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Abstract. Balancing domain decomposition by constraints (BDDC) algorithms are constructed
and analyzed for the system of almost incompressible elasticity discretized with Gauss—Lobatto—
Legendre spectral elements in three dimensions. Initially mixed spectral elements are employed to
discretize the almost incompressible elasticity system, but a positive definite reformulation is obtained
by eliminating all pressure degrees of freedom interior to each subdomain into which the spectral
elements have been grouped. Appropriate sets of primal constraints can be associated with the
subdomain vertices, edges, and faces so that the resulting BDDC methods have a fast convergence
rate independent of the almost incompressibility of the material. In particular, the condition number
of the BDDC preconditioned operator is shown to depend only weakly on the polynomial degree
n, the ratio H/h of subdomain and element diameters, and the inverse of the inf-sup constants of
the subdomains and the underlying mixed formulation, while being scalable, i.e., independent of the
number of subdomains and robust, i.e., independent of the Poisson ratio and Young’s modulus of
the material considered. These results also apply to the related dual-primal finite element tearing
and interconnect (FETI-DP) algorithms defined by the same set of primal constraints. Numerical
experiments, carried out on parallel computing systems, confirm these results.

Key words. domain decomposition, balancing domain decomposition by constraints precondi-
tioners, almost incompressible elasticity, mixed spectral elements

AMS subject classifications. 65F08, 656N30, 65N35, 65N55

DOI. 10.1137/100791701

1. Introduction. The purpose of this paper is to construct and analyze bal-
ancing domain decomposition by constraints (BDDC) algorithms, (see [13, 41]) for
the system of almost incompressible elasticity in three dimensions, discretized with
Gauss-Lobatto-Legendre (GLL) spectral elements. As the material becomes almost
incompressible, the resulting discrete system becomes extremely ill conditioned, par-
ticularly so when increasing the polynomial degree of the spectral elements. Therefore,
it is quite a challenge to devise domain decomposition preconditioners that maintain
scalability and fast convergence rates also for almost incompressible materials. Our
algorithm builds on earlier work by Li and Widlund [36] for the Stokes system, but
here we can work with a positive definite reformulation of an underlying mixed formu-
lation of the elasticity system, obtained by eliminating all displacement and pressure
degrees of freedom interior to each subdomain into which the spectral elements have
been grouped. Our overall strategy assumes that the set of primal constraints works
well in the compressible case and, in addition, that a no net flux condition is satisfied
across the boundary of each subdomain. We show that appropriate sets of primal
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constraints can be associated with the subdomain vertices, edges, and faces so that
the resulting BDDC methods have a fast convergence rate independent of the material
being almost incompressible. In particular, we prove that the condition number of the
BDDC preconditioned operator depends only weakly on the polynomial degree n, the
ratio H/h of subdomain to element diameters, and the inverse of the inf-sup constants
of the subdomains and the underlying mixed formulation, while being independent of
the number of subdomains (scalability) and of the Poisson ratio and Young’s modu-
lus of the material considered (robustness). The results of numerical experiments on
parallel computing systems confirm our theory and illustrate the effects of the choice
of the primal constraints. A preliminary study in two dimensions and without proofs
can be found in [47]. We are currently working on the extension of inexact BDDC
algorithms (see, e.g., [15, 38]) to GLL spectral elements and almost incompressible
elasticity. We remark that our results also apply to the related dual-primal finite
element tearing and interconnect (FETI-DP) algorithms (see, e.g., [19, 33]) defined
by the same set of primal constraints, since it is known that the BDDC and FETI-DP
operators have the same eigenvalues with the exception of at most two; see [41, 37, 7].

BDDC methods can be regarded as an evolution of balancing Neumann-Neumann
methods where all local and coarse problems are treated additively and a proper set
of primal continuity constraints across the interface of the subdomains is selected,
just as in FETI-DP methods. These primal constraints can be point constraints and
averages and moments over edges and/or faces of the subdomains. Several choices
will be considered in sections 6 and 8.

Earlier works on domain decomposition algorithms for mixed elasticity and Stokes
systems have focused on wirebasket and balancing Neumann—Neumann methods [45,
46, 22], [5], on FETI-DP and BDDC methods for the incompressible limit [14], [35, 36],
[32], and on overlapping Schwarz and hybrid methods [26, 16, 17]. Previous works
on BDDC and FETI-DP algorithms for GLL spectral elements have focused on the
scalar elliptic case only; see [44, 27]. The BDDC algorithm has been extended to a
variety of cases, including mortar discretizations [23, 24, 25], discontinuous Galerkin
methods [18], Stokes—Darcy coupling [20], advection-diffusion and indefinite problems
[51, 39], inexact solvers [15, 38|, Reissner—Mindlin plates [4], and multilevel algorithms
[49, 50, 43]; see also [42]. We refer to the monograph by Toselli and Widlund [48] for
an introduction to domain decomposition methods and to those by Deville, Fischer,
and Mund [11] and by Canuto et al. [9] for introductions to spectral element methods.
In comparison with previous domain decomposition methods for Stokes and mixed
elasticity, such as wirebasket [45], balancing Neumann—Neumann [46, 22, 5], and
overlapping Schwarz [26] methods, BDDC represents very significant progress, yielding
much smaller condition numbers and being easier to implement than previous iterative
substructuring methods. We also note that FETI-DP and BDDC algorithms have
proven very important in computational elasticity.

The rest of the paper is organized as follows. In section 2, we introduce the
almost incompressible elasticity system, discretize it with a mixed spectral element
method based on GLL quadrature, and reformulate it as a positive definite system
by eliminating all pressure variables; this is followed by eliminating the displacements
interior to each subdomain. The resulting interface problem and interface space are
further decomposed in section 3, where we also define the required restriction and
interpolation operators, Schur complements, and certain interface norms. We also
formulate a lemma which highlights the importance of a no net flux condition. The
BDDC preconditioner is introduced in section 4. The main BDDC convergence rate
estimate and auxiliary results are presented in section 5. Several choices of sets of
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primal constraints are considered in section 6 and associated transformations of basis
functions in section 7. The paper concludes by section 8 with the results of several
numerical experiments in three dimensions on parallel computer systems.

2. Almost incompressible elasticity and spectral elements.

2.1. The continuous problem. We consider a domain Q C R?, decomposed
into N nonoverlapping subdomains §2; of diameter H;, and forming a coarse finite
element partition of €2,

N
(2.1) a=[Ja.
i=1
Let H = max; H; be the characteristic diameter of the subdomains and 9Qp a

nonempty subset of 9€2. We consider a mixed formulation of linear elasticity for
almost incompressible materials as, e.g., in [8]: find (u,p) € V x U such that

Z/ue(u):e(v) da:—/divvpdx:(F,v> Vv eV,

(2.2) ¢ ¢
—/divuqu—/l/)\pqu:O Vq € U.

