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Abstract

Energy-Based Models (EBMs) capture dependencies betvar&bles by as-
sociating a scalar energy to each configuration of the vimsalinference consists
in clamping the value of observed variables and finding conditions of the re-
maining variables that minimize the energy. Learning cstssh finding an energy
function in which observed configurations of the variablesgiven lower energies
than unobserved ones. The EBM approach provides a commorettual frame-
work for many learning models, including traditional disainative and genera-
tive approaches, as well as graph-transformer networkslitonal random fields,
maximum margin Markov networks, and several manifold legrmethods.

Probabilistic models must be properly normalized, whicinetimes requires
evaluating intractable integrals over the space of all iptesyariable configura-
tions. Since EBMs have no requirement for proper normatimathis problem is
naturally circumvented. EBMs can be viewed as a form of nababilistic factor
graphs, and they provide considerably more flexibility ia ttesign of architec-
tures and training criteria than probabilistic approaches

1 Introduction: Energy-Based Models

The main purpose of statistical modeling and machine legrig to encode depen-
dencies between variables. By capturing those dependgrciaodel can be used to
answer questions about the values of unknown variablesdive values of known
variables.

Energy-Based Models (EBMs) capture dependencies by assaria scalaen-
ergy (a measure of compatibility) to each configuration of thdaldes. Inference
i.e., making a prediction or decision, consists in settimgvalue of observed variables



and finding values of the remaining variables that minimieednergylL earningcon-
sists in finding an energy function that associates low eéestg correct values of the
remaining variables, and higher energies to incorrectesliloss functionglmini-
mized during learning, is used to measure the quality of théable energy functions.
Within this common inference/learning framework, the widwice of energy func-
tions and loss functionals allows for the design of many $ypkstatistical models,
both probabilistic and non-probabilistic.

Energy-based learning provides a unified framework for manmopabilistic and
non-probabilistic approaches to learning, particuladiyrion-probabilistic training of
graphical models and other structured models. Energyeldeaming can be seen as an
alternative to probabilistic estimation for predictiofgssification, or decision-making
tasks. Because there is no requirement for proper norntializeenergy-based ap-
proaches avoid the problems associated with estimatingdah®alization constant in
probabilistic models. Furthermore, the absence of the abration condition allows
for much more flexibility in the design of learning machin&$ost probabilistic mod-
els can be viewed as special types of energy-based modelgéh the energy function
satisfies certain normalizability conditions, and in whibk loss function, optimized
by learning, has a particular form.

This chapter presents a tutorial on energy-based modetsawiemphasis on their
use for structured output problems and sequence labelolggms. Section 1 intro-
duces energy-based models and describes determinigtieinde through energy min-
imization. Section 2 introduces energy-based learningla@doncept of the loss func-
tion. A number of standard and non-standard loss functiomslascribed, including
the perceptron loss, several margin-based losses, anégagive log-likelihood loss.
The negative log-likelihood loss can be used to train a mtamproduce conditional
probability estimates. Section 3 shows how simple regoessnd classification mod-
els can be formulated in the EBM framework. Section 4 corgaradels that contain
latent variables. Section 5 analyzes the various loss ifumetn detail and gives suf-
ficient conditions that a loss function must satisfy so th&minimization will cause
the model to approach the desired behavior. A list of “goat] &ad” loss functions
is given. Section 6 introduces the concept of non-probsthilfiactor graphs and infor-
mally discusses efficient inference algorithms. Sectioocli$es on sequence labeling
and structured output models. Linear models such as magimitarkov networks
and conditional random fields are re-formulated in the EB&hfework. The liter-
ature on discriminative learning for speech and handvgitgcognition, going back
to the late 80's and early 90’s, is reviewed. This includesbglly trained systems
that integrate non-linear discriminant functions, suchasral networks, and sequence
alignment methods, such as dynamic time warping and hiddat® models. Hier-
archical models such as the graph transformer networktaathre are also reviewed.
Finally, the differences, commonalities, and relativeatages of energy-based ap-
proaches, probabilistic approaches, and sampling-bagedximate methods such as
contrastive divergence are discussed in Section 8.
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Figure 1:A model measures the compatibility between observed Vagab and variables to

be predictedY” using anenergy functionE (Y, X). For example, X could be the pixels of an
image, andY” a discrete label describing the object in the image. Giserthe model produces
the answef” that minimizes the energy.

