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1 Introduction

Edge detection is one of the fundamental tasks in computer vision. Many high
level image processing, such as object recognition, 3-dimensional reconstruction,
motion detection, depend on the accuracy of edge detection.

(a) Ramp Profile (b) Ridge Profile

Figure 1: (a) Ramp Profile (b) Ridge Profile

Edge point detection could be considered as the first step of edge detection.
We define edge points as the pixels in an image with sharp change of colors
and/or intensity, and edges as a one-dimensional curve on an image that passes
through nearby edge points. A simple monochromatic edge has constant profile,
some examples are the ramp and the ridge (see Figure 1). It is important to
keep the above terminology clear, as the literature do not always make the kinds
of distinction we propose here. Most edge point detection techniques are based
on finding the maxima of the first derivative of the image, or the zero crossings
of the second derivative of the image. As seen in Figure 2.

Edge detection is a very complex subject and most text books in computer
vision and image processing such as [GW92, RW00, Par96] and many papers on



First
derivative

Second
derivative

Figure 2: Edge detection by derivative operators

image feature extraction have overviewed and compared different edge detectors.
Some surveys can be found in [Dav75, Kos95, ZT97]. This paper surveys some
methods of edge point detection and edge detection methods for raster images.
The mathematical developments in Canny’s theory [Can86] and active contours
[KWTS8S] are reviewed in detail. Some necessary mathematical techniques will
be reviewed in appendices.

2 Edge Point Detection

Most of the work on edge point detection are based on gray-scale images. In
a gray-scale image, an edge is defined by intensity discontinuity. For a color
image, it could get more complicated, especially in the area with low contrast
[Kos95]. Though generally we could apply the same techniques on gray-scale
images and color image, with proper adjustments. We will discuss color images
in the Section 4.

Traditional edge point detection is usually composed of three operations:
smoothing, differentiation, and labeling. The purpose of smoothing is to reduce
noise. The purpose of differentiation is to evaluate the desired derivatives of the
image. Labeling amounts to locating the edge points and suppressing false edge
points.



2.1 Smoothing

All images are subject to noise of some type, except for some simple synthetic
images, so there is no point in ignore it.

There are two types of noise in respect of image analysis. Signal-indepen-
dent noise is a set of grey levels, statistically independent to the image data,
added to the the pixels in the image to form the result noisy data. That is, the
noisy image Iy = Iy + N, where I is the noise-free image, and N is the noise
function. In other word, this type of noise is additive. The noise could have
any kind of statistic properties, though it generally has mean of zero, and some
presume standard deviation. The noise comes from optical device is generally
this type of noise.

The second type of noise is called signal-dependent noise. The noise value
of each pixel is a function of the pixel value. The image degradation in television
lines and grain in photographs are examples of this kind of noise. It is generally
harder to deal with. Two kind of the most common signal-independent noise
are multiplicative noise, which results in a noisy image Iy = Iy +kIgn, and film-
grain noise which yields a noisy image Iy = Iy + kI{n, where I the noise-free
image, k and y constant parameters, and n the noise function. Homomorphic
filtering has been used for the removal of multiplicative [AO68] and film-grain
noise [HA83]. The basic idea is to perform a logarithmic operation over the
image to make noise additive, so we could decouple the noise from the image as
if it is signal-independent.

In general, if the source of the noise of an image is not specified, it is usually
assumed that the image is corrupted by signal-independent noise, with zero-
mean Gaussian distribution. Such noise is called Gaussian noise.

Smoothing is used to reduce noise in edge point detection and to ensure
robust detection. Generally, smoothing is achieved by filtering the image with a
low-pass filter. It could reduce the signal-independent noise because smoothing
is generally taking some form of averaging locally for every pixel. By taking
average, the noise will be damped because of the nature of zero mean of noise. In
the view point of frequency domain, because the noise is usually high frequency
signal, smoothing filter, as a low-pass filter, would efficiently remove the noise by
filtering away the high frequency data. On the other hand, the edge information
is also considered as high frequency signal, and would be removed as well. This
is a trade-off between loss of information and noise reduction.

Another purpose of smoothing, is to provide a scaling factor in multi-scale
approach. We will discuss about multi-scale approach of edge point detection
later in section 3.6.

A common technique for noise smoothing is linear filtering, which consists
in convolving the image with a constant matrix called mask or kernel. For an
N x M image I, and a kernel of a linear filter A, which is a m x m matrix, the
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(a) an 1-D averaging filter with width 2 (b) sinc function: the Fourier transform of
1-D averaging filter with width 2

Figure 3: Spatial domain and frequency domain of an 1-D averaging filter
filtered image I4 will be defined as

Iz(i,j)=IxA= A(h,k)I(i — h,j — k).

h=—1 f=—12

The simplest filter is the average smoothing filter fz,,4(2) which in 1D is
shown in figure 3(a). What it does is replacing each pixel with the average of its
neighborhood. This method works well for Gaussian noise, which is noise with
Gaussian distribution. Though it has some problems. First, it would not only
filter out the signal, but dull the sharp edges making them harder to detect.
Furthermore, the accuracy of the feature localization would be affected. In the
frequency domain, the Fourier transform of a one-dimensional filter kernel will
be the “sinc” function which is

2sinwW
- )

sincw =

As shown in Fig 3(b), the sinc function has secondary lobes which will let noise
into the filtered image, assuming that noise is generally in the high frequency

zone.

22

Gaussian smoothing filter fgauss(x) = €~ 22, is another commonly chosen
filter. Since the Fourier transform of a Gaussian is Fw = v/2roe=7 <’/ 2 which
is also a Gaussian, there are no secondary lobes, therefore, it makes a better
choice of smoothing filter in the view of frequency domain.

In comparison to linear filter, there is also nonlinear filter. A most
common example of nonlinear filter is median smoothing filter. The idea is
to replace the current point in the image by the median of the brightnesses in
its neighborhood. The median of the brightnesses in the neighborhood is not



affected by individual noise spike, so median smoothing eliminates impulsive
noise quite well. Furthermore, it does not blur edges much, and can be applied
repeatedly. The disadvantage of median filtering is that it will not preserve
the location of thin lines and sharp corners. This can be avoid if we limit the
neighborhood to the pixels on the same row or same column of the current point.

Median smoothing filter is actually a special case of order statistics
filtering [ACB83]. Values in the neighborhood are ordered into sequence, and
a new value is given as a linear combination of the values of this sequence.
Other special case for order statistics filtering is minimum filter or maximum
filter which defines generalizations of dilation and erosion operators in gray-scale
images.

Another approach of smoothing is using diffusion equation. The basic idea
is that if one creates a series of images I;(x,y,t) from original image Iy(x,y) by
convolving Iy(z,y) with a Gaussian kernel G(z,y;t) with variance ¢, as pointed
out by Koenderink [Koe84] and Hummel [Humg87], this family of images can be
viewed as the solution of the isotropic diffusion equation

dI 0’1 91

with the initial condition I(z,y,0) = Io(z,y), the original image. One disad-
vantage of linear isotropic diffusion is that the diffusion would blur features as
well as smooth noise.

