mλ, λ〉 ∀λ ∈ V.(35)

Lower bound: The lower bound follows by using Lemmas 14, 15, and 16: ∀λ ∈ V,
we have

〈Mλ, λ〉 = sup
w∈W̃

〈λ, B∆w〉2

|P∆w|2Sε

= sup
w∈W̃

〈λ, B∆zw〉
2

|zw|2Sε

≤ sup
z∈W̃

〈λ, B∆z〉2

|z|2Sε

= 〈Fλ, λ〉.

Upper bound: Using Condition 1 and Lemmas 14 and 15, we obtain ∀λ ∈ V

〈Fλ, λ〉 = sup
06=w∈W̃

〈λ, B∆w〉2

|w|2Sε

≤ C max(1, TOL) (1 + log(H/h))2 sup
06=w∈W̃

〈λ, B∆w〉2

|P∆w|2Sε

= C max(1, TOL) (1 + log(H/h))2〈Mλ, λ〉.

2

We will now establish Condition 1 successively for different cases.

8.1. First case. Let us first consider a decomposition of Ω, where no more than
three subdomains are common to any edge and where each of the subdomains shares
a face with each of the other two as in Figure 3. We further assume that all vertices

Ωi Ωj

Ωk

E ik

Fig. 3. Planar cut of three subdomains meeting at an edge.

are primal and that all faces are fully primal, cf. Definition 1. Thus, for each face
F ij which is shared by two subdomains Ωi and Ωj , we have six linear functionals
fm(·) which satisfy the two conditions of Definition 1 and have the property that

fm(w(i)) = fm(w(j)) ∀w(i) ∈ W̃(i),w(j) ∈ W̃(j). As mentioned before, cf. the
example after Definition 1, we can define our functionals fi as properly chosen linear
combinations of certain edge averages, over components of the displacement, of the
form

gm(w(i)) =

∫
E

w
(i)
l dx∫

E
1dx

,

where E ⊂ ∂F ij are appropriately chosen edges. We note that for a square face we
would have to work with at least three different edges to satisfy the second condition
of Definition 1. For this case, we are able to prove Condition 1 with TOL = 1.
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Lemma 17. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

Proof. We consider an arbitrary w ∈ W̃. Then, using formula (14), we see that
it is sufficient to show that

|P∆w|2S ≤ C (1 + log(H/h))2|w|2Sε
.

With v(i) := (P∆w)(i), we have

|P∆w|2S =

N∑

i=1

|v(i)|2S(i) .

We cut each function v(i) using the partition-of-unity functions θFij , θEik , and θVil

and write it as a sum of terms which vanish at all the interface nodes outside individual
faces, edges, and vertices, respectively. We note that the vertex terms vanish since all
vertices are primal. Then, we obtain

v(i) =
∑

Fij⊂∂Ωi

Ih(θFijv(i)) +
∑

Eik⊂∂Ωi

Ih(θEikv(i)).(36)

Face terms

We find that the face F ij contributes

Ih(θFij δ†j (w
(i) − w(j))).

This formula follows from (34) and we have to estimate the H
1/2
00 (F ij)−norm of this

term. Since all faces are fully primal, we know that the functionals fFij

m (·) := fm(·)

satisfy fFij

m (w(i)) = fFij

m (w(j)), m = 1, . . . , 6, and fFij

m (rn) = δmn, m, n = 1, . . . , 6;
cf. Definition 1. We have

w(i) − w(j) =

(
w(i) −

6∑

m=1

fFij

m (w(i))rm

)
−

(
w(j) −

6∑

m=1

fFij

m (w(j))rm

)
.(37)

Using the representation of an arbitrary rigid body mode r(i) ∈ W(i), in terms of the
basis (rm)m=1,...,6 of ker (ε), we easily obtain

r(i) =
6∑

m=1

fFij

m (r)rm.(38)

The first term on the right hand side of (37), can then be written as

w(i) −
∑6

m=1 fFij

m (w(i))rm = (w(i) − r(i)) −
∑6

m=1 fFij

m (w(i) − r(i))rm(39)

for any rigid body mode r(i) ∈ W(i). We can estimate the first term on the right hand
side, using Lemmas 9 and 6, and find

‖Ih(θFij (w(i) − r(i)))‖2

H
1/2
00 (Fij)
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≤ C(1 + log(Hi/hi))
2

(
|w(i) − r(i)|2H1/2(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)

≤ C(1 + log(Hi/hi))
2

(
|w(i) − r(i)|2E(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)

≤ C(1 + log(Hi/hi))
2

(
|w(i)|2E(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)

Next, we consider the second term of (39). We use two auxiliary estimates. By using
Lemma 8, we see that

‖Ih(θFijrk)‖2

H
1/2
00 (Fij)

≤ C Hi(1 + log(Hi/hi))(40)

and by using Definition 1 and Lemmas 9 and 6, we obtain as before

|fFij

k (w(i) − r(i))|2 ≤ C H−1
i (1 + log(Hi/hi))

(
|w(i)|2E(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)
.