Q Q

The functional spaces are
V= {ve H(Q)?:v|pq, =0}, U:=L*Q) (or LE(Q) if 0Qp = 90).

F represents the applied forces, and pu(x) and A(z) are the Lamé parameters of the
material that, for simplicity, we assume constant in each subdomain £2;; they can be
expressed in terms of the local Poisson ratio v; and Young’s modulus E; as

E; E;v;

(2.3) HE ATy N T Tx =)

The material of a subdomain approaches the incompressible limit when v; — 1/2.
Factoring out the constants p; and A%’ we can define local bilinear forms by
(2.4)

N N N N 4
;Niai(uav) = Q;M /Qiﬁ(u) 1e(v) dz, ; )\—iCi(p,Q) = ;)‘_Z/Qp q dz,

and also by

N
(2.5) Zbi(v,q) = Z/Q divv ¢ dz.

i=1

The global problem (2.2) is obtained by assembling contributions to the bilinear forms
from the different subdomains. Our convergence rate analysis will be reduced to devel-
oping bounds for individual subdomains. The resulting estimates will be independent
of the values of the Lamé parameters.

2.2. Mixed GLL spectral elements. Let T,.s be the reference cube (—1, 1)3,
and let @, (Trer) be the set of polynomials on Tyer of degree n > 1 in each variable. We
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assume that the domain 2 can be decomposed into N, nonoverlapping finite elements
Ty of diameter hy,

Ne
(2.6) Q=JTw
k=1

each of which is an affine image of the reference cube, i.e., T = ¢ (Trer), where
¢ is an affine mapping. This is a standard assumption in the spectral element
literature, and our proof will rely on it. At present, we do not have a proof for spectral
element discretizations with more general mappings (see, e.g., [21] for a numerical
study of overlapping Schwarz preconditioners for spectral elements based on transfinite
mappings). Let h = maxy hy be the characteristic diameter of the elements. We
assume that this finite element partition, (2.6), is a refinement of the coarse subdomain
partition {Q;}X, defined previously in (2.1), with finite element nodes matching
across the interfaces between neighboring subdomains. Hence each €; is the union of
a subset of the closure of elements T}.

The space of displacements V is discretized, component by component, by con-
tinuous, piecewise tensor product polynomials of degree n:

Vn = {VEV:’Uk Ti0¢iEQn(Trcf), i:1,2,...,Ne, k:1,2,3}

The pressure space U is discretized by discontinuous, piecewise tensor product poly-
nomials of degree n — 2:

U,:={qeU:q

T; © d)’L € Qn—Q(Trof)a 1= 172a H -aNe} .

We use GLL(n) quadrature, which also allows for the construction of very conve-
nient nodal tensor-product bases for V,, and U, using for the latter only the interior
GLL nodes of each element. We denote by {&}, the set of GLL(n) points of [-1, 1],
by o; the quadrature weight associated with &;, and by l;(x) the Lagrange interpo-
lating polynomial of degree n that vanishes at all the GLL(n) nodes except at &;,
where it equals 1. Each element of Q,(Tref) is expanded in this GLL(n) basis, and
any L2-inner product of two scalar components v and v is replaced by

N n
(2.7) (00 =Y > (o d) (& & &) (v o ds) (& &, &)l Jsloioson,

s=114,j,k=0

where |J| is the determinant of the Jacobian of ¢s. Similarly, a very convenient basis
for U,, consists of the tensor-product Lagrangian nodal basis functions associated with
the internal GLL(n) nodes; i.e., the endpoints —1 and +1 are excluded. The mass
matrix based on these basis elements and GLL(n) quadrature is then diagonal for the
displacement field but not for the pressure field.
The @, — Q,_2 method satisfies a nonuniform inf-sup condition

(28) sup LVD) > 5 1011, Vg e U,

veV, HV”H1
where 8, > Cn~! and the constant C' > 0 is independent of n. It is also known that
By decays slower for small n than indicated by the theoretical bound; for example,
Bn > 043 for n < 16 according to Maday et al. [40]. (We note, however, that
the inf-sup coefficient will decrease with an increase in the aspect ratio of a domain;
see Dobrowolski [12].) An alternative mixed spectral element method, with a bound
on the inf-sup constant which does not depend on n, is provided by the Q,, — P,_1
method; see Bernardi and Maday [6].
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2.3. The discrete system and its positive definite reformulation. The
discrete system, obtained from the GLL spectral elements, is assembled from the
saddle point matrices of individual subdomains §2;:

WAG  BOT
B®W  —1/x, €O |”

where p; AW, B® and 1/)\; C) are the local matrices associated with the local
components of the bilinear forms as in (2.4), (2.5).

Since we are using discontinuous pressures, all pressure degrees of freedom can be
eliminated, element by element, to obtain reduced positive definite stiffness matrices

(2.9) K@ = ;AW 4\, BOT -1 g0

that can be subassembled into a global positive definite stiffness matrix K.
The load vector of the full system can similarly be assembled from contributions
from the elements.

3. Subspace decomposition and operators. We recall that the computa-
tional domain 2 C R? has been decomposed in (2.1) into N nonoverlapping subdo-
mains €; of characteristic size H. In our experiments, they each consist of (H/h)3
spectral elements T}y of characteristic size h, while in our theory, we can allow less
regular subdomains. The subdomain interface is designated by I' := (J, ,; 0% N 9Q;.
We assume matching finite element nodes on the boundaries of adjacent subdomains
across the interface.

We split the set of basis functions into interior functions with the subscript I and
the remaining interface basis functions with the subscript I.

3.1. Subspaces. We will use the framework of [37]. Let V() be the local space of
spectral element displacements defined on €2; and that vanish on 9Q; N9 p. We split

this space into a direct sum of its interior and interface subspaces V#) = Vl(i) Ph Vr(i),
and we define the associated product spaces by

N N
vi=[[v"., w=]]w".
i=1 i=1
The functions in V- are generally discontinuous across I', while our spectral element
approximations of the displacements are not. Therefore, we also define the subspace
‘71‘ := {functions of V¢ that are continuous across I'}.

We will also need an intermediate subspace ‘7p defined by further splitting the interface
degrees of freedom into primal (with the subscript II) and dual (with the subscript
A) degrees of freedom:

‘7p = VA @‘/}H

Here

(a) ‘7n is a global subspace consisting of selected continuous functions, the primal
variables; these can be the subdomain vertex basis functions of Vv and/or edge/face
basis functions with a constant value at the nodes of the associated edge/face. We
will assume that, after a change of basis, each primal variable corresponds to an
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explicit degree of freedom; cf. [37, section 3.3] and subsection 7. This simplifies the
presentation and also adds to the robustness of the algorithms; see [28, 29].

(b) Va = Hivzl VA(i) is the product space of the subspaces VA(i) of dual interface
functions that vanish at the primal degrees of freedom.