In [PM90], Perona and Malik introduced a diffusion method which they
describe as “anisotropic”. It uses a nonlinear diffusion equation:

I
% =V - (c(z,y,t)VI) = ¢(z,y,t)AI + Ve - VI (1)
where ¢(z,y,t) is chosen as

c(z,y,t) = g(VI(z,y,1)) (2)

and ¢ is a nonnegative monotonically decreasing function with g(0) = 1. Differ-
ent function g would generate different scale-spaces, though they turn out to be
perceptually similar. This way, the points with strong features, i.e., with high
|VI| values, would have less diffusion effect than other points, thus retain most
of the features in the image. Note that in order to be anisotropic, ¢(x,y,t) should
be calculated separately in all four directions for a digital image. The nonlinear
diffusion methods process an image with different smoothing parameters such
that it could blur noise while keep the edges sharp.

2.2 Differentiation

Since edge point detection locates points of large intensity changes in the inten-
sity of the image, differentiation, the computation of the derivatives of an image



is needed. The most commonly used operators are the gradient, the Laplacian,
and the second-order directional derivative. Generally, like smoothing, they in-
volve the calculation of each point and its neighborhood of specific shape. And
unlike smoothing, differentiation operators are considered as high-pass filters in
frequency domain.

2.2.1 First Derivative Operators

These operators are based on the gradient (%, 8%) at each point of images.

For digital images, one could estimate the gradient by convolve the rows and
columns with the mask [10 — 1]. Because this gradient expression neglect the
impact of the point itself, sometimes, asymmetric expression of the gradient
[1 — 1] is used instead.

2.2.2 Second Derivative Operator

The second derivatives are obtained by filtering the image by the Laplacian
operator A which is
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The basic form of the numerical Laplacian operator in matrix mask form is

though some other matrices could be used as long as the center coefficient is
positive, and the sum of all coefficients is zero, and it is rotationally symmetric.
For example, the following two matrices are two different approximations of the
Laplacian operator.

One disadvantage of second-derivative operators is that they are more sen-
sitive to noise.

1 -2 1 -1 -1 -1
2 4 2|, -1 8 -1
1 -2 1 -1 -1 -1

Edge points correspond to position P s.t. A(P) = 0. Such points are usually
called the zero-crossings.

2.3 Edge Labeling

The goal of edge labeling is to localize edge points and suppress false edge points.
The localization depends on the differentiation operator used. The earlier
gradient detectors located the edge points by thresholding the magnitude of the
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Figure 4: Example of phantom edge

gradients. This could not achieve good result because it is not easy to find a
single reasonable threshold value for the whole image. There is no reason why
there should be a single threshold value of a whole image. A improvement is
achieved by the use of the non-maximum suppression proposed in [Can86]. The
basic idea is to find the local maxima along the direction of the gradient vector.

For second-derivative detectors, we are looking for zero-crossings. To lo-
cate the zero-crossings, we can check the a pixel with the pixels to the left
and below it. If the three pixels do not have the same signs, there is a zero-
crossing. In other word, second-derivative detectors are similar to gradient
operators with non-maximum suppression. Though second-derivative detectors
are usually more sensitive to noise.

The elimination of false edge points increases the signal-to-noise ratio of
the differentiation and smoothing operations. Few works have been done on
this subject. While more robust smoothing operators have been introduced,
and may reduce the impact of noise in an image, however, there are other
phenomena, that produce false edges other than noise. For example, certain
edge profiles would generate false edge points called “phantom edge points”. A
example is shown in 4. A most commonly used technique to eliminate false edges
is thresholding. Only an edge point with a magnitude which is above a given
threshold is accept as a true edge point. While thresholding works generally
because the magnitudes of false edge points is usually much smaller than those
of true ones, the resulting edge points from thresholding tend to be broken due
to fluctuation of the measure. A improvement of thresholding technique uses
hysteresis algorithm [Can86], which takes the edge continuity into account to
avoid fluctuation. Two thresholds are used; only the edge points which is above
a low threshold can link into edges, and each edge most have at least one point
above a high threshold in order to be accepted as a true edge.

Another aspect of edge labeling is threshold computation. A threshold value
is usually found by a trial-and-error process. The threshold depends on the
edge characteristics, properties of the smoothing filter and the properties of the
differentiation operator, therefore is very hard to find a single threshold value
for a given image.



3 Survey of Edge Point Detectors

3.1 Differential-Only Detectors

The first detectors based on gradient and Laplacian operators were proposed in
1960’s. These detectors are limited to the differentiation operators only.

The following are some operators that can derived directly from the gradients
of the image,

Roberts Operator [Rob65] For a given image I : Z, = Z, the Roberts edge
detection is done by filtering the image with the masks

1 0 0 1
w=lo S]e=]5 0]

to obtain two images I; and I, where
Il =1x M1
.[2 =1x Mz.

Then one can get the gradient magnitude at each pixel (i, j) as

G(i,5) = /T2, 3) + T3(i. ).

Sobel Operator The Sobel edge detection is done by filtering every pixel with
its eight neighbors with the following two 3 x 3 convolution masks

1 0 -1 1 2 1
2 0 =2/|,] 0 0o o0
1 0 -1 -1 -2 -1

These two masks would generate two numbers for each pixel for both col-
umn and row directions. We could obtain the magnitude and orientation
of the edge from the two values.

Prewitt Operator The Prewitt is similar to the Sobel, with different mask
coefficients. The masks are defined as follows:

1 0 -1 11 1
10 -1|,] 0o o o
10 -1 1 -1 -1

Like the Sobel, this edge detection can also give the orientations of edges
besides the magnitudes.

The three operators above are all linear operators, because they can be
done by convolution.
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Figure 5: One- and two-dimensional edge fitting.

Note that since Sobel operator and Prewitt operator average over more pixels
than the Roberts operator does, they would give better smoothing effect, and
would perform better in the presence of noise.

3.2 Hueckel Edge Fitting Method

The Hueckel edge detection method is to fit image data into an ideal two-
dimensional edge model [Hue69, Hue71, Hue73]. In the one dimensional case
described in Figure 5(a), the image signal f(z) is fitted into a step function

| b if x <z
s(:c)—{ b+ h if x > xo.