Thus, we have

‖Ih(θFij (
6∑

m=1

fFij

m (w(i) − r(i))rm))‖2

H
1/2
00 (Fij)

≤ C(1 + log(Hi/hi))
2

(
|w(i)|2E(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)
.

Using (39) and the triangular inequality, we obtain the following estimate

Gi‖I
h(θFij (w(i) −

6∑

m=1

fFij

m (w(i))rm))‖2

H
1/2
00 (Fij)

= Gi‖I
h(θFij ((w(i) − r(i)) −

6∑

m=1

fFij

m (w(i) − r(i))rm))‖2

H
1/2
00 (Fij)

≤ 2Gi‖I
h(θFij (w(i) − r(i)))‖2

H
1/2
00 (Fij)

+ 2Gi‖I
h(θFij (

6∑

m=1

fFij

m (w(i) − r(i))rm))‖2

H
1/2
00 (Fij)

≤ C (1 + log(Hi/hi))
2 Gi

(
|w(i)|2E(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)
.

Since r(i) ∈ W(i) is an arbitrary rigid body mode, we can take the infimum over all
rigid body modes in W(i) and obtain, by using Lemma 7,

Gi‖I
h(θFij (w(i)−

6∑

m=1

fFij

m (w(i))rm))‖2

H
1/2
00 (Fij)

≤ C (1+log(Hi/hi))
2 Gi |w

(i)|2E(Fij).

Analogously, we obtain by using the minimizing r(j) ∈ W(j),

Gj‖I
h(θFij(w(j)−

6∑

m=1

fFij

m (w(j))rm))‖2

H
1/2
00 (Fij)

≤ C(1+log(Hj/hj))
2Gj |w

(j)|2E(Fij).
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Using these two estimates in combination with (37) and the triangular inequality, we
obtain

Gi‖δ
†
jI

h(θFij (w(i) − w(j)))‖2

H
1/2
00 (Fij)

= Gi‖δ
†
jI

h(θFij ((w(i) −
6∑

k=1

fFij

k (w(i))rk) − (w(j) −
6∑

k=1

fFij

k (w(j))rk))‖2

H
1/2
00 (Fij)

≤ C(1 + log(Hi/hi))
2Gi|w

(i)|2E(Fij) + C(1 + log(Hj/hj))
2Gj |w

(j)|2E(Fij).

Edge terms

We now estimate the edge contributions. As in the scalar case, we have to estimate
L2-terms related to edges. By Lemma 10, we can estimate the contribution of the
edges of Ωi to the energy of v(i) in terms of L2−norms over the edges. These L2-norms
are then estimated by using Lemma 11.

Since we consider here the case with at most three subdomains common to a single
edge, we can reduce the estimate of the edge contributions to face estimates. If three
subdomains, e.g., Ωi, Ωj , and Ωk, have an edge E ik in common, cf. Figure 3, then,
according to (34), there are two contributions to the estimate of the contribution of
Ωi to |P

D
w|S , namely,

Gi‖δ
†
j(w

(i) − w(j))‖2
L2(Eik) + Gi‖δ

†
k(w(i) − w(k))‖2

L2(Eik).

We analyze the first term in detail; the second one can be bounded completely analo-
gously. We assume that E ik ⊂ ∂F ij , where F ij is a face common to Ωi and Ωj . Using
formula (18), we obtain

Gi‖δ
†
j(w

(i) − w(j))‖2
L2(Eik) ≤ min(Gi, Gj)‖w

(i) − w(j)‖2
L2(Eik)

= min(Gi, Gj) ‖(w
(i) −

6∑

l=1

fFij

l (w(i))rl) − (w(j) −
6∑

l=1

fFij

l (w(j))rl)‖
2
L2(Eik)

≤ 2Gi‖w
(i) −

6∑

l=1

fFij

l (w(i))rl‖
2
L2(Eik) + 2Gj‖w

(j) −
6∑

l=1

fFij

l (w(j))rl‖
2
L2(Eik).