3.2. Restriction and scaling operators. In order to define our precondition-
ers, we need certain restriction and interpolation operators represented by matrices
with elements in the set {0,1}:

RFA : ‘7}‘ — VA, RFH : ‘7p — ‘71-[, Ep : {fp — Vp,

3.1 & . | ; VI ,
(3.1) RY Vi — WV RY:va — VP, RY:Vp— WY

With these operators, we build the following operators:

Ry : Vp — Vr, the direct sum of the R(Fi),
RF : ‘71‘ — ‘71‘7 the direct sum Rp @ RX)RI‘A-

We will also need the standard counting functions of the Neumann—Neumann methods
and in particular their pseudoinverses 5;‘ (x), defined at each node x on the interface
T'; :=0r'; N T of subdomain 2; by

(3.2) 61 (x) = @)/ | D wla) |

JEN:

where p; is the value of the first Lamé parameter on ; and N, is the set of in-
dices of the subdomains having the node = on their boundaries; see also [48, section

6.2.1] for alternatives. We define scaled local restriction operators Rg)f and Rgz A by

multiplying the sole nonzero element of each row of R(Fi ) and RX) by 53 (z). Then let

Rp,r := the direct sum of R%?F, JN%D,F := the direct sum Rr @ R%?ARFA.

3.3. Schur complements. After reordering the interior displacements first and
then those of the interface into (uy,ur), the local spectral element stiffness matrix
for subdomain €2; can be rewritten as

(4) (T
K(Z) — KIZI KFlI
(4) (4)
Kyj  Kpp

By eliminating the interior displacement variables, we obtain the local Schur comple-
ment Sﬁz), of the subdomain ;, as

% % % i)—1 i)T
e

We note that while the pressures have been explicitly eliminated in (2.9) in order to
obtain a positive definite reformulation, the interior displacements are only eliminated
implicitly. Indeed, as is standard practice in iterative substructuring methods, only
the actions of Sg) on given vectors will be required by the preconditioned conjugate
gradient (PCG) method employed, and these actions will be computed by solving
local Dirichlet problems on each €2;. The BDDC preconditioner will also require the
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solution of additional local problems with natural boundary conditions except with
vanishing primal displacement components.

We will consider three Schur complements corresponding to the spaces Vr, Vp,
and Vp. (a) the Schur complement St defined on the space Vr as the direct sum of

the local Schur complements S’l(j):

s 0 o0
(2)
(3.3) Spe— | OO
: .0
0 - 0 s

By subassembling all the degrees of freedom of the local Schur complements, we
obtain (b) the classical Schur complement St, defined on the continuous subspace
Vp:

Sro=Y RY SYRY = RLSrRr,
i=1
with St defined in (3.3).

And finally, (c¢) the intermediate Schur complement St, defined over the partially
assembled interface space Vr, obtained by assembling only the primal variables of
the S

gp = E?Spf_%p,
with Ry : Vi — Vr defined in (3.1) and S in (3.3). The classical Schur complement
St can be also obtained from Sr by further assembling the dual variables, i.e., as
(3.4) §p = E?gpﬁp

3.4. Interface norms and seminorms. We define the following Sl(j)— and Sp-
seminorms by

i HT i i i
(3.5) |W§\)|§l(j) = W(F) Sé)wl(ﬂ) VW(F) € V(F),
(3.6) lwr|3, == wl Spwrp = |w 2., Vwr € Vr,
S

the §p— and gp-norms by

(3.7) ||WFH2 = Wp RTSFRFWF = |RFWF|SF Vwr € Vp,
(3.8) ||WFH2 = Wp RFSFRFWF = |RFWF|S VWF S Vp,
and the | - |g(r,)- and | - |g(r)-seminorms by
(3.9) Wil =t V) .
evit
‘,(L)‘F ()
(3.10) Wl = ZMWFHE ry  VYwr € Vi
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We note that the | - |g(r,)-seminorm can also be written in terms of the local stiffness
matrix A since ||e(v(i))|\%2(m) = vOT AO) ()

The following lemma, which is a consequence of Lemma 3.3 in Dohrmann and
Widlund [17], will allow us to reduce our analysis in section 5 from the almost incom-
pressible to the compressible case.

LemMma 3.1. If W(Fi) has zero net flux across a subdomain boundary, i.e.,

/ (wi?) - n;dA =0,
o0

with n; the unit outward normal to the subdomain boundary and By ; the inf-sup
parameter of §;, then

i i 3/2
pilw %) < |W1(“)|Z<Fi) <4 (1 + W) uilwi e,

4. The BDDC preconditioner. The splitting of the interface displacements
into dual (with subscript A) and primal (with subscript II) interface displacements
induces the following partition of the local stiffness matrices:

% )T 4
KK K
i) . % A )T
KO- |G
KL K

The BDDC preconditioner for the Schur complement Sr is defined by

(4.1) M~t.= ég)rgflé[))p,
where
(4.2)
N (1) (Z)T
. K Kx 0
=REA (Y [0 rO"] " 0 RO | | Bra +@Sghe”.
=1 KAI K

This formula can be obtained by a block-Cholesky factorization of a partially sub-
assembled problem; see [37]. The first term in (4.2) represents local Neumann solves
on individual subdomain §2; with the primal variables constrained to vanish. The
second term involves a coarse, global solve for the primal variables, with the coarse
matrix

N kO g1 kO
_ QR N0 D) Al o it
St = Z Ry | Ko — Kﬁl)r Kﬁ)A (i) (i) 0" i
— KA1 Kaa Kna

and a matrix ® representing a change from discontinuous interface variables to primal
degree of freedoms. It is formed by the coarse basis functions defined on V- and as
the minimum energy extension into the subdomains, subject to the set of primal
constraints, and is given by

N @ O 1T @
K K K .
_ pT T NT i1 AT I1r (2)
® = Ry — Rra E { 0 R(A) } @) (l) @7 I -
i=1 Ky Ki Kia
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In section 6, we will present several choices of primal constraints and their imple-
mentation using a proper change of basis will be discussed in section 7. These choices
are motivated by the requirements of our theoretical analysis that the elements in the
range of an average operator should have a divergence-free extension into the subdo-
mains and that the algorithm should perform well for compressible elasticity problems.
One experimentally successful recipe involves using primal vertex constraints for all
subdomain vertices, augmenting them with a primal constraint on the average of the
normal displacement component over each subdomain face and the averages, over the
subdomain edges, of the two displacement components orthogonal to each edge. This
set of primal constraints does not fully meet the requirement of existing theory. The
set of primal constraints also has to be enriched by additional edge averages and, for
certain sets of Lamé parameters {u;}, first order moments to enable us to give a full
theoretical justification.

5. Convergence rate estimates. We now prove a bound on the BDDC con-
vergence rate given a sufficiently rich sets of primal constraints as just outlined. More
details on the choice of primal constraints will be provided in the next section. We
make the following two assumptions concerning the operator Ep = RrRE . that
returns a weighted average of the interface displacements across the interface I'.