A edge is assumed present if the mean-square error

zo+L
E= (f(2) = s(x))*da
$0—L
is below some threshold value.
In the two-dimensional formulation, the ideal step edge is defined as

s(z) = b if zcosf +ysinf < p
T | b+h ifzcosf+ysingd > p

where 6 and p represent the polar distance from the center of a circle test region
D to the normal point of the edge. See figure 5(b). The edge fitting error is

E==ﬁ;ﬂmw>—aay»%Mdy 3)

Hueckel has developed a procedure for two-dimensional edge fitting, in which
the image points within the circle D are expanded in a set of two-dimensional
basis functions by Fourier transform in polar coordinates. Let H;(x,y) represent
these basis functions. Then the coefficients for the image and the ideal step edge
become

a= [ [ H@iedsd
s,-://DHi(:U,y)s(x,y)dxdy.

Note that s(z,y) is defined parametrically in terms of the set (b,d,p,6). In
Hueckel’s algorithm, the expansion is truncated to eight terms. The minimiza-
tion of the mean-square difference equation (3) is equivalent to minimization
of 3, (a; — s;)*. Hueckel has performed this minimization, and has formulated
a set of equations expressing the edge parameter set (b, h, p, ) in terms of the
coefficients a;.

Hueckel’s detector could handle noise well. One explanation is that by using
Fourier transform and truncating the higher frequency terms, most of the noise
are filtered out. On the other hand, since the ideal step edge model we use is a
straight edge, the results for curvature edges might not be correct.

A problem in Hueckel’s algorithms is that I cannot confirm the orthonor-
mal property of the H basis he provided. Also, this parametric fitting process
assumes that the edge within the region D is straight. If the direction of edge
inside the region changes too much, the result edge parameter set might be
dubious.

3.3 Canny’s Edge Detection

Canny edge detector [Can86] is a combination of image smoothing, image dif-
ferential, and edge labeling.

10



We begin by analyzing the one-dimensional case. But what is an edge? The
simplest definition may be the following: a function G(z) is an edge function
if it is non-constant such that for some ¢ € R, g(z) := G(z — ¢) — G(c) is either
symmetric or antisymmetric function. That is, g(z) = g(—z) or g(z) = —g(—x)
for all z. For instance, G(z) = 1 for > ¢ and G(z) = 0 else. Another example
is G(z) = |z| for |z| < 1 and G(x) = 0 else. These two examples are called
the step edge function and roof edge function, respectively. We call ¢ the
center of the edge function. Without loss of generality, we may henceforth
assume ¢ = 0.

Let S(z) be a one-dimensional signal and G(z) be any edge function centered
at ¢ = 0. Fix some W > 0. We say that G(z) occurs in S(z) at position
p within a W-width window if G(z) = S(z + p) for all z € [-W,+W].
The problem of “edge detection” is to find all occurrences of G(z) in S(z). In
practice, W should be chosen for the particular G(x) we want to “detect”. In
the following, we suppress the explicit reference to W.

To detect the occurrences of G(z) in S(z) within some W-width window,
we introduce “filter functions”. A function f is said to be a filter for G(z) in
a W-width window if the function

+W
Hg(y) = Gy — =) f(z)ds

W

has a unique maxima at 0. Clearly, if G(x) occurs in S(x) at position p then
Hg(y) has a local maxima at p.

We must also discuss occurrences which are very close together. E.g., two
occurrences cannot be closer than W apart?

In case, G(z) occurs “noisily” in S(z), That is, we think of the signal S(z) as
the sum of some pure signal Sp(z) plus some random noise n(z). Typically, n(x)
is assumed to be Gaussian. This means that S(x) has a probability distribution.
John Canny defines three performance criteria for a good edge detecting filter:

e Good detection. There should be a low probability of failing to mark real
edge points, or falsely marking non-edge points.

e Good localization. The points marked as edge points should be as close
as possible to the real edge.

e Only one response to a single edge.

3.3.1 Detection and Localization criteria

Let the edge be G(x) which centers at x = 0. Our goal is to find the filter
function f(z). Then we have the response as the convolution integral:

+w

Hg = G(—z)f(z)dz,
-w

11



assuming the filter has a finite response bounded by [-W, W].
The root-mean-squared response to the Gaussian noise n(z) only, will be

1/2
H, = no l / " fz(w)dw] ,

-w

where n? is the mean-squared noise amplitude.
Canny defines the output signal-to-noise ratio as

2 G(—a)f()dal

1/2°
no [ Peyas]

which is used as the indication of how good the detection is made. The higher
the SNR is, the better the detection we get.

For the second criterion, since the edge is centered at z = 0, there should be
a local maximum in the response at z = 0 if there is no noise.

We have H,, as the response to the filter to noise only, and Hg its response
to the edge. If there is a maximum in the total response at the point z = x,.
Then we have

(4)

H} (w0) + Hiy(z) = 0.
Taylor expansion of of H{,(zo) about the origin will give
Hg(xo) = Hg(0) + HE(0)zo + O(xp).

By assumption Hf(0) = 0, so the first term could be ignore. Then we
assume that the displacement z( is very small so we could ignore the higher
term. So we have

Hg(O).'L'O ~ —H;L(.’L‘())

Since H,(z) is the response of the Gaussian noise, H},(zo) is a Gaussian
random quantity whose variance is the mean-squared value of H) (xg), so the
expectation value of H/ (z¢)? is

+w
Bl (o)) = [ ().
-w
Therefore,
H, (a0)
E 2 N
o HE(0)

ng [ty £2()

[/ ' (-a) p(ayae]
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The localization is then defined as the reciprocal of E[z].

[ G (=) f ()da

nov/ [ £2(x)de

Since we want to maximize both the SNR and the localization, one way
to achieve this is by maximizing the product of both. There are some other
forms to combine both arguments, but the use of the product will simplify the
analysis. Therefore we seek to maximize

Localization =

()

Y G f@)ds| [ 6 (o) @)da

o [[4 P@as] " o/ [ 760)

(6)

3.3.2 Eliminating Multiple Responses

If we do not add any more constraints other than the criteria of SNR and
localization, then we could maximize these two terms easily by getting the

upper bound of the two arguments. From Schwarz inequality for integrals, we
can have the SNR bounded above by

+w

ng' / G?(z)dz

-w

and localization by

+W
ngt / G"?(z)dx
-w

We can get both maximized by having f(z) = G(—=z) in [-W, W].

So the optimal detector for step edges is a truncated step, or difference
operator. The problem is, the response of this detector to a noisy edge will have
many local maxima.

Therefore, there is a third criterion, which is a constraint, that limits the
number of peaks in the response. Actually, we would like to make distance
between peaks.

To make this into a functional constraint on f, we need to obtain an expres-
sion for distance between adjacent peaks. First, we note that the mean distance
between adjacent maxima in the output is twice the distance between adjacent
zero-crossings in the first derivative of the operator output. The according to
Rice[Ric44], the average distance between zero-crossings of the response of a
function g to Gaussian noise is

sy = (TR0
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where R(t) is the autocorrelation function of g. That is,

+oo
Mﬂ=/ o()g( — t)de

Now since

and oo
RO =-[ @iz,

the mean distance between zero-crossings of f” will be

e f’Q(w)dw>
1/2

O fr2(z)da

Tavg(f) =7 ( (7)

The average distance between adjacent maxima in the noise response of f,
Tmaz, Will be twice z4,5. We set this distance to be some fraction k to the
operator width W.