1.1 Energy-Based Inference

Let us consider a model with two sets of variabl&sandY’, as represented in Fig-
ure 1. VariableX could be a vector containing the pixels from an image of aedbj
VariableY could be a discrete variable that represents the possitdgay of the ob-
ject. For exampleY could take six possible values: animal, human figure, aimla
truck, car, and “none of the above”. The model is viewed asreergy functionwhich
measures the “goodness” (or badness) of each possible gratfan of X andY'. The
output number can be interpreted as the degremoipatibilitybetween the values of
X andY'. In the following, we use the convention that small enerduyes.correspond
to highly compatible configurations of the variables, whéege energy values corre-
spond to highly incompatible configurations of the variableunctions of this type are
given different names in different technical communitigsgy may be called contrast
functions, value functions, or negative log-likelihoodhfions. In the following, we
will use the termenergy functiorand denote iZ (Y, X). A distinction should be made
between the energy function, which is minimized by the iafee process, and the loss
functional (introduced in Section 2), which is minimizedthye learning process.

In the most common use of a model, the inflis given (observed from the world),
and the model produces the answéthat is most compatible with the observad
More precisely, the model must produce the valife chosen from a s&y, for which
E(Y, X) is the smallest:

Y™ = argminy ., E(Y, X). 1)

When the size of the s@ét is small, we can simply comput&(Y, X) for all possible
values ofY” € ) and pick the smallest.



[-0.90 41.11 68.51 34.25 0.10 0 0.05]
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Figure 2:Several applications of EBMga) face recognition:Y is a high-cardinality discrete
variable; (b) face detection and pose estimationY” is a collection of vectors with location
and pose of each possible fadg) image segmentation:Y is an image in which each pixel
is a discrete label{d-e) handwriting recognition and sequence labelingY is a sequence of
symbols from a highly structured but potentially infinite @ae set of English sentences). The
situation is similar for many applications in natural langge processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).



In general, however, picking the béstmay not be simple. Figure 2 depicts sev-
eral situations in whicl)y) may be too large to make exhaustive search practical. In
Figure 2(a), the model is used to recognize a face. In thig,dhs sef) is discrete
and finite, but its cardinality may be tens of thousands [1®9Figure 2(b), the model
is used to find the faces in an image and estimate their podss.sdt) contains a
binary variable for each location indicating whether a fecpresent at that location,
and a set of continuous variables representing the sizerdgmtation of the face [54].
In Figure 2(c), the model is used to segment a biological enagach pixel must be
classified into one of five categories (cell nucleus, nuae@mbrane, cytoplasm, cell
membrane, external medium). In this ca¥econtains all theconsistentabel images,
i.e. the ones for which the nuclear membranes are encirtimguclei, the nuclei and
cytoplasm are inside the cells walls, etc. The set is disclett intractably large. More
importantly, members of the set must satisfy complicatetsisbency constraints [53].
In Figure 2(d), the model is used to recognize a handwritesttesice. Herd’ con-
tains all possible sentences of the English language, vikialdiscrete but infinite set
of sequences of symbols [43]. In Figure 2(f), the model isduserestore an image
(by cleaning the noise, enhancing the resolution, or rentpscratches). The sgt
contains all possible images (all possible pixel comborat). It is a continuous and
high-dimensional set.

For each of the above situations, a specific strategy, ctik=idference procedure
must be employed to find thE that minimizesE (Y, X). In many real situations,
the inference procedure will produce an approximate restiich may or may not
be the global minimum oF (Y, X) for a givenX. In fact, there may be situations
where E(Y, X) has several equivalent minima. The best inference proeedunse
often depends on the internal structure of the model. Fomeie if ) is continuous
andE(Y, X) is smooth and well-behaved with respecfifpone may use a gradient-
based optimization algorithm. ¥ is a collection of discrete variables and the energy
function can be expressed agagtor graph i.e. a sum of energy functions (factors)
that depend on different subsets of variables, efficiemrarice procedures for factor
graphs can be used (see Section 6) [55, 47]. A popular exaohgiech a procedure
is the min-sumalgorithm. When each element df can be represented as a path in
a weighted directed acyclic graph, then the energy for dquédat Y is the sum of
values on the edges and nodes along a particular path. Inabés the best can be
found efficiently using dynamic programming (e.g with théevbi algorithm orA*).
This situation often occurs in sequence labeling problamh sis speech recognition,
handwriting recognition, natural language processind aological sequence analysis
(e.g. gene finding, protein folding prediction, etc). Di#fat situations may call for
the use of other optimization procedures, including cartdirs optimization methods
such as linear programming, quadratic programming, nogali optimization methods,
or discrete optimization methods such as simulated amgaljraph cuts, or graph
matching. In many cases, exact optimization is impractiaai one must resort to
approximate methods, including methods that use surr@yeryy functions (such as
variational methods).