Assumption 1. The primal constraints are chosen such that Ep satisfies the no
net flux condition

/ (RF(EDHF)) . l’lidA =0 Vur e Vx
o9,

for all subdomains. Here, Rr, defined in (3.1), maps Vi into the product space Vp
and n; is the unit outward normal of 0%;.

Assumption 2. There exists a positive constant C, which is independent of
n, H, h, N and the values of the Lamé parameters, such that

_ H o -
|Rr(Epur)|gr) < C (1 + log <n2z)> |Rrur|gr) Vur € Vr,

where the | - [p(r) - seminorm has been defined in (3.10).
We note that Assumption 2 essentially means that the BDDC algorithm converges
well for problems of compressible elasticity. We next turn to our main result.
THEOREM 5.1. Let Assumptions 1 and 2 hold. Then the BDDC preconditioned

operator M_l:g\r and the associated FETI-DP operator, using the same set of primal
variables, have condition numbers bounded by

15 3/2 H\\?
1 < _ 2
Kko(M™"Sp) < Ci:IR?i(NZL <1 + i/h 572171‘) <1 + log (n 7 >) .

Here C is the constant of Assumption 2 and independent of n, N, H, h and the values
of the Lamé parameters. The parameter By ; is the inf-sup parameter of the mized
Qn — Qn_2 spectral element method and the subdomain §2;.

Proof. We will use the Sp inner product, associated with the Sp-norm (3.7), to
prove the necessary bounds for the eigenvalues of the preconditioned operator M _1§p,
namely, a lower bound

(ur,ur)g. < (ur, M~'Spur)g
r r
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and an upper bound

(ur M71§FUF>A <C max 4 1—|—3/72 1+ log n2E 2<uF ur)g ..
’ St = T is1N pi/ Ni + B ; h T e

Lower bound. Since E%Epp = ﬁgpér = I, we have

TS pT D TS pT o-1& p 5
<up,uF>§F = Ur SFRDFRFUF = uFSFRDFSF SFRFHF = <WF7RFUF>§F,

where wZ := ul S RL.S7!. By the Cauchy Schwarz inequality, it then follows that

<uF7uF>§F < <WF,WP>%/FQ<EFUF7EFHF>%/FQ

1/2

= <WF7 WF>§F <uF7 uF>1/2

Sp’
since St = RLESrRr. Therefore, by squaring and canceling a common factor,

(51) (up, up>§F < <WF,WF>§F = u%gpﬁgpgfléppgqu = (up, M_1§FUF>§F-

Upper bound. If ur € ‘7p, then Egpup S ‘/}1‘, and with Epur = EFR%FUF,

N
(5.2) IEpur|% = [Rr(Epur)ls, =Y |[Rr(Epur)|

20
EIOk
i=1 r

We now note that the operator Ep maps any continuous function, e.g., those of ‘A/'H,
into itself. Therefore when bounding Epur, we can confine ourselves to elements
of Va. By Assumption 1, Rr(Epur) then has zero net flux across the subdomain
boundaries, and we can apply the right inequality of Lemma 3.1 to each local term
in the sum on the right to obtain

3/2

' BRr(E 2¢ <41+ ————5—
(5.3) |Rr( Dur)|s<r> > < +M/)\i+ﬁi,i

) pil Re(Epur) 3, ).

By summing over the subdomains and using (5.2) and (3.10), we find

3/2

2
(5.4) IEpur|, <max4 <1 + i/ i+ B2,

) [Rr(Epur) %
By Assumption 2, we can bound the last factor on the right in terms of |EFUF|E(F)

and then return to gp-norm by summing the left inequalities of Lemma 3.1 over the
subdomains and by using (3.8). We obtain

3/2 H\\’
2 2 2
(55) HEDUF||§F < leaX4 (1 + m) (1 + log <TL z)) HuFng.

Given ur € ‘71‘, Wwe NOw use Wr := §1? 1}~%Dp§pup, as in the proof of the lower bound.
Then RgFWp = M_lsqu and

<M_1§FUF, M_1§FUF>§F = <REFWF, R%FWF>§F

= (ReRprwr, RrRprwr)g, = |[Epwrl%
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because §p = E%grér and the definition of Ep. From (5.5), it follows that

2 2 2
||EDWFH§F = Cz’_}{lﬁ%NZl <1 :ui/)\i + Biz) (1 og <n h )) H FH§F~

&mﬂﬂﬂ%hﬂé:@ﬂﬁ@hﬂ%wmwe

<M_1§FUF, M_1§FUF>§F

(56) <C a1 —32 ) (15108 (n22 Zm M~'Srur) ¢
' R R Y i/ Ni + B2 AN o P

From the Cauchy—Schwarz inequality and (5.6), we then have

(ur, M*lgpup%\r < (ur,ur)g (M~'Srur, M~ Srur)g.

<C max 4 1—|—37/2 1+ log n2E 2<u ur)s (ur, M~ Srur) s
s s ,UZ/AZ—Fﬁi),L h s U/ gR AU rur/gse,

and the upper bound follows by canceling a common factor. a

6. Choice of primal constraints and Assumptions 1 and 2. We will now
show how Assumptions 1 and 2 can be satisfied with a proper choice of primal con-
straints. We will consider the following subsets of primal variables:

e U, the displacements at the subdomain vertices;

e E2 the averages of the normal displacements over each subdomain edge (2
averages per edge);

e E3 the averages of the displacements over each subdomain edge (3 averages
per edge, 1 per displacement component);

e E2 | the first order moments of the normal displacements over each subdomain
edge (2 moments per edge);

e F! the average of the normal displacements over the interior of each subdo-
main face (1 average per face);

e I3, the averages of the displacements over each subdomain face (3 averages
per face, 1 per displacement component).

Our discussion will be based on the results of [36], as far as Assumption 1 is
concerned, and on [33] for Assumption 2. As in all two-level domain decomposition
algorithms, we have to observe the null space condition. The null space of the elasticity
operator in three dimensions is spanned by the six rigid body motions, which are
vector-valued functions with components which are linear functions; see, e.g., [33,
section 2].

The averages, which define our primal constraints, can be viewed in terms of
weights given by the restrictions of the rigid body motions to edges and faces. We
note that for a straight edge, we can use no more than five primal constraints since
the restrictions to an edge of the six rigid body modes are linearly dependent; see [33,
pages 1540 and 1560].

We will use an additive notation to denote the union of sets of constraints. While
in our theory, we need to include at least V + E3 + E2, + F!, the numerical results
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of section 8 indicate that in many cases, we obtain good convergence rates also with
the smaller set of primal constraints V + E2 + F!. That latter choice is perfect for
Assumption 1.