Let r(i) ∈ W(i) again be an arbitrary rigid body mode. We can then proceed similarly
as for the face contributions. For the first term on the right hand side, we obtain,
using Lemma 11 and the triangular inequality,

2Gi‖w
(i) −

6∑

l=1

fFij

l (w(i))rl‖
2
L2(Eik)

= 2Gi‖(w
(i) − r(i)) −

6∑

l=1

fFij

l (w(i) − r(i))rl‖
2
L2(Eik)

≤ 4Gi‖w
(i) − r(i)‖2

L2(Eik) + 4Gi‖
6∑

l=1

fFij

l (w(i) − r(i))rl‖
2
L2(Eik)

≤ C(1 + log(Hi/hi))Gi

(
|w(i) − r(i)|2H1/2(Fij) +

1

Hi
‖w(i) − r(i)‖2

L2(Fij)

)

+ C Gi

6∑

l=1

|fFij

l (w(i) − r(i))|2‖rl‖
2
L2(Eik).
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It can be easily shown that

‖rm‖2
L2(Eik) ≤ C min(Hi, Hj) m = 1, . . . , 6,(41)

with a positive constant C independent of h, H, and Gi. We can now proceed exactly
as for the face contributions, selecting a minimizing r(i), but now using the estimate
(41) instead of (40). We obtain

2Gi‖w
(i) −

6∑

l=1

fFij

l (w(i))rl)‖
2
L2(Eik) ≤ C Gi(1 + log(Hi/hi))|w

(i)|2E(Fij).

An analogous result holds for 2Gj‖w
(j)−

∑6
l=1 fFij

l (w(j))rl)‖
2
L2(Eik). Thus, we finally

obtain

Gi‖δ
†
j(w

(i) − w(j))‖2
L2(Eik) ≤ C Gi(1 + log(Hi/hi))|w

(i)|2E(Fij)

+ C Gj(1 + log(Hj/hj))|w
(j)|2E(Fij).

2

8.2. Second case. We again assume that all vertices are primal, all faces are
fully primal, and that each edge which is common to no more than three subdomains
is treated as in Subsection 8.1. Additionally, we assume that any edge E ik, which is
common to more than three subdomains is fully primal; cf. Definition 2. Thus, for
such an edge, we have five linear functionals fm(·) which satisfy Definition 2 and we
have the property fm(w(i)) = fm(w(j)) ∀w(i) ∈ W(i),w(j) ∈ W(j). Here, Ωi and
Ωj form an arbitrary pair of subdomains which has the edge E ik in common. The
functionals fm(·), m = 1, . . . , 5, are defined in (25). For this case, as in Subsection
8.1, we are able to prove Condition 1 with TOL = 1.

Lemma 18. For all w ∈ W̃, we have

|P∆w|2Sε
≤ C (1 + log(H/h))2|w|2Sε

.

Proof. We consider an arbitrary w ∈ W̃. As in the proof of Lemma 17, using
again formula (14), we see that it is sufficient to show

|P∆w|2S ≤ C (1 + log(H/h))2|w|2Sε
.

With v(i) := (P∆w)(i), we again have

|P∆w|2S =

N∑

i=1

|v(i)|2S(i) .

We cut each function v(i) using the partition-of-unity functions θFij , θEik , and θVil

and write it as a sum of terms which vanish at all the interface nodes outside individual
faces, edges, and vertices, respectively; cf. (36). We note that the vertex terms vanish
since all vertices are again primal. The face contribution can be analyzed as in the
proof of Lemma 17 and there remains to estimate the edge contributions.
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Edge terms

Here, it is sufficient to consider those edges which cannot be reduced to face estimates
since those cases have already been treated in Subsection 8.1. As in the proof of
Lemma 17, we have to estimate L2−terms. By using Lemma 10, we can estimate the
contribution of the edges of Ωi to the energy of v(i) in terms of L2−norms over the
edges. These L2−norms are then estimated by using Lemma 11. If four subdomains,
e.g., Ωi, Ωj , Ωk, and Ωl have an edge E ik in common, cf. Figure 4, then, according to

��
��
��
��

��
��
��
��

Gi Gj

Gl Gk

Fig. 4. Planar cut of four subdomains meeting at an edge.

(34), there are three contributions to the estimate of the contribution of Ωi to |P
D
w|S ,

namely,

Gi‖δ
†
j(w

(i) − w(j))‖2
L2(Eik) + Gi‖δ

†
k(w(i) − w(k))‖2

L2(Eik)

+ Gi‖δ
†
l (w

(i) − w(l))‖2
L2(Eik).