ZTmaz () = 2%qug () = kW

Because the response of the filter will be concentrated in a region of width
2W, the expected number of noise maxima in the region will be

2w

2
Tmaz k’

Now we add a scaling factor w to f, s.t. fy,(z) = f(z/w). We will note that
Zavg(fw) = WTavg(f). Therefore if function f satisfies the multiple response
constraint for fixed k, any scaling of f will, assume W scales with w.

3.3.3 A Detector for Step Edges

In previous sections, we did not define the shape of the edge function G(z). How-
ever, it is very difficult to find a closed form of the function f which maximizes
(6) while satisfying the multiple response constraint. We will now specialize the
case where the input G(z) is a step edge. That is,

0, forz<0;
G(m)—{ A, for x > 0;

and substituting for G(z) in (4) and (5) gives

14



A ‘fEW f(x)d:z:‘

SNR = — 7
noy/ [ty f3(x)de
A !
Localization = I£'(0)]

ng ijVVV 2 (z)dz ‘

We now remove the constant A/ng and define two performance measures ¥
and A which depend on the filter f only:

0
d
SNR = L5(f) where 5(f) = M (8)
o S5 P@)da
Localization = %A(f ) where A(f +|VJ:/ ;3' (9)

Suppose we form a spatially scaled filter f,, from f, where fy,(z) = f(z/w).
When we substitute f,, into (8) and (9), we get

S(f) = V@Z(f) and A(f}) = %A(f’)- (10)

The first equation means a filter with broad response would have better
signal-to-noise ratio. The second equation means a narrow filter would give
better localization. Through spatial scaling, we trade off detection performance
against localization. This suggests that the product of (8) and (9) is a pretty
good choice for the measure of the first two criteria.

Lo S d“f| 1£(0 )|

\/f o \[ [ 2

According (10), we note that the solutions to (11) will be a class of functions
related by spatial scaling.

Assuming the function f is antisymmetric, since the step function is, too.
we can change all the limits of the two integrals in the denominator of (11) from
—W and +W to —W and 0. The result value would be half the one from the
full range. This will make all the integrals isoperimetric. It also makes the term
f'(0) as a boundary condition instead of the term fEW f"(x)dx. Now we have
isoperimetric constraint condition[CH53], we could use Lagrange multipliers to
combine the all the functionals together by making all but one of the integrals
constant. For details about Lagrange multipliers for constraint optimization,
see Appendix A.2.

(1) (11)

15



We seek some function f which will minimizes the integral

/ OW 2 (@)de

0
/ fl@)dz = ¢
-w

/0 f?(x)dz = c»
-w

under the condition

0
/ " (z)dz = 3
—-w
f1(0) =ca. (12)

Note that the f term is here because of the multiple response constraint in
equation (7). The other terms are from (11). We have some boundary condi-
tions. f(0) = 0 because of its antisymmetric property. f(—W) = 0 because by
definition f has finite response bounded by [-W,W] and f has to be continuous.

By applying Lagrange multipliers, we form a functional that is a linear com-
bination of the functions that to be minimized. The functional is

lI’(.CE,f,fl,f”):f2+)\1fé+)\2f2”+)\3f. (13)
The Euler equation is

d &2
Wy — E\I'fl + %\I’fu =0.

See Appendix A.1 for the method of Euler equation for solving variational prob-
lems.
We substitute ¥ from (13) in Euler equation and would get:

2f(x) = 21" (z) + 2 f""(z) + A3 = 0. (14)

The solution of this differential equation is in the form of e?* + ¢ where ¢ is
a constant. Now v must satisfy

2 — 2A1’Y2 + 2/\2’)/4 =0

SO

oM, VN

T T o 222

This equation may have roots that are purely imaginary, purely real, or
complex depends on the values of A\; and As. We can tell that Ay should be

(15)
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positive because f"? is to be minimized. We still could determine the roots of
the equation.

We next derive the second variation 6 of the functional (see [[CH53], p.214]).
First let

Jif] = / "W, 1, 1, 1.

[o]

By Taylor’s theorem,

TUf +eg] = JIf) + hlf. gl + 5l +09,0]

where ¢ is a number between 0 and ¢, g is an arbitrary admissible function and
is 0 where ¢ = z¢ and x1, and

z1
Jl[f7g]:/ IPfg+lIlf,gl+\IJfllglldm
€T

[o]

L[f.9] = ‘/%lwfﬂf‘kwﬂﬂga4-wﬂ7”fa
xz
+20‘I’ff'99' +2Uppng'g" + 2V pgg"de. (16)
Using the fact g is an admissible function, we could have
Tr1 Tr1 d Tr1 d
/zo lIJf,g’dg; = lIlf/g|§(1] - /zo gaq»'frdflf = —/zo gE\I’fldIE.

Similarly, we have

o " o d
m” d = _lI’”d.
[t [yt

0 Zo
Therefore, J; is just the integral of g times the Euler equation of f and will
be zero. Finally, define the second variation 62.J as

2 e
6°J = 5‘]2[]“79]
Since we are looking for minimum, the second derivatives of ¥
JZ [f ] Z 07

which gives
82J > 0.

We compute the second derivatives of ¥ from (13):

T1
b%d=/‘mf+%m”+uw”mza

[o]
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Given the fact that g is an admissible function, therefore g(x;) = 0, g(x2) =
0. So we can transform the above into

Jo[f, 9] = 2/ 9% — Mg + Xag"?dz > 0.

Zo

The latter can be written as

Z1 2 2
2/ (92 - %g”) + (/\2 - %) g"dz > 0.
zo

The integral is guaranteed to be positive if
4D > )\%

If we refer back to (15), we will note that this condition will give complex root
for v. We can now assume four complex roots of the form v = +a + iw with a,
w real. Now 72 = o? — w? + 2iaw and we have

)\1 4)\2 - )\2
a2 —w2 = E and 4a2w2 = Wl

The solution in the range [-W, 0] now could be written as

.

f(z) = a1e®® sinwzx + a2e*® coswz + aze” *sinwz + age”** coswz + ¢ (17)

with the boundary conditions

where s is an unknown constant. Since f(z) is antisymmetric, we can extend
the above definition to the range [-W, W] by having f(—z) = —f(z).

The four boundary conditions from (18) enable us to solve the four param-
eters a; to a4 in terms of the unknown constants a, w, ¢, and s.