LEMMA 6.1. Assumption 1 holds when the set of primal constraints contains the
set V+E2+F;.

Proof. We need to show that [, v(®) . n; = 0, where v(¥ is the component of
RrEpur associated with ©; and ur € Va. We consider each face F*/, shared by ;
and €);, of 0€); separately. Since the subdomain vertices are primal, we can decompose
the integral over F¥ into face and edge components

(6.1) /F“v<i>-nij:/F“I"vh(ewv<i>)-nij+ > L»_I”ﬁ(amv(”)-nm,

EkCOFii

where I™" is the interpolation operator onto the spectral element space and @p:; and
Opx are the standard partition-of-unity functions with the value 1 at the nodes on
the face F and the edge E*, respectively, and which vanish at all other interface
nodes. Since each element is a nondegenerate affine image of the reference cube, our
mapped elements are polytopes with faces that are parallelograms and, in particular,
with parallel mesh lines on the faces.

By using GLL quadrature, the first, the face term of (6.1), reduces to a sum over
the GLL nodes interior to F¥. Our choice of the primal constraints includes face
averages of the normal displacements and after a change of basis, described in the
next section, these averages will all vanish. Therefore the first term on the right-hand
side of (6.1) will vanish.

Since the edge function wg = I"™" (g« uX)) -n,; vanishes at all the GLL nodes
on the interface, except at the nodes on E*, we find, by using GLL quadrature over
F and with E* located at x = &, that

n+1 n+1 n+1
/ wpds = Z Z i, 0, wE (&, &iy) = 00 Z oi,wE(§0,&i,) = Uo/ wpd§.
Fij A — Ek
7,1—0 7,2—0 7,2—0

These edge averages all vanish after the change of basis of the next section and so do
all the integrals of (6.1). O

LEMMA 6.2. Assumption 2 holds when the set of primal constraints is acceptable
in the sense of [33, Definition 5.8]. This is guaranteed, for any selection of the Lamé
parameters y;, by using the primal set V + E3 + E2 + FL.

Proof. In the recipe developed in [33, section 5|, fully primal faces and edges play
an important role. A fully primal face is associated with at least six primal constraints,
which provide a full six-dimensional dual basis for the space of rigid body motions.
They cannot be based on vertex constraints since there is an additional requirement
that all the functionals can be bounded by a logarithmic factor in the dimension of
the local problems; vertex constraints are associated with operators which have norms
which, in our context, would be linear in n2H/h.

It is shown in [35, section 7] that a third tangential edge constraint, as in E3,
will be required for at least one edge of a face of the interface to make it fully primal.
This makes it necessary to use at least a substantial subset of the tangential edge
averages of E2 in our set of primal constraints. Should no tangential edge constraints
be included, then all faces of the interface would fail to be primal. We note that an
examination of the theory shows that, to assure success, there must exist relatively
many fully primal faces in all parts of the domain.
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The requirement that the set of primal constraints be acceptable will also at times
make it necessary to make some edges of the interface fully primal; all edges will be
fully primal by including E2 + E2, in the set of primal constraints. Such a set of
five constraints for an individual edge can be needed in developing our bounds if the
coefficients of the subdomains that have the edge in common have Lamé parameters
u; that differ by orders of magnitude. An example can be given, in the case of four
such subdomains, by selecting two very different values of y; in an alternating pattern
when we move around the edge. Without patterns of such a nature, constraints based
on the first order moment over edges are not required to establish strong bounds as
in Theorem 5.1.

A full proof of the bound of Assumption 2 also requires the extension to the
spectral element case of the finite element bound given in Klawonn and Widlund
[33, Condition 8.1]. We note that the Pp operator of that work and Ep of the
BDDC algorithm are complementary projectors with Ep+Pp = I. The modifications
necessary are routine since the extension of the technical tools necessary from the finite
element to the spectral element case can be carried out essentially as in Toselli and
Widlund [48, subsection 7.4.1]. There these tools are presented in the special case of
subdomains with one single element (H/h = 1). However, they can be easily extended
to multielement subdomains by using the same technique of refining the GLL mesh
inside each spectral element into a quasi-uniform mesh with mesh size equal to the
smallest distance between GLL points, i.e., O(1/n?) on the reference element. The
number of refined mesh points along a subdomain edge then becomes O(n?H/h), and
we can obtain counterparts of [48, Lemmas 7.11-7.15] with factors 1 + log(n?H/h)
instead of 1 + log(n). We finally note that the auxiliary results Lemmas 7.1-7.5 of
[33, section 7], which also involves first order moments, pose no new challenges. a

We note that in the previous work on compressible elasticity, as in [33], the use of
vertex constraints is avoided. By themselves, they do not allow for bounds of the same
quality as in Theorem 5.1; see [34, 31, Algorithm A]. Here the situation is different
since we use the vertex constraints in establishing Assumption 1. It is clear from our
experiments, reported in section 8, that combining the primal constraints of E2? + F}
with the vertex set V often results in a performance which is virtually identical with
that of the richer set V + E2 + F}. We note that a bound for the former case, which is
considerably much worse than that of our main result, can be established by relying
on a bound for the compressible case with primal vertex constraints only; see, in
addition to the two papers cited above, [30, Theorem 6.3].

7. Implementation of primal constraints by a change of basis. We now
describe the implementation of the edge and face constraints defined above by using
a linear change of basis for each scalar component of the displacements. This change
of basis will explicitly introduce the new primal degrees of freedom in the basis (for
additional details see [37, 33, 28, 29]). We first consider the case of edge and face
averages and then that of averages and first order moment constraints over the edges
in the case of one element per subdomain, assumed for simplicity to be the reference
element. A generalization to the case of more elements per subdomain is straightfor-
ward. We denote by T the local transformation matrix, associated with €;, from
the new basis (denoted with a hat) to the original one,

w="T%4q.
The local stiffness matrix in the new basis is then

(7.1) K@ .= 7OT g,
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Such T can be constructed by grouping together the contributions of each scalar
edge and face components, together with an identity matrix for the interior compo-
nent; see [37]. The new local stiffness matrices are denser than the original ones, but
only the blocks related to the interface nodes are affected by the transformation, which
indeed preserves the sparsity pattern for the interior nodes of the subdomain, since
K = K. We will assume that such a transformation of basis has been performed
before the construction of the preconditioner.

We note that the transformation of basis impacts the sparsity pattern much less
than the elimination of the pressure variables. For example, we considered a discretiza-
tion with 5 x 3 x 2 spectral elements of degree n = 3 and found that the number of
nonzero entries increased from about 1.24 - 105 to 8.85 - 10° (about a factor 7.14)
when the pressures were eliminated, while the change of variable further increased
the number of nonzero entries from 8.85 - 105 to 1.08 - 105 (by only a factor 1.22).