1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the questi be answered by the
model is “What is th&” that is most compatible with thi&?”, a situation that occurs
in prediction, classificatiomr decision-makingasks. However, a model may be used
to answer questions of several types:

1. Prediction, classification, and decision-makirigvhich value ofY” is most com-
patible with thisX ?’ This situation occurs when the model is used to make hard
decisions or to produce an action. For example, if the madebed to drive a
robot and avoid obstacles, it must produce a single bessidecsuch as “steer
left”, “steer right”, or “go straight”.

2. Ranking “Is Y7 or Yo more compatible with this{?” This is a more complex
task than classification because the system must be traipedduce a complete
ranking of all the answers, instead of merely producing t&t bne. This situ-
ation occurs in many data mining applications where the isdesed to select
multiple samples that best satisfy a given criterion.

3. Detection “Is this value ofY’ compatible withX ?” Typically, detection tasks,
such as detecting faces in images, are performed by congptiuénenergy of a
facelabel with a threshold. Since the threshold is generallynamkn when the
system is built, the system must be trained to produce envalges that increase
as the image looks less like a face.

4. Conditional density estimatiofiwhat is the conditional probability distribution
over) given X?” This case occurs when the output of the system is not used
directly to produce actions, but is given to a human decisiaker or is fed to
the input of another, separately built system.

We often think of X as a high-dimensional variable (e.g. an image) &nds a
discrete variable (e.g. a label), but the converse caseseisa@mmon. This occurs
when the model is used for such applications as image réistoyaomputer graphics,
speech and language production, etc. The most complex&ageen bothX andY
are high-dimensional.

1.3 Decision Making versus Probabilistic Modeling

For decision-making tasks, such as steering a robot, it ieljpneecessary that the sys-
tem give the lowest energy to the correct answer. The ergedjiether answers are
irrelevant, as long as they are larger. However, the outpatsystem must sometimes
be combined with that of another system, or fed to the inpainafther system (or to a
human decision maker). Because energies are uncalibiaedgasured in arbitrary
units), combining two, separately trained energy-basedeatsds not straightforward:
there is noa priori guarantee that their energy scales are commensurate ratalip
energies so as to permit such combinations can be done in bemafways. However,
the onlyconsistentvay involves turning the collection of energies for all pbfsout-
puts into a normalized probability distribution. The simgiand most common method



for turning a collection of arbitrary energies into a cotlen of numbers between 0 and
1 whose sum (or integral) is 1 is through tGébs distribution

e—BE(Y,X)

PY|X) = Wa (2)

whereg is an arbitrary positive constant akin to an inverse tempegaand the denom-
inator is called thepartition function(by analogy with similar concepts in statistical
physics). The choice of the Gibbs distribution may seemtray, but other proba-
bility distributions can be obtained (or approximatedptigh a suitable re-definition
of the energy function. Whether the numbers obtained thisava good probability
estimates does not depend on how energies are turned irttalplites, but on how
E(Y, X) is estimated from data.

It should be noted that the above transformation of eneigiesprobabilities is
only possible if the integrafyey e PEW.X) converges. This somewhat restricts the
energy functions and domaifsthat can be used. More importantly, there are many
practical situations where computing the partition fumtis intractable (e.g. when
Y has high cardinality), or outright impossible (e.g. whrs a high dimensional
variable and the integral has no analytical solution). Hepmbabilistic modeling
comes with a high price, and should be avoided when the atjgitdoes not require
it.

2 Energy-Based Training: Architecture and Loss Func-
tion

Training an EBM consists in finding an energy function thaiduces the best for
any X. The search for the best energy function is performed watfemmily of energy
functions€ indexed by a parametéy’

E={EW,Y,X): WeW}. 3)

Thearchitectureof the EBM is the internal structure of the parameterizedgnfunc-
tion E(W,Y, X). At this point, we put no particular restriction on the nataf X,
Y, W, and€. WhenX andY are real vectors could be as simple as a linear com-
bination of basis functions (as in the case of kernel methaatsa set of neural net
architectures and weight values. Section gives examplssmgile architectures for
common applications to classification and regression. WhemdY are variable-size
images, sequences of symbols or vectors, or more complestisted objectsC may
represent a considerably richer class of functions. Segtio 6 and 7 discuss several
examples of such architectures. One advantage of the ebaspd approach is that it
puts very little restrictions on the nature &f

To train the model for prediction, classification, or demisimaking, we are given
a set of training sampleS = {(X%,Y?) : i = 1... P}, whereX® is the input for
thei-th training sample, and is the corresponding desired answer. In order to find
the best energy function in the famif;, we need a way to assess the quality of any



particular energy function, based solely on two elemehtstraining set, and our prior
knowledge about the task. This quality measure is calleddase functionali.e. a
function of function) and denotefl( £, S). For simplicity, we often denote £(W, S)
and simply call it thdoss function The learning problem is simply to find th& that
minimizes the loss:
W* = min L(W,S). 4
wew

For most cases, the loss functional is defined as follows:
P
L(E,S) = 1 S LY EW,Y, X))+ R(W) (5)
b) P l:1 b b) b .