(42)

We first analyze the second term in detail assuming that the functionals fEik

m (w(i)) :=

fm(w(i)) and fEik

m (w(k)) := fm(w(k)) have the same value on E ik for m = 1, . . . , 5.
We can now proceed almost exactly as in the estimates of the edge contributions in
the proof of Lemma 17. The only difference is that one rotational rigid body mode is
linear dependent on the others on the edge E ik and without restriction of generality,
we assume that it is r6 and that it vanishes; cf. discussion before formula (25). As
before for the face contributions, cf. (38), we have, on the edge E ik and for an arbitrary
rigid body mode r, the following representation formula,

r =

5∑

m=1

fEik

m (r)rm.(43)

We note that we are free to add different multiples of r6 in the two subdomains since
their difference will vanish on E ik. On the edge E ik, we now have

w(i) − w(k) =

(
w(i) −

5∑

m=1

fEik

m (w(i))rm

)
−

(
w(k) −

5∑

m=1

fEik

m (w(k))rm

)
.(44)

Using (43), we obtain for the first term on the right hand side and an arbitrary rigid
body mode r(i) ∈ W(i),

w(i) −
5∑

m=1

fEik

m (w(i))rm = (w(i) − r(i)) −
5∑

m=1

fEik

m (w(i) − r(i))rm.(45)
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Using formula (18), (45), and the triangular inequality, we obtain,

Gi‖δ
†
k(w(i) − w(k))‖2

L2(Eik) ≤ min(Gi, Gk)‖w(i) − w(k)‖2
L2(Eik)

= min(Gi, Gk)‖(w(i) −
5∑

m=1

fEik

m (w(i))rm) − (w(k) −
5∑

m=1

fEik

m (w(k))rm)‖2
L2(Eik)

≤ 2Gi‖w
(i) −

5∑

m=1

fEik

m (w(i))rm‖2
L2(Eik) + 2Gk‖w

(k) −
5∑

m=1

fEik

m (w(k))rm‖2
L2(Eik)

= 2Gi‖(w
(i) − r(i)) −

5∑

m=1

fEik

m (w(i) − r(i))rm‖2
L2(Eik)

+2Gk‖(w
(k) − r(i)) −

5∑

m=1

fEik

m (w(k) − r(i))rm‖2
L2(Eik).

We can now choose the minimizing r(i) and r(k) and we also note that the last two
terms can be treated as the edge contributions in Section 8.1 and we obtain

Gi‖δ
†
k(w(i) − w(k))‖2

L2(Eik) ≤ C Gi(1 + log(Hi/hi))|w
(i)|2E(Fij)

+C Gk(1 + log(Hk/hk))|w(k)|2E(Fjk).

The remaining two edge contributions are simpler and can be reduced to the case
of face contributions as in the proof of Lemma 17.

2

8.3. Third case. In this section, we show that it is often possible to use a
smaller number of (fully) primal edges and to have relatively few primal vertices. We
will analyze all coefficient distributions which cannot be treated as in Subsections 8.1
and 8.2. We make the assumption that for each pair of subdomains that share a face
or an edge, we have an acceptable face path which only goes through fully primal
faces; cf. Definition 3. For those subdomains which share only a vertex, which is not
primal, we assume that there exists an acceptable vertex path passing through fully
primal faces; cf. Definition 4. We then have

Lemma 19. For all w ∈ W̃, we have,

|P∆w|2Sε
≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε

.

Proof. We consider an arbitrary w ∈ W̃. As in the proof of Lemma 17, using
again formula (14), we see that it is sufficient to show that

|P∆w|2S ≤ C max(1, TOL) (1 + log(H/h))2|w|2Sε
.

With v(i) := (P∆w)(i), we again have

|P∆w|2S =

N∑

i=1

|v(i)|2S(i) .