Edge averages. Consider a scalar component on an element edge F: it contains
n — 1 GLL nodes since the endpoints are always associated with primal variables and
are therefore not included in the dual part of the edge. In [37], the edge average
change of basis is performed by splitting the dual part of each scalar component of
the edge into the sum of two functions, a constant average function and another with
a zero average,

U2
(7.2) an |+
Up—1

- Z::zl U

Uy, can then be selected as a primal degree of freedom associated with the edge average
of the scalar component. In order to get the correct average in our GLL case, the
change of basis over the edge is performed by using the matrix

10 ... 0 17

(7.3) Ty = 1 L
@ o1
L Op On -

where o; are the weights of the one-dimensional GLL quadrature formula.

Face averages. Analogous transformation matrices Tr can be defined for the
face constraints. As for the edges, the last element of the dual part of each scalar
component on a face can be chosen as primal, and face averages can be obtained with
the two-dimensional GLL quadrature rule based on tensor product. The transforma-
tion matrix obtained is then structurally similar to (7.3): the elements on the main
diagonal and in the last column equal to 1, while the other matrix elements vanish
except those of the last row, which are associated with the new primal degrees of
freedom, and are given by

2 2
(7.4) 03 _ 020n—1 _ On—102 _In-1
. poRREE 2 Pl 2 .
n n n n
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Edge averages and first order moments. In a similar way, writing the trans-
formation matrix by columns into

(7.5) [ta] ... |tn],
we perform the change of basis by setting the first n — 3 columns to
t] = (07'"70717aj7ﬁj707"'70)T7

with the value 1 in the (j — 1)th position and «;,8; chosen such that ¢; has zero
average and first moment over the edge. These conditions imply that «;, 8; solve the
linear system

(7 6) {0j+04j0j+1 +ﬁj(7j+2 =0,

§ioj + 1050541 + 542850542 =0

for 2 < j <n —2 and where ¢; are the GLL nodes, yielding

(7.7) o= Ejr2 — & 0 &
. ;= , Bj= L S
oir1 &2 — &gt ojt2 &2 — i1

The last two columns of the transformation matrix are obtained by making t,_1 a
constant and equal to 1, while ¢,, is a linear function with values —1 and 1 at the edge
endpoints and are evaluated at the GLL nodes of the edge.

8. Numerical results. We report in this section the results of parallel numerical
experiments for the positive definite reformulation of the mixed elasticity system on
), a parallelepiped with homogeneous Dirichlet boundary conditions on one face and
homogeneous Neumann boundary conditions on the remainder of the boundary. This
system is discretized with GLL spectral elements, and the domain 2 is subdivided into
N = N, x N, x N, cubic spectral elements, assembled into subdomains (2; with (H/h)3
spectral elements each. The reduced interface system with the Schur complement
matrix (3.4) is solved by the PCG algorithm with the BDDC preconditioner (4.1),
a zero initial guess, and the stopping criterion ||7¢||2/[|7o]]2 < 1075, where 7 is the
residual of the kth iterate. The right-hand side is random and uniformly distributed.

Our code has been implemented in FORTRAN and run on both the small Linux
cluster Ulisse (84 cores) of the University of Milan and the larger IBM SP6/5376
(5376 computing cores subdivided into 168 nodes) of CINECA (www.cineca.it). In
order to assure parallelization and portability of the code, message passing has been
implemented in message passing interface (MPI), while local data structures such
as matrices and vectors are managed through the use of the portable, extensible
toolkit for scientific computation (PETSc) library [3, 2]. Each subdomain is assigned
to one core (here one MPI process); the local problems involved in Schur matrix-
vector products and in the application of the BDDC local solvers are solved by the
multifrontal method unsymmetric multifrontal package (UMFPACK) [10], whereas
the BDDC coarse problem is solved by either the multifrontal solver multifrontal
massively parallel sparse direct solver (MUMPS) [1] or by PCG run to almost machine
precision (with relative tolerance 10~14).

Effects of the choice of primal constraints. Table 8.1 reports the BDDC
iteration counts (it), condition number (k2), which is essentially Ayax since Apmin 18 very
close to 1, and CPU times (cpu) in seconds with different choices of primal constraints,
ranging from just the subdomain vertices (V') to vertices augmented with edge and face
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TABLE 8.1
BDDC iteration counts (it), condition numbers (k2) and CPU times (cpu) in seconds with dif-
ferent choices of primal constraints. Compressible material with v = 0.4 (left), almost incompress-
tble material with v = 0.49999 (center), heterogeneous material with discontinuous Lamé parameters
(right) given as in Figure 8.1. Fized polynomial degree n = 5, number of subdomains (processors)
N =3x3x3, and 2 X 2 X 2 elements per subdomain (H/h = 2).

Primal v=04 v = 0.49999 Random mix
variables (# dofs) it K2 cpu it K2 cpu it K2 cpu
vV (132) 94 250.65 10.6 112 5.3e+b 12.7 114 4.let+7 135
V+E2 (324) 22 969 2.6 | 23 23e+d 2.8 | 33 2.0et6 4.0
V+E3 (420) 19 798 24| 21 2letd 2.6 | 23 1.7e+6 2.8
V+EZ2-E2, (516) 19 717 23| 23 2244 27 | 23 19e+6 2.8
V4+E24+F! (378) 22 948 2.8 | 23 10.0 29 | 32 27.13 4.0
V+E+F}! (474) 19 779 25| 21 9.19 2.7 | 24 12.03 3.0
V4+E34+F3 (582) 19 771 25| 21 9.11 2.8 | 24 11.06 3.1
V+E4+E2+F! (666) |14 410 1.8 | 16 5.69 2.1 | 20 7.37 2.6
A 7
0.1 | 106 | 18 18 | 23| 33
4 72 | 10° 3.7 10204
106 | 2.5 3 0.25 | 0.4 | 10
40 0.1 | 33 21 1 [31072
0.87 | 10° | 30 2.2 10.01] 12
10 10% | 20 0.55| 15 1
105 | 20 [ 200 0.11]03]18
200 | 5 | 10° 3.71 34 |20
1 10 | 10 1 4 20

F1c. 8.1. Domain 2 for the tests of Table 8.1 decomposed into N = 3 X 3 x 3 subdomains with
2 X 2 x 2 elements per subdomain (H/h = 2) (left). Distribution on each 3 X 3 subdomain layer of
the discontinuous Lamé parameters X and p for the “random miz” test of Table 8.1 (last column)
(center and right).

averages and edge first order moments (V + E2+ E2, + F1). These results are reported
for both compressible (v = 0.4) and almost incompressible (v = 0.49999) materials
for tests with fixed polynomial degree n = 5, number of subdomains (processors)
N =3x3x3, and 2 x2x 2 elements per subdomain (H/h = 2). The results show that
the strength of the BDDC preconditioner increases when the set of primal constraints
increases, with the minimal vertex choice performing quite poorly even in the easier
compressible case. When the material becomes almost incompressible, all choices of
primal constraints including only vertex and edge constraints lead to ill-conditioned
BDDC operators (with kg on the order of 102 — 10%). The BDDC operator becomes
robust in the almost incompressible limit when at least the face average constraint for
the normal displacement component (F}) is added to the vertex and edge constraints,
reducing k9 to about 10 or less.