The boundary conditions could be rewritten as

as+ag+c=0

ai1e®sinw + aze® cosw + are”sinw + ase”"“cosw +c¢c=0
a1w + A2 + 3w — a4 = 8§
a1e*(asinw + wcosw) + aze®(acosw — wsinw)

+aze”*(—asinw + wcosw) + ase” *(—acosw — wsinw) = 0.
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Solve these equations would yield

a; = c(a(B - a)sin2w — aw cos 2w + (—2w? sinh a + 20%e ) sinw +
2awsinh a cosw + we 2% (a + ) — fw)/4(w? sinh® a — o® sin® w)

a; = c(a(B—a)cos2w + awsin 2w — 2aw cosh a sin w — 2w? sinh a cos w +
2w?e~*sinha + a(a — 8)/4(w? sinh? a — o sin® w)

as = c¢(—a(f+ a)sin2w + awsin 2w + (2w’ sinh a + 2a%e®) sinw +
2aw sinh a cosw + we** (B — a) — fw) /4(w? sinh? a — a? sin® w)

as = c(—a(B+ a)cos2w — aw sin 2w + 2aw cosh asin w + 2w? sinh a cos w

— 2w?e*sinh a + a(a — §)/4(w? sinh? a — o sin® w)

where 3 is the slope s at the origin divided by the constant ¢. Since ¢ appears
in every term in f(x) now, we could consider ¢ as a scaling factor of f(z) which
would not affect the criteria.

The next step is to replace the f(z) in the integral in in (12) and then (7) to
get the values of the constants «, 8, and w. Unfortunately, it is too complex to
be solved analytically, and has to be solved by numerical methods. Therefore,
it is impractical to apply this function for real line detection.

A more manageable function is the first derivative of a Gaussian G'(z), where

G() = exp (_%) ,

since the shape of G'(z) is very close to that of our optimal detector, and would
give pretty good result. Also, it is very easy to be extended to a two-dimensional
filter which we will discuss next.

3.3.4 Two-Dimensional Canny Detector

In one dimension, we could characterize an edge with only its location. In two
dimension, there is another parameter we need to consider, the directions of the
edges. If we get the direction of a edge normal, we can apply the one-dimensional
filter to locate the edge.

Now we try to filter the image with an operator Gy, which the first derivative
of a two dimensional Gaussian G in a direction n, i.e.

22 + ¢
G =exp (— 5,2 )
and 8
Gn =g ="n-" VG,
on

where 1 should be the direction of the edge normal.
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A edge point is defined as the local maximum of the operator Gy, applied
to the image I. That is, at an edge point, we have
0

where x denotes convolution. And since Gn = %, we get

2

0

At such edge point, the edge strength we be
s(i, ) = |Gn * I| = [V(G = I)].

Because of the associativity of convolution, we can convolve the image with a
circular Gaussian G first, then compute the second derivative for zero-crossings
to locate edges. Then get the first derivative to estimate the edge strength. And
for the direction of the edge point, it will be the direction of the vector from
V(G * I) and should be

3.3.5 Nonmaximum Supression

By applying the detector function onto the image, we get a response for each
pixel. Since Canny’s detector is basically a first dreivative operator, that is,
we expect a edge at a local maximum, we have to supress the responses which
are not local maximum in order to get the edge points. We can achieve this by
examining the responses of two neighbors along the direction of the edge normal
of the response of each pixel, if at least one neighbor has bigger response, then
the pixel is not a local maxinum, and will be supressed to 0.

3.3.6 Hysteresis Thresholding

After the step of nonmaximum supression, we thin the lines detected in an image
into one-pixel wide. However, the result still contains the local maxima caused
by noise. We can use a threshold and discard any pixel which response small
than that threshold. But the has problem. If the threshold is small in order to
get the weak edges, some noise maxima will be accepted, but if the threshold is
high, some edge points might be missed, which will break the result lines into
unconnected pieces.

A solution of this is hysteresis thresholding. This is done by setting two
threaholds. The higher threshold is used to pick some stronger edges points,
then we can get the edges by tracking the stronger edge points , using the
information of the direction of edge normal. As long as the response of a pixel
is greater than the smaller threshold, we can keep the edge growing.
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This reduces the possibility of getting false edges caused by noise, since
those false edges tend to have small response values and could not pass the
higher threshold to start the tracking. And it would keep each edge connected,
since we use lower threshold to track the edge.

3.4 The Mumford-Shah Theory

Mumford and Shah [MS85] proposed another form of energy minimizing to
detect boundary of noisy images. For a given image g : R — R, the energy
functional E for a boundary B and smoothed image f is

BB =i [ (-9’ +[ VIR + wiB 9
R M—— R—-B N~~~ N——
Data Fidelity Smoothness Edge Penalty
Constraint

where R is the region of the image, f : R — R is the smoothed ideal image,
B : R — {0,1} is the binary edge process, u and v are scalar parameters. |B]|
denotes the volume of B. For two-dimensional images, |B| is the length of the
edges and R — B denotes the region R excluding the edges.

The Mumford-Shah energy E(f, B) formalizes a tradeoff between noise re-
moval and edge detection. A disadvantage of the functional is that it lacks a
practical mean to solve for the smoothed image f, and the binary edge pro-
cess B. Many methods have been proposed to simplify the minimization of the
functional. In one of them, [AT90], the binary edge process, B, of the energy
function (19) is replaced by a continuous edge field. The energy functional would
become

B v?
E(f,v) = / p (f-9° + a-v?VFP? + EIIWII2 +55 ( (20)
R N—— S—— /3
Data Fidelity Smoothness Constraint dge P"enalty

which is called the Ambrosio-Tororelli functional. The g : R — R denotes the
given image, f : R — R the piecewise smoothed image, v : R — [0,1] the
corresponding continuous edge strength of the image, R the image domain, and
a, B and p are scalar parameters.

3.5 SUSAN Edge Detector

SUSAN [SMS97] is a new approach to edge detection, as well as some other
low-level image processing such as corner detection and noise reduction. The
main difference from all the previous works discussed is that it is not based on
differential computation. It is based on a voting scheme on the fact that for
each pixel in an image, if we look for the number of pixels with similar pixel
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Figure 6: a) The original similarity function (y axis) versus pixel brightness
difference (x axis). The brightness difference threshold is set at 27. b) The
more stable function. This figure is adapted from [SMS97]

values around the neighborhood, there will be local minima near the edges since
these minima describe the positions of abrupt change of pixel values.

The neighborhood is defined by a pre-determined mask. Circular masks are
used in order to give isotropic responses. The usual radius is 3.4 pixels which
give a mask of 37 pixels.

The mask is placed at each point, and for each point, the brightness of each
pixel within the mask is compared with that of the center pixel, which is called
the nucleus. Then the area of the mask which has similar brightness as the
nucleus is called “USAN” (Univalue Segment Assimilating Nucleus.)

A simple equation could determine this comparison:

1 if [I(r) — I(ro)| < t

e(r, o) = { 0 if |I(r) = I(ro)| > ¢, (21)

where rg is the position of the nucleus in the image, r is the position of any other
point within the mask, I(r) is the brightness of the pixel r, ¢ is the brightness
difference threshold and c is the output, see Figure 6(a).