It is an average taken over the training set giea-sample loss functionatlenoted
L(Y', E(W,Y,X*")), which depends on the desired answérand on the energies
obtained by keeping the input sample fixed and varying thevang. Thus, for each
sample, we evaluate a “slice” of the energy surface. The fefW) is theregularizer,
and can be used to embed our prior knowledge about which gfengtions in our
family are preferable to others (in the absence of trainiag)d With this definition,
the loss is invariant under permutations of the training @asiand under multiple
repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce @deit that will give
good answers for new input samples that are not seen duamgny. We can rely
on general results from statistical learning theory whioargntee that, under simple
interchangeability conditions on the samples and generaditions on the family of
energy functions (finite VC dimension), the deviation bedwéhe value of the loss after
minimization on the training set, and the loss on a largeaisp set of test samples is
bounded by a quantity that converges to zero as the sizeiniftgeset increases [60].

2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be geed in such a way that it
assigns a low loss twell-behavedenergy functions: energy functions that give the
lowest energy to the correct answer and higher energy tdtadr gincorrect) answers.
Conversely, energy functions that do not assign the lowestgy to the correct answers
would have a high loss. Characterizing the appropriatesfdsss functions (the ones
that select the best energy functions) is further discussadlowing sections.
Considering only the task of training a model to answer qoestof type 1 (pre-
diction, classification and decision-making), the maimiitidn of the energy-based ap-
proach is as follows. Training an EBM consists in shapingathergy function, so that
for any givenX, the inference algorithm will produce the desired value¥orSince
the inference algorithm selects tiewith the lowest energy, the learning procedure
must shape the energy surface so that the desired valdénat lower energy than all
other (undesired) values. Figures 3 and 4 show examplesofgas a function ot
for a given input samplé&? in cases wher&” is a discrete variable and a continuous
scalar variable. We note three types of answers:

e Y the correct answer
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Figure 3: How training affects the energies of the possible answethéndiscrete case: the
energy of the correct answer is decreased, and the enerfiesarect answers are increased,
particularly if they are lower than that of the correct answe
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Figure 4:The effect of training on the energy surface as a functiohetmswen” in the con-
tinuous case. After training, the energy of the correct arsW is lower than that of incorrect
answers.



e Y*: the answer produced by the model, i.e. the answer with thedbenergy.

e Y. the most offending incorrect answeie. the answer that has the lowest
energy among all the incorrect answers. To define this aniswike continuous
case, we can simply view all answers within a distancgY* as correct, and all
answers beyond that distance as incorrect.

With a properly designed loss function, the learning prect®uld have the effect
of “pushing down” onE (W, Y*, X*), and “pulling up” on the incorrect energies, par-
ticularly on E(W, Y, X*). Different loss functions do this in different ways. Seot®
gives sufficient conditions that the loss function mustségtin order to be guaranteed
to shape the energy surface correctly. We show that somdywided loss functions
do not satisfy the conditions, while others do.

To summarize: given a training s&t building and training an energy-based model
involves designing four components:

1. The architecturethe internal structure aB (W, Y, X).

2. The inference algorithmthe method for finding a value df that minimizes
E(W,Y, X) for any givenX.

3. The loss function(W, §) measures the quality of an energy function using the
training set.

4. The learning algorithm the method for finding &V that minimizes the loss
functional over the family of energy functiods given the training set.

Properly designing the architecture and the loss functamitical. Any prior knowl-
edge we may have about the task at hand is embedded into thieeatere and into
the loss function (particularly the regularizer). Unfarately, not all combinations of
architectures and loss functions are allowed. With somebtaations, minimizing the
loss will not make the model produce the best answers. Chgdise combinations of
architecture and loss functions that can learn effectiaaly efficiently is critical to the
energy-based approach, and thus is a central theme of tbigatu

2.2 Examples of Loss Functions

We now describe a number of standard loss functions thatlhese proposed and used
in the machine learning literature. We shall discuss thethddassify them as “good”
or “bad” in an energy-based setting. For the time being, waside the regularization
term, and concentrate on the data-dependent part of th&ulostson.

2.2.1 Energy Loss

The simplest and the most straightforward of all the lossfioms is the energy loss.
For a training sampléX ¢, '), the per-sample loss is defined simply as:

Lenergy (Y, EOW, Y, X%)) = E(W, Y, X*). (6)

10
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Figure 5:The hinge loss (left) and log loss (center) penaliZéV, Y, X*)—E(W,Y*, X*) lin-
early and logarithmically, respectively. The square-sguass (right) separately penalizes large
values of E(W, Y, X*) (solid line) and small values df (W, Y*, X*) (dashed line) quadrati-
cally.