The iteration counts, on the other hand, indicate a poor performance with vertex
constraints only, while the inclusion of edge constraints seems to improve the iteration
counts considerably. However, this is a misleading effect due to our stopping criterion,
which is based on the relative residual: changing primal constraints changes the initial
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TABLE 8.2
BDDC dependence on the polynomial degree m: iteration counts (it) and condition numbers
(k2) with the first two choices of primal constraints that are robust in the incompressible limit,
V+E2+F} and V+ E2+FL. Compressible material with v = 0.4 (left) and almost incompressible
material with v = 0.49999 (right). Fized number of subdomains (processors) N = 3 x 3 X 3, one
element per subdomain (H/h =1).

v =04 v = 0.49999
n | V+E2+F! | V+E}+F! | V+E24+F} | V+EZ+F}
it K9 it K9 it ) it K9
2 7 1.66 | 5 27 | 7 1.66 | 5 1.26
3 | 10 264 | 9 2.12 | 13 3.85 | 11 3.84
4 | 14 4.57 | 12 3.66 | 15 491 | 15 4.91
5 | 17 5.65 | 14 4.87 | 18 6.80 | 17 6.80
6 | 19 771 | 17 6.41 | 20 8.32 | 19 7.65
7] 21 8.60 | 18 7.30 | 22 9.41 | 22 9.08
8 | 23 10.54 | 20 8.69 | 24 11.60 | 23 10.84
9 | 24 11.40 | 21 9.48 | 26 12.61 | 25 12.17
10 | 26 13.17 | 22 10.75 | 28 14.68 | 26 13.79
11 | 28 13.99 | 24 11.47 | 30 15.69 | 28 15.06
12 | 29 15.62 | 25 12.61 | 31 17.59 | 29 16.56

residual; hence it changes the relative residual and the iteration counts. We have
also computed the infinity norm of the error in each run (not reported), and we
have found that indeed these errors are small only for the robust BDDC methods
that also include at least the normal face constraints. The CPU times reported for
each of the three tests (compressible, almost incompressible, random mix) are clearly
proportional to the iteration counts, since they include only the solution time and
not the preprocessing stage for the local and coarse problems. The last column of
Table 8.1 reports analogous results for a harder test (random mix) with discontinuous
Lamé parameters A and p distributed randomly among the subdomains as shown in
Figure 8.1. Note that in this test several almost incompressible subdomains (with
large \/p ratio) are mixed randomly with compressible subdomains, and different
pairs of almost incompressible subdomains can share a whole face or an edge or a
vertex. The results show that also in this test the BDDC preconditioned operator
becomes well conditioned only if at least the face average constraint for the normal
displacement component is added to the vertex and edge constraints, i.e., if at least
V + E2 + F! is included in the set of primal constraints.

Dependence on polynomial degree n. Table 8.2 reports the BDDC iteration
counts and condition numbers for increasing polynomial degree n from 2 to 12, for
both compressible and almost incompressible materials, and for the first two choices
of primal constraints that are robust in the incompressible limit, namely, V + E? + F}
and V + E2 + Fl; we obtained almost the same results also for V + E3 + F3, which
are not reported. In order to check the dependence of k3 on n, we show in Figure 8.2
the semilogx plots of /K2, using values from Table 8.2, as a function of n.

In spite of the alternating behavior associated with even and odd values of n,
the results seem to confirm the logz(n) upper bound of Theorem 5.1 (plotted here
with dashed lines), since the semilogx plots well approximate straight lines when we
disregard the first 2-3 points, i.e., those for n < 3. The values for the smaller set of
primal constraints V + E2 + F! are more irregular in the compressible case, where
they seem to grow slightly faster than the values for V + E2 + F!. The slopes of the
approximating straight lines in the compressible case are 1.48 for V + E2 + F! and
1.65 for V + E? + F!, while in the almost incompressible case the slopes are 1.67 for
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v=04 v = 0.49999

—o— V4EZ+F, : : P —o— V+E%4F! P
a*Fa , : aFa ,

3 g1 3, 1
=¥ V+E+F) —v— V4ES+F]

-~ ~log(n®) -~ ~log(n®)

n n

F1c. 8.2. Square root of the BDDC' condition number k2 as a function of n; data from Table 8.2.
Compressible materials with v = 0.4 (left), almost incompressible materials with v = 0.49999 (right).

TABLE 8.3
BDDC scalability: iteration counts (it) and condition numbers (k2) for an increasing number
of subdomains (processors) N. Fized v = 0.49999, polynomial degree n = 3, and 3 X 3 X 3 elements
per subdomain (H/h = 3). Number of global, interface, and primal dofs are also shown

V+E2+F} V+E3+F}

N dim(V,) dim(Vp) | dim(Vy) it K2 dim(Vy) it K2
2x2x2 19494 2970 106 17 7.16 132 15 5.33
4x4x2 75924 15336 472 20 7.27 592 17 6.10
6x6x2 169290 36990 1078 20 7.48 1356 18 6.27
8x8x2 299592 67932 1924 20 7.57 2424 18 6.33

10x10x2 466830 108162 3010 20 7.60 3796 18 6.36
12x12x2 671004 157680 4336 20 7.58 5472 18  6.39
14x14x2 912114 216486 5902 19 7.61 7452 17 6.39
16x16x2 1190160 284580 7708 19 757 9736 16 6.37

V+ E2+ F} and 1.8 for V + E2 + F!. These slopes of the n-semilogx plots are about
twice the slopes of the analogous (H/h)-semilogx plots of Figure 8.4, (see comment
below), in agreement with the bound of Theorem 5.1, where the log argument is
quadratic in n and linear in H/h.

Scalability. Table 8.3 reports the BDDC iteration counts and condition numbers
for increasing number of subdomains N, while keeping all the other parameters fixed
(n =3,H/h = 3) and considering only almost incompressible materials and the two
primal spaces V + E2 + F! and V + E2 + F!. The dimensions of the discrete global
space V,,, the interface space Vp, and primal space VH are also reported, showing
that the number of primal constraints, dzm(VH) for the two primal spaces is a small
percentage of that of dim(\A/'p). It decreases from 3.5% to 2.7% for increasing N for
V+ E2+ F; and from 4.4% to 3.4% for V + E2 + F;. The condition numbers for both
primal sets are then plotted in Figure 8.3 as a function of N. These results clearly
show the scalability of the BDDC algorithm in the almost incompressible limit. As
expected, the larger primal space V + E3 + F! has a slightly better performance than
V +E?+ FL

Dependence on the ratio H/h. Table 8.4 reports the BDDC iteration counts
and condition numbers for an increasing ratio H/h. We consider compressible materi-
als with v = 0.3 (left), almost incompressible materials with v = 0.49999 (right), and
the same robust choices of primal constraints of the previous tables, i.e., V + E2 + F}
and V + E3 + F!. Figure 8.4 shows the semilogx plots of /K2 from Table 8.4 as a
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e

5 ——V+E24F!
a a
——V+E3+F!
a a
4
832 72 128 200 288 392 512
N

Fic. 8.3. BDDC scalability: condition number ko for increasing number of subdomains N ; cf.
Table 8.3.