Once all comparisons are done, the total output is defined as:

n(ro) = Z c(r,To).

r
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This total n is the area of the USAN in pixels. Now, n is compared with the
geometric threshold g, which is fixed at 3n,4,/4, Where n,q, is the maximum
value of n over the whole image. The initial edge response is:

_J g—n(ro) ifn(ro) <g
R(ro) = { 0 otherwise,
The value 3n,,,/4 is calculated from an analysis of the expectation value
of the response in the presence of noise only.
To make the result more stable, the equation (21) could be replaced by:

I(r)—I(r
—( ()t(o))ﬁ_

c(r,rg) =e (22)

The equation is plotted in Figure 6(b). This reduces the effect of those pixels
with brightness near the threshold value. It was proved in [SMS97] that the use
of the sixth power in equation (22) is the theoretical optimum.

The next step is to find the direction of the edge point. In order to get the
directions of the edge points we detect, we separate the edge points into to two
categories, see Figure 7.

The standard edge points (a) and (b) have USAN shapes expected for an
ideal step edge. In this case (which is called “inter-pixel edge”), the vector
between the center of gravity r, of the USAN and the nucleus of the mask is
perpendicular to the local edge direction. The center of the gravity is

£, (rg) = > re(r, ro)'
! 2rc(r,To)

The point (c) lies on the edge. This usually happens when the edge is very
close to the center of a pixel rather than between pixels, or the width of the
edge is more than one pixel. In this case (which is called “intra-pixel edge”), the
USAN forms a thin line in the direction of the edge. Since the center of gravity is
very close to the nucleus, we have to find the edge direction by another method
which is instead calculating the longest axis of symmetry. This is estimated by
taking the sums

ro(ro) = Y _(x — z0)’c(r,r0),

r

ry(ro) = Z(y — y0)’¢(r,10),

r

ro,y(ro) = Z(m — 0)(y — yo)e(r, To).
r
The ratio of r, to ry is used to determine the direction of the edge; the sign
of ry y is used to determine if a diagonal edge has positive or negative gradient.
With the direction of the edge points, we could apply non-maxima suppres-
sion and connect the edge points.
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Figure 7: a) The two main edge types, with brightness indicated by numerical
text. The USANs for three points of interest are shown as the white regions
of a small 3x3 mask. Point (a) and (b) are standard edge points, lying on one
side of the edge or the other. Point (c) lies exactly on the edge. This figure is
adapted from [SMS97]

3.6 Multi-Scale Approaches

As suggested by Marr and Hildreth [DM80], we can obtain a description of an
image at different scales by applying a feature detector at different scales and
combining the edge information.

Another approach in multi-scale is to apply a edge detector many times with
different smoothing parameters. As mentioned in Section 2.1, all edge point
detectors face a tradeoff between localization error and sensitivity to noise. By
adjusting the smoothing parameter, we can reduce sensitivity to noise, at the
same time, increase localization error, or vise versa. The optimal parameter for
one given image, however, may be hard to find, or not even exist. Multi-scale
edge point detection is a solution to this problem by operating an edge point
detector at multiple scales.

Take of the Gaussian as an example of the smoothing filter. We have the
Gaussian 2y

G=¢e 22
where o is our scaling parameter. For a small o, this detector will be noise-
sensitive, that may result in twisted and broken edges; for a large o, we could
obtain smoother edges, but some edges points would be lost, and some detected
edge points would have a large delocalization error. This delocalization could be
easily noted in Fig 8 which is a one-dimensional signal processed by a Gaussian
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Figure 8: Second derivative of one-dimensional signal smoothed by Gaussian of
different scales, and the edge it located (adapted from [Wit83]).

and the second-derivative.

Canny [Can86] has proposed a fine-to-coarse combination process, called
feature synthesis, which uses his detector to mark edges at fine scale. From
these edges, the coarser-scale gradient output is synthesized and compared to
the actual coarser-scale detector output. Additional edges are marked only if the
detector has significantly greater response than that predicted from the synthetic
response. Bergholm [Ber87] proposes an algorithm called edge focusing, which
uses Canny’s detector, then combines edge information from a course to a fine
scale.

3.7 Other Edge Point Detectors

There are some other edge point detectors. Poggio, Voorhees and Yuille [PVY85]
introduced the cubic spline filter. The basic idea is to apply cubic spline inter-
polation before differentiation. It was shown in that paper that the result of
interpolation is very similar to the convolution with a Gaussian. The final filter
function is very close to Canny’s detector. Deriche [Der87] extended Canny’s
filter by using an infinite extent filter, and implemented it using recursing filter-
ing. Marr and Hildreth[DM80, Hil83] have proposed the use of zero-crossings
of the Laplacian of Gaussian. The image is convolved with the Laplacian of the
two-dimensional Gaussian, and the zero-crossings are labeled.

3.8 Subpixel Edge Point Detector

The need of subpixel edge point detection rises because of the aliasing problem
of digitized images. No matter how good an edge point detector is, as long as
it is pixel based, it will never be able to form smooth edges. However, since the
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precision of an digitized image is up to a pixel, we can only get the subpixel
positions of edge points through interpolation.

To get subpixel positions of edges, it usually involves parametric fitting meth-
ods. By parametric fitting, we mean matching an edge model with the se-
lected edge pixels, and finding the parameters with minimal fitting error.

Hueckel edge fitting (see Section 3.2) method produces edge position to sub-
pixel level, by transforming the image to the Hilbert space and interpolating to
compute the location.

MacVicar-Whelan and Binford [MWB81] use the gradient operator, and
find the subpixel locations of edges by linear-interpolating the positions of zero
crossings.

Hyde and Davis [HD83] proposed to use intensity information in neighbor-
hood of a straight edge to determine the location of the edge to subpixel level.
They used the concept of maximum likelihood of all points on the edge as
the criterion of picking the line for the straight edge.

Tabatabai and Mitchell [TM84] proposed a method to find a subpixel level of
edge position in one-dimension, with a give n monotonic nondecreasing or mono-
tonic nonincreasing numbers, then extended it to two-dimensional image with
noise. The subpixel value locations are calculated using the first three statistic
moments. The moments of function f(z) are defined as m; = [(f(z))" dz,i =
1,2,3....

In Lyvers, et al. [LMAR®&9], spatial moments are used to calculate edge
positions to subpixel level. Spatial moments of function f(z) are defined as
M; = [z;f(x)dz,i=0,1,2....