This loss function, although very popular for things likgression and neural network
training, cannot be used to train most architectures: wihite loss will push down
on the energy of the desired answer, it will not pull up on athyeo energy. With
some architectures, this can lead toalapsed solutionn which the energy is con-
stant and equal to zero. The energy loss will only work witbhéectures that are
designed in such a way that pushing downmV, Y¢, X*) will automatically make
the energies of the other answers larger. A simple exampedf an architecture is
E(W, Y, X% = ||Y? — G(W, X%)]||?, which corresponds to regression with mean-
squared error witliz being the regression function.

2.2.2 Generalized Perceptron Loss

The generalized perceptron loss for a training sarjile Y?) is defined as

Lperceptron(yia E(VVv ya Xl)) = E(Wa Yia Xl) - {’neu)l) E(Wa Ya Xl) (7)

This loss is always positive, since the second term is a I®@and on the first term.
Minimizing this loss has the effect of pushing down BV, Y, X%), while pulling
up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many gsttimcluding for
models with structured outputs such as handwriting re¢mgr{4 3] and parts of speech
tagging [21], it has a major deficiency: there is no mechari@nereating an energy
gap between the correct answer and the incorrect ones. Henegth the energy loss,
the perceptron loss may produce flat (or almost flat) enenggaes if the architecture
allows it. Consequently, a meaningful, uncollapsed resunly guaranteed with this
loss if a model is used that cannot produce a flat energy surfam other models, one
cannot guarantee anything.

2.2.3 Generalized Margin Losses

Several loss functions can be describethasginlosses; the hinge loss, log loss, LVQ2
loss, minimum classification error loss, square-squagg bred square-exponential loss
all use some form of margin to create an energy gap betweaothect answer and the

11



incorrect answers. Before discussing the generalizedimimgs we give the following
definitions.

Definition 1 LetY be a discrete variable. Then for a training sampl§’, Y*), the
most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

Y= argminy ey qnqy2yi E(W, Y, Xh. (8)

If Y is a continuous variable then the definition of the most affeg incorrect answer
can be defined in a number of ways. The simplest definition fslksvs.

Definition 2 LetY be a continuous variable. Then for a training sam@¥’, Y'?), the
most offending incorrect answer Y* is the answer that has the lowest energy among
all answers that are at leagtaway from the correct answer:

Y = argming ey, |y _yi s E(W, Y, X7). 9)

The generalized margin loss is a more robust version of thergdized perceptron
loss. Itdirectly uses the energy of the most offending ineciranswer in the contrastive
term:

Lmargin(vvv Yiv Xl) = Qm (E(Wa Yia Xz)a E(VV, Yia XZ)) . (10)

Herem is a positive parameter called thearginand@,,,(e1, e2) is a convex function
whose gradient has a positive dot product with the veldtor 1] in the region where
EW, Y, X")+m > E(W, Y, X?). In other words, the loss surface is slanted toward
low values of E(W, Y, X*) and high values of? (W, Y?, X*) wherever (W, Y?, X?)

is not smaller tharZ(W, Y, X*) by at leastn. Two special cases of the generalized
margin loss are given below:

Hinge Loss A particularly popular example of generalized margin lisshe
hinge loss which is used in combination with linearly parameterizeérgies and a
quadratic regularizer in support vector machines, supyeator Markov models [1],
and maximum-margin Markov networks [58]:

Lpinge(W,Y", X") = max (0,m + E(W,Y", X") — E(W,Y", X")), (11)

wherem is the positive margin. The shape of this loss function iegiw Figure 5. The
difference between the energies of the correct answer anahdist offending incorrect
answer is penalized linearly when larger tham. The hinge loss only depends on
energy differences, hence individual energies are nottrained to take any particular
value.

Log Loss a common variation of the hinge loss is tlog loss which can be seen
as a “soft” version of the hinge loss with an infinite margied$-igure 5, center):

Liog(W, Y, X*) = log (1 + PV WX =BV (12)

LVQ2 Loss: One of the very first proposals for discriminatively traigisequence
labeling systems (particularly speech recognition sysjema version of Kohonen's

12



LVQ2 loss. This loss has been advocated by Driancourt antbBaince the early
90's [25, 28, 27, 24, 49, 50]:

. . E Yi X)) - F Yt X!
Livqge(W,Y*, X*) = min (l,max (O, W, ¥*, X°) w, Y7, ))> , (13)

SE(W,Y?, X7)

whered is a positive parameter. LVQ?2 is a zero-margin loss, butsttha peculiarity of
saturating the ratio betwed®(W, Y, X*) andE(W,Y?, X?) to 1 + §. This mitigates
the effect of outliers by making them contribute a nominatc to the total loss.
This loss function is a continuous approximation of the nands classification errors.
Unlike generalized margin losses, the LVQ2 loss is non-egrin E(W, Y, X*) and
E(W, Yt X1).