We cut each function v(i) using the partition-of-unity functions θFij , θEik , and θVil

and write it as a sum of terms which vanish at all the interface nodes outside individual
faces, edges, and vertices, respectively,

v(i) =
∑

Fij⊂∂Ωi

Ih(θFijv(i)) +
∑

Eik⊂∂Ωi

Ih(θEikv(i)) +
∑

Vil∈∂Ωi

θVilv(i)(V il)(46)
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Face terms

As before, we find from (34), that the face F ij contributes

Ih(θFij δ†j (w
(i) − w(j)))

and we have to estimate its H
1/2
00 (F ij)−norm. If the face F ij is fully primal, we can

proceed as in Section 8.1. Let us now assume that F ij is not fully primal and that
we have an acceptable face path from Ωi to Ωj; cf. Definition 3. For simplicity, we
assume that the path passes through Ωk1 , Ωk2 or more precisely through the fully
primal faces F ik1 ,Fk1k2 , and Fk2j ; the path could of course also lead through more
subdomains and fully primal faces, respectively. For F ij and each of the fully primal
faces on the acceptable face path, we introduce a basis of shifted rigid body modes
such that the origin is shifted to or close to the center of the face; cf. (4). We denote
these bases by

(rF
ij

l )l=1,...,6, (rF
ik1

l )l=1,...,6, (rF
k1k2

l )l=1,...,6, (rF
k2j

l )l=1,...,6.

These bases are also used in the construction of the functionals fFij

m , fFik1

m , fFk1k2

m ,

and fFk2j

m ; cf. Definition 3 and the discussion that follows. We obtain

w(i) − w(j)

=

(
w(i) −

6∑

m=1

fFij

m (w(i))rF
ij

m

)
+

(
6∑

m=1

fFij

m (w(i))rF
ij

m −
6∑

m=1

fFik1

m (w(i))rF
ik1

m

)

+

(
6∑

m=1

fFik1

m (w(k1))rF
ik1

m −
6∑

m=1

fFk1k2

m (w(k1))rF
k1k2

m

)

+

(
6∑

m=1

fFk1k2

m (w(k2))rF
k1k2

m −
6∑

m=1

fFk2j

m (w(k2))rF
k2j

m

)

+

(
6∑

m=1

fFk2j

m (w(j))rF
k2j

m −
6∑

m=1

fFij

m (w(j))rF
ij

m

)
+

(
6∑

m=1

fFij

m (w(j))rF
ij

m − w(j)

)
.

The first and the last term on the right hand side can be estimated as the face
contributions in Section 8.1. Let us now consider

6∑

m=1

fFij

m (w(i))rF
ij

m −
6∑

m=1

fFik1

m (w(i))rF
ik1

m(47)

in detail; the other intermediate sums can be estimated analogously. Let r(i) ∈ W(i)

be an arbitrary rigid body mode. Then, we have the following representations with
respect to the two different bases of rigid body modes related to the two different
faces F ij and F ik1 ,

r(i) =
6∑

l=1

fFij

l (r(i))rF
ij

l , r(i) =
6∑

l=1

fFik1

l (r(i))rF
ik1

l .

Using these two different representations, we obtain from (47) by subtracting and
adding r(i),

6∑

m=1

fFij

m (w(i) − r(i))rF
ij

m −
6∑

m=1

fFik1

m (w(i) − r(i))rF
ik1

m .
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The H
1/2
00 (F ij)-norm of the finite element interpolation of the first sum multiplied by

θFij can be estimated as in Section 8.1. For the second sum, the only difference is
that we use

‖Ih(θFijrF
ik1

m )‖2

H
1/2
00 (Fij)

≤ C Hi (1 + log(Hi/hi)),

which follows from Lemma 8; cf. also (40). Using a separate rigid body mode to shift
in each subdomain on the path, we can proceed completely analogously as in Section
8.1 and obtain

‖Ih(θFij δ†j (w
(i) − w(j)))‖2

H
1/2
00 (Fij)

≤ C (1 + log(H/h))2
(
|w(i)|2E(∂Ωi)

+ |w(j)|2E(∂Ωj)

+TOL ∗
(
|w(k1)|2E(∂Ωk1

) + |w(k2)|2E(∂Ωk2
)

))
.

Edge terms

Let us now consider an edge E ik which is not fully primal, cf. Definition 2. Here, we
again need the concept of an acceptable face path, cf. Definition 3, and we assume that
we have such a path through the fully primal faces F ij1 ,F j1j2 , F j2j3 , and F j3k. The

basis of rigid body modes (rE
ik

l )l=1,...,6 has only five linearly independent elements
when restricted to the edge E ik, since one rotation is linearly dependent on the others
or even vanishes. Using an appropriate change of coordinates such that E ik coincides

with the x1-axis, we can assume that the rotation rE
ik

6 vanishes.