4 Color Edge Point Detection

Most of those edge point detection techniques for gray-scale images could be
applied on color images as well. These techniques are applied to the three color
channels independently, and the results are combined using logical operators.
One problem with this approach is that this way, it could not take the corre-
lation among the color channels into account, and might lose some information
conveyed by color. One way to avoid this problem is to consider the problem of
color edge point detection in vector space. And instead of taking differential of
the pixel values, we use the vectors with three color channels and their distances.
There are different ways to measure the distance of two vectors. The common
used measure is the generalized Minkowski metric(L, norm). It is defined for
two vectors x and y as

I4

du(x,y) = (Z |(zr — yk)|p>
k=1

where p is the dimension of the vectors and xj, is the k-th element of x.
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Then, we could apply one of the distance measurements in most of edge
point detectors for gray-scale images.

5 Edge Detection

Edge detection is the problem of localizing continuous curves, not just detecting
edge points. The usual way to do edge detection is to find some scheme to
connect edge points into continuous curves. In fact we could combine the three
steps smoothing, differentiation, and labeling in edge point detection and “edge
linking” as the four steps of edge detection.

Edge detection is somewhat related to image segmentation, in some special
case, even equivalent, since edges are nature boundaries for different regions
separated by image segmentation.

The most obvious problems of edge detection are

1. Some edges are broken by noise or occlusion, or by the disappearance
of the the intensity gradient, for on reason or another. A very common
example of such disappearance is shadow.

2. T-splits tend to confuse the detectors. Though such task generally involves
distinguishing background and foreground, therefore does not belong to
low-level image processing such as edge detection.

3. When some part of two different edges get too close, it is possible the
detector might mix them up.

Since the first three steps are the same as edge point detection, here we will
concentrate only on the step of edge linking.

5.1 Hough Transform

The Hough transform is used to detect straight lines in an binary image. For
each point P(xo,y0) in a M X N binary image, any line y = mz + n that
goes through P would satisfy the condition n = zo(—m) + yo. Therefore, the
parameter pair (m,n) of all the lines through P would form a straight line in
the parameter space. In other words, the point P(xg,yo) and the line n =
Zo(—m) + yo in the parameter space are equivalent, and for the same reason, a
point (mg,ng) in parameter space could be presented as a line in the image. If
there are exactly N points P;, P, ..., Py, on the same line y = mgx + ng, then
the N corresponding lines in parameter space would intersect at (mg,ng). This
gives the following method of line detection: we discretize parameter space by
dividing the space into grid of cells, and associate a counter ¢(m,n) to each cell.
Then for each point P;, we increase all the (m,n) pair on the line corresponding
to P; by one. The final values of ¢(m,n) would be 0 or 1 except for ¢(mg,no)
which would be N. Therefore, after we do similar process for all points in an
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given binary image, each counter value will represent the number of points on
the same line. The peaks of the counters represent the possibility of a line
composed by the points.

However, since m,n are not bounded and could be any number in [—oc0, ],
the parameter space is unbounded, too. Therefore, we cannot use a limited
number of counters to cover the whole parameter space. So we choose polar
representation of lines instead,

p=2xcosf + ysind, (23)

where x,y are the coordinates of a point, p is the distance between the origin of
the image and the line, and 6 is the orientation of the line, p € [0,V M? + N?2],
0 € [0,7). The advantage of this representation is that since both p and 6 are
bounded in limited interval, we could cover the whole (p,#) parameter space
with limited number of counters if we discretize the parameter space.

The advantage of Hough transform is that we could group all the points in
a straight line very easily, even the line of points is not “continuous”. There-
fore, it would be very noise-resistant. However, it is limited to detect straight
lines. Though it could be modified into detect specific curves by replacing the
equation (23), it is not easy to be generalized into more than one type of curve.
Furthermore, for our edge detection purpose, it could not distinguish between
two unrelated edges apart if they are almost on the same line.

5.2 Active Contour

Active contour, also as known as “snake”, was introduced by Kass, Witkin and
Terzopolous [KW'T88]. It uses energy minimization as a technique to shift an
initial line segment into a curve that would adhere to an edge of the given image.
It is done by assigning three forms of energy to a curve: an internal energy that
generates a force that tends to keep the curve short and smooth, an image energy
that tends to move the curve towards edge points on the image, and a constraint
energy that tends to restrict the curve in some other ways, such as attraction
to or expulsion from certain points. More precisely the energy function E7, ..
could be written as

nake(V) = /OEsnake(V(s))ds

1
/0 Eint(v(s)) + Ez‘mage (V(S)) + Econ(v(s))ds (24)

where v(s) = (z(s),y(s)), 0 < s < 1, is the position of the curve, E;,; is
the internal energy, Eimage the image energy, and E.., the constraint energy.
Starting from some initial curve vy, the energy minimization process will con-
tinuously transform the curve into lower energy states, until it achieves some
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L. N
local minimum energy level E, ..

forms will be discuss separately.

(v*) at some position v*. The three energy

Internal Energy. The internal energy can be written as

Eint(v(s)) = (a(s)[vs(s)]” + B(s)|vas (s)]*) /2 (25)

where a(s) and 3(s) are user-defined parameters with non-negative values. Here
v, and v, are derivatives of the curve v.

The internal energy is composed of a first-order derivative controlled by
a(s) and a second-order derivative controlled by 3(s). The first-order term
generates a force that tends to shorten the length of the curve. We will call it
elastic energy. The smaller the value of a(s) is, the easier for the snake to be
stretched. The second-order term generates a force that tends to keep the curve
from changing direction sharply. We call it bending energy. The smaller the
value of (3(s), the easier for the curve to bend. Thus, the internal energy creates
the forces which tend to keep the curve short and smooth.

Image Energy. The image energy derives from an interaction between the
snake curve and the image. It pushes the snake curve toward salient image
feature like lines and edges. This energy could be categorized into three energy
functionals: line energy, edge energy, and termination energy.

Line energy is the functional that is usually relevant to the image inten-
sity itself. This functional makes the snake attracted to pixels of some chosen
intensity. Normally, line energy could be expressed as

Ejine = |I(z,y) — Io|,

where I is the expected intensity of line.

Edge energy is the functional that is usually relevant to the gradients of
the image. This functional will pull the snake near the the points with high
gradients, which are where the edges usually are. A simple example of edge
energy is

Benergy = ~|VI(z,9)[.

Termination energy is the functional that is used to find terminations of
line segments and corners. It is done by measuring the curvature of the level
contours.

Constraint Energy. The constraint energy is not directly relevant to the
to edge detection. It is usually used to generate forces to attract or repel the
snake towards or away from some desired positions. For instance if we want the
endpoints of the snake to be at some fixed positions, we can introduce a suitable
constraint energy to achieve this.
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Numerical Methods for Snakes Let Ecpt = Ejmqge + Econ denote the
external energy. When a(s) = a, and §(s) = (3 are both constants, The
equation (24) could be minimized by using Euler equation (As described in
Appendix A.1,) and we have

OF,

—0Zss + PBTgsss + 6;$t =0 (26)
6Eez

—QYss + ﬁyssss + 6y t = 0 (27)

When a(s) and §(s) are not constants, it would not be easy to solve the
equations. So we use a discrete method instead.