MCE Loss: The Minimum Classification Error loss was originally praed by
Juang et al. in the context of discriminative training foesph recognition sys-
tems [37]. The motivation was to build a loss function thabahpproximately counts
the number of classification errors, while being smooth afidrdntiable. The number
of classification errors can be written as:

0 (E(W,Y', X")— E(W,Y", X"), (14)

whered is the step function (equal to zero for negative argumemid,lafor positive
arguments). However, this function is not differentialalled therefore very difficult to
optimize. The MCE Loss “softens” it with a sigmoid:

Lince(W, Y, X") =0 (E(W,Y", X") = E(W,Y", X")), (15)

whereo is the logistic functionr(z) = (1+e~*)~!. As with the LVQ2 loss, the satu-
ration ensures that mistakes contribute a nominal cosetovbrall loss. Although the
MCE loss does not have an explicit margin, it does create dgapeent (W, Y, X*)
andE(W, Y, X%). The MCE loss is non-convex.

Square-Square Loss Unlike the hinge loss, the square-square loss treats the en
ergy of the correct answer and the most offending answeratgha[45, 30]:

Leqsq(W, Y%, XP) = E(W,Y", X*)? + (max(0,m — E(W,Y*, X*)))*.  (16)

Large values of2(W, Y%, X%) and small values of (W, Y%, X*) below the marginn
are both penalized quadratically (see Figure 5). Unlikenttzggin loss, the square-
square loss “pins down” the correct answer energy at zerd@nd down” the incor-
rect answer energies abowe Therefore, it is only suitable for energy functions that
are bounded below by zero, notably in architectures whosgubmodule measures
some sort of distance.

Square-Exponential[45, 19, 54]: Thesquare-exponentidbss is similar to the
square-squardéoss. It only differs in the contrastive term: instead of adratic term
it has the exponential of the negative energy of the moshdffey incorrect answer:

qufcxp(W, Y’L7X’L) — E(W, Yi,Xi)2 +,YB*E(W,Y'57X'L)’ (17)

where~ is a positive constant. Unlike the square-square loss)dhsshas an infinite
margin and pushes the energy of the incorrect answers tatynfisith exponentially
decreasing force.
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2.2.4 Negative Log-Likelihood Loss

The motivation for the negative log-likelihood loss comesi probabilistic modeling.
Itis defined as:

Lan(W, Y8, X% = E(W, Y%, X%) + Fs(W,, XY). (18)

WhereF is thefree energyf the ensemblé E(W, y, X?), y € V}:

Fs(W, ¥, X") = %bg </ exp (—BE(W, y,Xi))> . (19)
Yy

ey

whereg is a positive constant akin to an inverse temperature. Tsis tan only be
used if the exponential of the negative energy is integraise ), which may not be
the case for some choices of energy functiopyor

The form of the negative log-likelihood loss stems from agadailistic formulation
of the learning problem in terms of the maximum conditionadlqability principle.
Given the training sef, we must find the value of the parameter that maximizes the
conditional probability of all the answers given all theuipin the training set. Assum-
ing that the samples are independent, and denoting @y'| X ¢, W) the conditional
probability of Y givenX? that is produced by our model with paramétiér the condi-
tional probability of the training set under the model israglie product over samples:

P
P!, YPIXY X W) = [[POX W), (20)

=1

Applying the maximum likelihood estimation principle, week the value ol that
maximizes the above product, or the one that minimizes tgativelog of the above

product;
P

P
—log [[ POV |X", W) = > —log P(Y'|X*, W), (21)
i=1 =1
Using the Gibbs distribution (Equation 2), we get:

P P
—log [[ POV |X", W) = > BE(W,Y", X") + log / ye—ﬁEWvX? (22)
i=1 i=1 ye

The final form of the negative log-likelihood loss is obtaingy dividing the above
expression by? andg (which has no effect on the position of the minimum):

P
_ - 4 i - —BE(W,y,X")
Lan(W,8) = PZ <E(W,Y X0+ ﬁlog/eye y ) (23)
=1 Yy
While many of the previous loss functions involved oy, Y¢, X?) in their con-
trastive term, the negative log-likelihood loss combinkdte energies for all val-
ues ofY in its contrastive tern# (W, Y, X¢). This term can be interpreted as the
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Helmholtz free energy (log partition function) of the enddenof systems with ener-
giesE(W,Y, X*), Y € Y. This contrastive term causes the energies of all the asswer
to be pulled up. The energy of the correct answer is also guibe but not as hard as it

is pushed down by the first term. This can be seen in the exprestthe gradient for

a single sample:

P(Y|X", W), (24)

OLa(W,Y!, X')  dE(W,Y', X?) _/ OE(W,Y, X"
ow B ow Yey ow
whereP (Y| X W) is obtained through the Gibbs distribution:

e~ BE(W,Y,X")

- —BEW,y,X7) "
fyeye BE(W,y )

P(Y|X' W) (25)

Hence, the contrastive term pulls up on the energy of eackeansith a force propor-
tional to the likelihood of that answer under the model. Unfoately, there are many
interesting models for which computing the integral oyeis intractable. Evaluating
this integral is a major topic of research. Considerabler&ffhave been devoted to ap-
proximation methods, including clever organization of tadculations, Monte-Carlo
sampling methods, and variational methods. While thesbadsthave been devised as
approximate ways of minimizing the NLL loss, they can be \@ehin the energy-based
framework as different strategies for choosing #i'e whose energies will be pulled
up.

Interestingly, the NLL loss reduces to the generalizedgggiron loss whef§ — oo
(zero temperature), and reduces to the log loss (Eq. 12) wheas two elements (e.g.
binary classification).

The NLL loss has been used extensively by many authors urdieus names. In
the neural network classification literature, it is knowrteescross-entropy losgp7]. It
was also used by Bengio et al. to train an energy-based lgeguadel [9]. It has been
widely used under the nammaximum mutual information estimatiéor discrimina-
tively training speech recognition systems since the latg &cluding hidden Markov
models with mixtures of Gaussians [3], and HMM-neural nebrigs [6, 7, 31, 5].

It has also been used extensively for global discriminatia@ing of handwriting

recognition systems that integrate neural nets and hiddarkd¥ models under the
namesmaximum mutual informatiofi1, 41, 12, 42, 14] andiscriminative forward

training [43]. Finally, it is the loss function of choice for trainirgther probabilistic

discriminative sequence labeling models such as inpyt{adiMM [10], conditional

random fields [40], and discriminative random fields [39].

Minimum Empirical Error Loss : Some authors have argued that the negative log
likelihood loss puts too much emphasis on mistakes: Eq. 2pieduct whose value is
dominated by its smallest term. Hence, Ljolje et al. [46]garsed theminimum empir-
ical error loss which combines the conditional probabilities of the sags@dditively
instead of multiplicatively:
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Substituting Equation 2 we get:
efﬁE(W.,Yi,Xi’)

o —BE(W,y,X?) "
fyeye B8 ( Yy )

Linee(W, Y, X%) =1 (27)
As with the MCE loss and the LVQ2 loss, the MEE loss saturdtescontribution
of any single error. This makes the system more robust td latiee and outliers,
which is of particular importance to such applications saslspeech recognition, but
it makes the loss non-convex. As with the NLL loss, MEE regslievaluating the
partition function.

3 Simple Architectures

To substantiate the ideas presented thus far, this secioowstrates how simple mod-
els of classification and regression can be formulated aggitmsed models. This sets
the stage for the discussion of good and bad loss functiarvseli as for the discussion
of advanced architectures for structured prediction.

3

E(W,Y,X) EW,Y,X) E(W,Y,X) =" 8(Y = k)gx
A A YESE

Figure 6: Simple learning models viewed as EBMg) a regressor: The energy is the dis-
crepancy between the output of the regression fundfign(X) and the answel”. The best
inference is simply™* = Gw (X); (b) a simple two-class classifierThe set of possible an-
swers is{—1, +1}. The best inference " = sign(Gw (X)); (c) a multiclass classifier:The
discriminant function produces one value for each of theehrategories. The answer, which
can take three values, controls the position of a “switchhigh connects one output of the dis-
criminant function to the energy function. The best infeesis the index of the smallest output
component ofw (X).