For the faces, we obviously have six functionals and we assume that they are all

built using the basis rE
ik

l , l = 1, . . . , 6. Since rE
ik

6 vanishes on E ik, we have, for an
arbitrary rigid body mode r(i) ∈ W(i),

r(i) =
5∑

m=1

fFij1

m (r(i))rE
ik

m(48)

on E ik. Similarly, for an arbitrary rigid body mode r(j1) ∈ W(j1), we have the
expansion on E ik

r(j1) =

5∑

m=1

fFj1j2

m (r(j1))rE
ik

m .(49)

Furthermore, we have for p = 1, 2, 3,

TOL ∗ Gjp ≥ min(Gi, Gk).(50)

The edge contributions are again given as in (42). Considering, as before, the
second edge term, associated with two subdomains sharing an edge but not a face,
we obtain

Gi‖δ
†
k(w(i) − w(k))‖2

L2(Eik) ≤ min(Gi, Gk) ‖w(i) − w(k)‖2
L2(Eik)
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We have

w(i) − w(k) =

(
w(i) −

5∑

m=1

fFij1

m (w(i))rE
ik

m

)

+

(
5∑

m=1

fFij1

m (w(j1))rE
ik

m −
5∑

m=1

fFj1j2

m (w(j1))rE
ik

m

)

+

(
5∑

m=1

fFj1j2

m (w(j2))rE
ik

m −
5∑

m=1

fFj2j3

m (w(j2))rE
ik

m

)

+

(
5∑

m=1

fFj2j3

m (w(j3))rE
ik

m −
5∑

m=1

fFj3k

m (w(j3))rE
ik

m

)

+

(
5∑

m=1

fFj3k

m (w(k))rE
ik

m − w(k)

)
.

(51)

Using (48), we obtain on E ik

w(i) −
5∑

m=1

fFij1

m (w(i))rE
ik

m = (w(i) − r(i)) −
5∑

m=1

fFij1

m (w(i) − r(i))rE
ik

m .

Hence, the L2(E ik)-norm of the first term on the right hand side of (51) can be
estimated as in Section 8.1 using a minimizing rigid body mode r(i). We can proceed
analogously for the last term on the right hand side of (51). Let us now consider the
third term; the remaining terms can be treated analogously. For an arbitrary rigid
body mode r(j1) ∈ W(j1), using (49), we obtain on E ik

5∑

m=1

fFij1

m (w(j1))rE
ij1

m −
5∑

m=1

fFj1j2

m (w(j1))rE
ik

m

= (

5∑

m=1

fFij1

m (w(j1))rE
ij1

m − r(j1)) − (

5∑

m=1

fFj1j2

m (w(j1))rE
ik

m − r(j1))

=

5∑

m=1

fFij1

m (w(j1) − r(j1))rE
ij1

m −
5∑

m=1

fFj1j2

m (w(j1) − r(j1))rE
ik

m .

The L2(E
ik)-norm of the resulting two terms can now be estimated as in Sections 8.1

and 8.2 using a minimizing rigid body mode r(j1) and we obtain, using (50),

Gi‖δ
†
k(w(i) − w(k))‖2

L2(Eik) ≤ C (1 + log(Hi/hi))Gi |w
(i)|2E(∂Ωi)

+ C (1 + log(Hj1/hj1))Gj1 ∗ TOL |w(j1)|2E(∂Ωj1 )

+ C (1 + log(Hj2/hj2))Gj2 ∗ TOL |w(j2)|2E(∂Ωj2 )

+ C (1 + log(Hj3/hj3))Gj3 ∗ TOL |w(j3)|2E(∂Ωj3 )

+ C (1 + log(Hk/hk))Gk |w
(k)|2E(∂Ωk).
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Vertex terms

Finally, we estimate the terms resulting from the vertices. We have, according to (34),

Gi|v
(i)(V iℓ)θViℓ |2H1/2(∂Ωi)

≤ C
∑

j∈N
Viℓ

Gi(δ
†
j )

2|(w(i)(V iℓ) − w(j)(V iℓ))θViℓ |2H1/2(∂Ωi)

≤ C
∑

j∈N
Viℓ

min(Gi, Gj)|(w
(i)(V iℓ) − w(j)(V iℓ))θViℓ |2H1/2(∂Ωi)

.

We proceed by considering each pair of substructures separately. Let Ωi, Ωl be such
a pair and assume that we have an acceptable vertex path through fully primal faces
F ij1 ,F j1j2 , and F j2l; cf. Definition 4. We have

w(i) − w(l) = w(i) −
3∑

m=1

fFij1

m (w(i))rV
il

m

+

3∑

m=1

fFij1

m (w(j1))rV
il

m −
3∑

m=1

fFj1j2

m (w(j1))rV
il

m

+
3∑

m=1

fFj1j2

m (w(j2))rV
il

m −
3∑

m=1

fFj2l

m (w(j2))rV
il

m

+

3∑

m=1

fFj2l

m (w(l))rV
il

m − w(l).