Instead of defining the curve continuously, we sample n points from the curve
v such that v; = v(i/n). We now have v; = (z;,¥;) = (z(i/n),y(i/n)). And
the corresponding a and § will become a; = a(i/n), and §; = §(i/n).

We then expand internal energy E;,;(¢) into

Emt(l) = —ai||vi - vi_1||2n2 + ﬁi“Vi—l —2v; + vi+1||2n4.
The corresponding Euler equations (26) and (27) will be
—ai(vi—vi1) 4+ aip1(Vigr — Vi)
+ Bia(via —2viq+wvy)
- 2Bi(vie1 — 2vi + Viq1)
+  Biy1(vi — 2vip1 + Viga)
+  (fe(i), £y(4)) =0,
where f; (i) = 0F¢q:/0x; and fy(i) = 0Fes:/0y;.
The above equations could be written in matrix form as

Ax + i (x,y) =0 (28)

Ay +£,(x,y) =0 (29)

where A is a pentadiagonal banded matrix.

To solve equations (28) and (29), we set the right-hand sides of the equations
equal to the product of a step size v and the negative time derivative of the
variables on the left-hand sides. The 7 is a damping constant. With some
simplification, we have

Axy + Ee(x,_1,¥i-1) = —y(x¢ — X¢—1) (30)

Ay, + fy(xt_17Yt—1) = —7(yt — ¥i-1) (31)

where 7 is the step size. At equilibrium, the time derivative (x; —x¢ 1,¥:—¥t-1)
vanishes and we end up with a solution of equations (28) and (29).

30



Equation (30) and (31) can be solved:
Xt = (A +9I) 1 (xe—1 — f(x, 1, ¥e-1) (32)

yi = (A +~0) 1 (ye—1 — (%, 1, ¥e-1) (33)

Therefore, we can calculate the values of x and y until the values reach
equilibrium.

It performs well if the initial positions of the control points are well chosen.
These points could be the result from some edge points detectors. But we still
need to group the edge points into different edges before we apply this method,
and such task of grouping is not trivial.

One problem of the active contour is that there is no method to evaluate
the result. With any kind of input, we always have a result of minimum energy,
even when there is no edge around the initial control points. And to pick right
initial control points is not trivial. The results for edge point detectors are
not sufficient, since there is no telling how to group edge points into different
edges. This technique is widely used in stereopsis and object tracking in motion
pictures, since we can use results from one frame as the initial control points of
the next.

A Mathematical Background for Edge Detec-
tion

A.1 Euler’s Equation

Given a real functional F(z, f1, fo, f3), we want to find a function y = y(x)
which would minimize the integral

I(y) = / F(z,y,y,y")dz

where y',y" are derivatives w.r.t. x.
First we define a new function Y (z)

Y(z,€) = y(z) + en(z)

where € is a parameter and n(x) is an arbitrary function which has continuous
third derivative in the interval z; to z=, with the boundary condition

n(z1) = n(z2) = 0,

n'(x1) = n'(z2) = 0.

When € = 0, Y(z,€) = y(z) is supposed to make I = I(Y) minimum. So we
want
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ﬂzOWhenezo.
de

Since

ar / 9FoY L OFdY' OF 9Y"
de ~ J,, \dY de  9Y' de ' dY" de

2 (0F OF OF
= [ (G g @+ gre@) do
and with the fact that when € = 0,Y = y, we can have
dI 2 (OF OF OF
(@) = [ G o+ @) s =0
If " is continuous, we can integrate the second term by parts:
2 9F OF o 2 d (OF
6—y,n’(w) dx = 8—31,77(33) —/ dz (6—31’) n(z) dx.
x1 T1 x1
Since n(z) is 0 at z; and z2, we can have

2 9F [ d (OF
oy n'(x)dz = —/ac P (8—9’) n(x) dz.

T1 1

We similarly obtain

T2 aF T2 d2 aF
[ @ie= () e

1

from the third term by applying the same transformation twice.
Then we have

(8) o= [ (o= (30 £, (3 )

Then,
T9F d (OF & (0F
/m [a‘y‘ s (6y) BRCE (fhﬂ)] e =0

Since 7 is arbitrary, we have

oOF d (OF d? OF
o~z (o) * 7= (37) = Y

which is usually called Euler-Lagrange equation.
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Example from the equations in Active Contours (see Section 5.2)
According to equations (24) and (25), we could have

1
Enane(V) = /0 (a(8)|Vs(8)]* + B(3)[Vss(8)*) /2 + Eimage (v(8)) + Eeon(v(s))ds

With the assumption a(s) = «, and 3(s) = 8 are both constants, and let
Eez‘t = Ez'mage + Econ, we have

1
snake (V) = /0 (@[vs(8)* + BIVss(8)[*) /2 + Eear(v(s))ds (35)

Since we seek minimizing the energy E7, . e( v), we can apply Euler-Lagrange
equation (34) with F = (a|vs(s)|> + B|vss(s)|?)/2 and x = s, y = v and get

d d d?
A Ben(v(5)) — S (@va(5)) +
Since £ E.,¢(v(s)) is a first derivative from the direction of the snake, we
could replace it with VE,;;(v(s)), the gradient.
Therefore, we can get

(ﬁlvss(s)l) =0

2
(@1¥as (5)]) + 5= (BlVasss (5)) = 0

A.2 Lagrange Multipliers

Let f(z,y) be a function where x and y are constrained by an equation n(z,y) =
¢, where c¢ is a constant. The problem is to find (z,y) to minimize or maximize
f(z,y).

Since 17 = const, we have dn = 0. We want to find the maximum or minimum
of f,sodf =0, too.

6f 6f

8d_0

df =

0 0
dn:a—de+6—Zdy=0

With these two equations, we could solve them by substitution and elimi-
nation. But it may involves complex algebra. So instead, we multiply the dn
equation by an undetermined value A, and add it to the df equation. So we get

of of _
(8 +/\6>d$+<6y+/\a)dy—0. (36)
Now, we select A = —(8f/6y)/(8n/6y) such that
of |
8y 6y =0. (37)
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Then from equations (36) and (37) we have

ﬂ_ﬁ.)\@

Ox o 0 (38)

With equations (37), (38) and the fact n(x,y) = ¢, we can now solve for the
three unknown z, y, A.
Now considering the unconstraint function

F(z,y) = f(z,y) + A(n(z,y) —c) (39)

with three independent variables x,y and A, the equations to solve the func-
tion f(z,y) with contraint n(z,y) = ¢ (37), (38) and n(x,y) = ¢ would be the
same equations needed to find the maximum and minimum values of F(z,y).
In other word, by introducing A, we convert a constraint minimizing problem
into an unconstraint one. This A is called a Lagrange multiplier.
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