TABLE 8.4
BDDC dependence on H/h: iteration counts (it) and condition numbers (k2) for an increasing
ratio H/h for the two choices of primal constraints V + E2 + Fl and V + E3 + FL. Compressible
material with v = 0.3 (left) and almost incompressible material with v = 0.49999 (right). Polynomial
degree n = 3, number of subdomains N = 3 X 3 x 3.

v=03 v = 0.49999

V+E?2+F' | V4 ES4HF} | V4 E2+F | V+ES+F!

H/h it K9 it K9 it K9 it K9
1 10 2.64 | 8 2.10 | 13 3.86 | 11 3.84
2 16 5.20 | 13 4.07 | 16 5.26 | 14 4.28
3 19 7.16 | 16 5.51 | 19 7.16 | 17 6.16
4 |21 8.77 | 17 6.65 | 21 8.76 | 19 7.56
5 | 23 10.15 | 18 7.61 | 23 10.12 | 20 8.76
6 | 24 11.36 | 19 8.43 | 25 11.32 | 22 9.79
7 | 26 12.45 | 21 9.17 | 26 12.39 | 22 10.69

v=0.3 v =0.49999

3.5

3.5

—o— V+E%+F!
atFa
3 1
—v— V4ESHF]
- = ~log(3*H/h)

—o— V+E%+F!
atta
3, 1
—v— V+ESF]
- - ~log(3°H/h)

H/h

H/h

Fic. 8.4. Square root of BDDC condition number k2 for increasing subdomain size H/h;
cf. Table 8.4. Compressible materials with v = 0.3 (left), almost incompressible materials with
v = 0.49999 (right).

function of the ratio H/h. Here no odd-even oscillations are present since the spectral
degree is fixed to n = 3; the plots appear to be straight lines (disregarding the first
point in the almost incompressible case), with slope about 1.01 for V + E? + F! and
0.80 for V + E2 + F! in the compressible case (left panel) and 0.99 and 0.93 in the
almost incompressible case (right panel). These values give about half the slopes of
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V+E*+F! | V+E3+F! | V+E>4+E2+F}
El/EQ it ) it Ko it K2
1076 |27 1652|122 9.82 | 22 7.20
1 26 124122  9.94 | 16 5.35
106 40 156.06 | 30 17.95 | 20 9.28

Fia. 8.5. Jumping coefficients E and v: BDDC iteration counts (it) and condition numbers (k2)
with different choices of primal constraints. Domain with N = 3 x 3 x 4 subdomains (processors),
each with 3 x 3 x 3 elements (H/h = 3) with polynomial degree n = 5. Jumping Young modulus E
and Poisson ratio v, equal to E = E1, v = 0.49999 in the two central subdomains sharing a face
(see plot at left) and equal to E = Eo = 210, v = 0.3 in the surrounding subdomains.

V+E2+F} | V4+E3+F! | V+E3+E2+F}
El/E2 it K9 it K9 it K9
1079 [ 27 16.05 [ 21 9.27 | 16 5.15
1 27 13.28 | 22 10.15 | 16 5.27
106 | 33 3497 | 28 33.70 | 17 5.19

F1a. 8.6. Jumping coefficients E and v: BDDC iteration counts (it) and condition numbers (k2)
with different choices of primal constraints. Domain with N = 3 X 4 x 4 subdomains (processors),
each with 3 X 3 x 3 elements (H/h = 3) with polynomial degree n = 5. Jumping Young modulus E
and Poisson ratio v, equal to E = E1, v = 0.49999 in the two central subdomains sharing an edge
(see plot at left) and equal to E2 = 210, v = 0.3 in the surrounding subdomains.

the analogous n-semilogx plots of Figure 8.2, in agreement with the log? (n*£) bound
of Theorem 5.1. This agreement is also confirmed by comparing the plots with the
dashed lines giving the upper bound predicted by the theory, which in this case with
n = 3 states that /s should grow as log(3?H/h) (up to a constant and the local
inf-sup contants).

Robustness with respect to discontinuities of material parameters. In
addition to the test of Table 8.1, with a random mix of compressible and almost in-
compressible subdomains, we consider here two simpler tests with jumping coefficients
E and v, as in Figures 3 and 5 of [29]. First we consider a domain decomposed into
3 x 3 x 4 subdomains as in Figure 8.5. All subdomains have Young modulus F; = 210
and Poisson ratio v = 0.3, except the two interior subdomains sharing a face that have
v = 0.49999 and Young modulus F; varying by twelve orders of magnitude compared
with Es. The resulting BDDC iteration counts and condition numbers are reported
in the table in Figure 8.5 for the three primal spaces V + E2 + F1,V + E3 + F}, and
V + E3 + E2 + F! of increasing size and strength. In the second test of Figure 8.6
the situation is the same except that the two interior subdomains now share an edge
instead of a face and that the domain consists of 3 x 4 x 4 subdomains. In both
tests, the harder case is when the surrounding subdomains have E;/E> = 10%, while
in the reverse case Ej/E; = 107° all primal sets have a performance very close to
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that of the homogeneous case with E;/Es = 1. We have obtained analogous results
(not shown) in tests where only E has discontinuities and v has constant value 0.3
or 0.49999. In Figure 8.5, V + E2 + F! suffers the most when E;/FE> increases from
1 to 108, with ko increasing by more of a factor 10 from about 12 to more than 150.
V + E3 + F! appears to be a bit more robust, but xs still increases from about 9.9
to about 17.9. V + E3 + E2 + F! has the more robust performance, with k3 < 9.3.
This situation is confirmed in Figure 8.6: both V + E2 + F! and V + E2 + F! suffer
when E4/E, increases from 1 to 10%, with ko increasing from about 10 to more than
33, while V + E3 + E2, + F! is robust in all cases, with k2 < 5.3. Indeed, only with
the primal set V + E2 + E2, + F! is the edge fully primal. We also tried other com-
binations (e.g., reversing the jumps in v between central and surrounding subdomain
or with uncorrelated jumps of F and v in different subdomains) and obtained results
analogous to the ones reported in Figures 8.5 and 8.6. We remark that unlike [29],
we also obtain good results in some cases where the edge is not fully primal; this may
be due to the additional primal vertex constraints in our coarse space.
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