(52)

Let r(i) ∈ W(i) be an arbitrary rigid body mode. We then have

r(i)(V il) =

3∑

m=1

fFij1

m (r(i))rV
ij1

m (V il).

Let us now consider

w(i)(V il) −
3∑

m=1

fFij1

m (w(i))rV
il

m (V il)

= (w(i) − r(i))(V il) −
3∑

m=1

fFij1

m (w(i) − r(i))rV
ij1

m (V il).

(53)

Applying Lemma 12, we obtain

|(w(i) − r(i))(V il)θVil |2H1/2(∂Ωi)
≤ C (|w(i) − r(i)|2H1/2(∂Ωi)

+ 1/Hi‖w
(i) − r(i)‖2

L2(∂Ωi)
)

Taking the infimum over all rigid body modes and applying Lemma 7, we obtain

|(w(i) − r(i))(V il)θVil |2H1/2(∂Ωi)
≤ C |w(i)|2E(∂Ωi)

.

For the second term on the right hand side of (53), we obtain, for a minimizing r(i),

|fFij1

m (w(i) − r(i))rV
ij1

m (V il)θVil |2H1/2(∂Ωi)

≤ C hi/Hi (1 + log(Hi/hi)) (|w(i) − r(i)|2H1/2(∂Ωi)
+ 1/Hi‖w

(i) − r(i)‖2
L2(∂Ωi)

)

≤ C hi/Hi (1 + log(Hi/hi)) |w
(i)|2E(∂Ωi)

.
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Proceeding analogously for the remaining terms on the right hand side of (52) and
using

TOL ∗ Gj ≥
hj

Hj
min(Gi, Gl),(54)

we obtain

min(Gi, Gl)|(w
(i)(V il) − w(l)(V il))θVil |2H1/2(∂Ωi)

≤ C (1 + log(Hi/hi))Gi |w
(i)|2E(∂Ωi)

+ C (1 + log(Hj1/hj1))Gj1 ∗ TOL |w(j1)|2E(∂Ωj1 )

+ C (1 + log(Hj2/hj2))Gj2 ∗ TOL |w(j2)|2E(∂Ωj2 ) + C (1 + log(Hl/hl))Gl |w
(l)|2E(∂Ωk).

Let us note that more general acceptable vertex paths can be analyzed analogously.
2

8.4. Algorithmic selection of primal constraints. The concepts of an ac-
ceptable path might appear to be fairly complicated. We will therefore explore the
possibility of developing a set of relatively simple rules which would guarantee that
our asssumptions related to acceptable paths will be satisfied. We recall that the sim-
plest way to assure that a face has an acceptable face path, is to introduce six linearly
independent edge constraints across the face. Similarly, we can meet the requirement
for an edge by making it fully primal. However, our goal is to be selective and to
try to identify a small and effective primal constraint set. We will also explore, in
greater detail, the effects of possible long paths; we will be able to exploit what we
have learned from our proofs in the previous subsection.

We first note that the selection of a linearly independent set of constraints for a
fully primal face can be automated relatively simply. In the case of a quadrilateral
face and using only averages over the displacement components, there are twelve
functionals to choose from. We can then construct a six by twelve matrix of values
obtained by evaluating all these functionals at the basis elements of the space of
rigid body modes. A QR factorization with column pivoting, selecting the remaining
column vector of largest norm in each step, should quickly help us select an appropriate
set of six constraints. If we previously have introduced some constraints, we should
order them first and use column pivoting only for the remaining edge averages; we can
stop when we have found six functionals which are robustly linearly independent. We
can also use the full set of five constraints that might already have been introduced
for a fully primal edge as a point of departure.

Concerning subdomain edges, we note that mesh partitioners, in our [11] and
other people’s experience [17], often result in having a vast majority of the edges
which are common to only three subdomains; cf. Subsection 8.1. There we proved
that the edge terms could be reduced to face estimates for the case depicted in Figure
3 if the three faces are all fully primal. We can now show that the same is true under
the weaker assumption that the three faces each have an acceptable face path. The
proof is straightforward and can be modelled on the proofs of Subsection 8.3.

In case there are relatively few edges common to more than three subdomains, it
would be simple and reasonable to make them all fully primal by introducing sets of
five edge constraints. Alternatively, we could inspect the coefficients of the adjacent
subdomains. If an acceptable face path cannot be found involving only these subdo-
mains, we would make the edge fully primal; if such a path through fully primal faces
is found, this would not be necessary.
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We will now outline a strategy of selecting fully primal faces. We will introduce
an undirected graph where the nodes represent subdomains and two subdomains that
share a fully primal face are connected by an edge. We begin the construction of the
graph, and the selection of fully primal faces, by sorting the subdomains according
to decreasing values of the Young’s moduli; we will activate them one by one in this
order. At any time of the process, we will have one or several connected components
of the graph built from activated subdomains where two subdomains will belong to
the same component if there is a path from one to the other through subdomains and
fully primal faces. When a subdomain is activated, it can have one or several faces in
common with previously activated subdomains or it will create a new component of
the graph. In the latter case, we do not introduce any new fully primal faces. If the
new subdomain has a face or several faces in common with just one component, we
make one of these faces fully primal by adding suitable edge average constraints to the
face common to the new subdomain and the old subdomain which has the smallest
index. If the current subdomain has a face or faces in common with subdomains of
several components, we make one of these fully primal for each of the components,
again always selecting the subdomains with the lowest index; in this case the number
of components of the graph will decrease.

It is easy to see, by counting nodes and edges of the graph, that we have a forest
throughout and that at the end, we have a tree. Thus, there is always a unique path
from any subdomain to any other in the same component of the graph. We also
note that at any stage of the activation procedure, any path from a subdomain to
a next neighbor across a face which has not been selected as fully primal, will pass
exclusively through subdomains with Young’s modulii which are larger or equal to
that of the new subdomain being considered. The existence of such a path follows
from the fact that, according to the rules outlined above, there will be another, fully
primal face of the same subdomain which connects it to the component of the graph
of the subdomain across the first face. We also note that in this process additional
faces might become fully primal when we introduce constraints on the boundary of
neighboring subdomains; after adding the corresponding edges to the graph, we would
no longer have a tree.

By the process just outlined, we are thus able to select a modest number of
constraints, in fact fewer than six times the number of subdomains. As we already
have shown, there will be no problem with the Young’s moduli on the paths related
to the faces which are not fully primal. But we also have to concern ourselves with
the possible excessive length of such paths. But we also note that our discussion will
in fact allow us to refine the arguments of Subsection 8.3. We first note that a fully
primal face, shared by Ωi and Ωj , will contribute min(Gi, Gj)/Gi times the energy
attributed to Ωi and min(Gi, Gj)/Gj times that of Ωj . We can systematically keep
track of these terms when considering the contributions from faces and edges to the
overall estimate. If the face between Ωi and Ωj is not fully primal and Ωk is part of
the path related to that face, we should add min(Gi, Gj)/Gk to the tally associated
with Ωk. What matters is the maximum tally over all the subdomains. If the tally
is too large, e.g., if too many paths pass through a particular subdomain, then we
should develop a strategy of selectively increasing the number of fully primal faces;
such an action will eliminate all contributions from that face to any subdomain except
the two that share the face.

We could organize this part as follows. After initializing all tallies to zero, we
inspect each face of the interface one by one. If a face F ij between Ωi and Ωj is fully



40

primal, we add min(Gi, Gj)/Gi and min(Gi, Gj)/Gj , respectively, to the tallies of Ωi

and Ωj . If F ij is not fully primal, there is at least one path from Ωi to Ωj and we add
min(Gi, Gj)/Gk to the tally of Ωk if Ωk is part of the path. If this action will cause
any tally to exceed a tolerance, we should instead make F ij fully primal by adding
enough constraints to make F ij fully primal. This part of the computation should
be followed or preceeded by an inspection of all edges of the interface, adding to the
tallies of the subdomains in a quite similar way. Clearly, many different variants are
possible.

Finally, we should inspect the vertices one by one and the Young’s moduli of the
subdomains that meet at the vertices. If an acceptable vertex path cannot be found
using only these subdomains, we suggest that the vertex be made primal.

We hope that we soon will get practical experience with the ideas outlined in this
subsection. We note that we so far have used only quite elementary graph theory;
more elaborate tools and algorithms might help in the choice of a small but poweful
set of primal constraints. We also note that we should reconsider the rules of selecting
fully primal faces, taking the areas of the faces as well as the Young’s moduli into
account. Relaxing the order of the subdomains somewhat could also lead to trees
with fewer levels and thus shorter paths between the subdomains.
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