3.1 Regression

Figure 6(a) shows a simple architecture for regressionmetfon approximation. The
energy functionis the squared error between the outputexfression functiotiry (X)
and the variable to be predict&d which may be a scalar or a vector:

EWY, X) = %IIGw(X) — Y|P (28)
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The inference problem is trivial: the value Bfthat minimizesE is equal toGw (X).
The minimum energy is always equal to zero. When used withahshitecture, the
energy loss, perceptron loss, and negative log-likeliHosslare all equivalent because
the contrastive term of the perceptron loss is zero, andofithie NLL loss is constant
(it is a Gaussian integral with a constant variance):

Leneray (W, S) = ZEWYZZ’ 2PZIIGW —YIP (29)

This corresponds to standard regression with mean-sqearad
A popular form of regression occurs whétis a linear function of the parameters:

N
X) =Y wpgn(X) = WHe(X). (30)

The ¢, (X) are a set ofV features andwy, are the components of ai-dimensional
parameter vectdi/. For concision, we use the vector notatidff ®(X ), whereW
denotes the transposeldf, and® (X ) denotes the vector formed by eagh( X). With
this linear parameterization, training with the energylosduces to an easily solvable
least-squares minimization problem, which is convex:

P
W* = argminy, EZHWT‘I)(X)_YHQ . (31)
i=1

In simple models, the feature functions are hand-craftethéyesigner, or separately
trained from unlabeled data. In the dual form of kernel mdthdahey are defined as
or(X) = K(X,X¥), k=1...P,whereK is the kernel function. In more complex
models such as multilayer neural networks and othersptheay themselves be pa-
rameterized and subject to learning, in which case the ssgne function is no longer

a linear function of the parameters and hence the loss famatiay not be convex in

the parameters.

3.2 Two-Class Classifier

Figure 6(b) shows a simple two-class classifier architectihe variable to be pre-
dicted is binary) = {—1, +1}. The energy function can be defined as:
whereGy (X) is a scalar-valuediscriminant functiorparameterized by . Inference
is trivial:
Y* = argminy ¢y 1y — YGw(X) = sign(Gw (X)). (33)
Learning can be done using a number of different loss funstiohich include the

perceptron loss, hinge loss, and negative log-likelihasd.| Substituting Equations 32
and 33 into the perceptron loss (Eq. 7), we get:

Lperceptron(W, S) Z sign(Gw (X)) — Y?) Gw (X7). (34)
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The stochastic gradient descent update rule to minimizadaks is:

IGw (X")

W — W +n (Y - sign(Gw(X")) A

(35)
wheren is a positive step size. If we choo6ky (X) in the family of linear models,
the energy function becomds(W,Y, X) = —YW7T®(X) and the perceptron loss
becomes:

P
Lpercepmron(W,8) = 5 3 (sign(WT (X)) ~ V) WTB(XT),  (30)
z:l

and the stochastic gradient descent update rule becomsiiar perceptron learn-
ingrule: W — W +n (Y7 — sign(W7®(X"))) 2(X7).
The hinge loss (Eg. 11) with the two-class classifier enefgy 82) yields:

P
Linge (W, S) Z max(0, m + 2Y Gy (X?)). (37)
=1

Using this loss withGy (X) = W1 X and a regularizer of the formiiV||? gives the
familiar linear support vector machine.
The negative log-likelihood loss (Eq. 23) with Equation 3&¢s:

Lan(W,S)

"U|’—‘
M“U

[ Vi@ ) + log ( Y'Gw (X" + eiYiGW(Xi))} . (38)
i=1

Using the fact thay) = {—1, +1}, we obtain:

La(W,S) =

|\M~U

(1 i efzyicw(xf‘)) : (39)

which is equivalent to the log loss (Eq. 12). Using a lineadei@s described above,
the loss function becomes:

Loa(W,8) =

”M“

(1 i 6—2YiWT<I>(Xi)) . (40)

This particular combination of architecture and loss isftrailiar logistic regression
method.

3.3 Multiclass Classifier

Figure 6(c) shows an example of architecture for multictdassification for 3 classes.
A discriminant functionGy (X) produces an output vect@y, g, . - . , gc| with one
component for each of th€' categories. Each componegit can be interpreted as
a “penalty” for assigningX to the j'* category. A discrete switch module selects
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which of the components is connected to the output energypbiition of the switch
is controlled by the discrete variablé € {1,2,...,C}, which is interpreted as the
category. The output energy is equal lgW,Y, X ) = ch:l 0(Y — j)g;, where
6(Y — j) is the Kronecker delta functiorfi(u) = 1 for u = 0; 6(u) = 0 otherwise.
Inference consists in settirlg to the index of the smallest component@fy (X).

The perceptron loss, hinge loss, and negative log-likelihimss can be directly

translated to the multiclass case.
3.4 Implicit Regression
EW,Y, X)
!
‘ G, (X) = G, (V) 2,

f

GlWx (X) GZWQ (Y)
! I
| |
X Y

Figure 7: The implicit regression architectureX andY are passed through two functions
G1yy, andGay,, . This architecture allows multiple values ¥fto have low energies for a given

The architectures described in the previous section anglsifunctions oft” with a
single minimum within the se€Y. However, there are tasks for which multiple answers
are equally good. Examples include robot navigation, wihém@ng left or right may
getaround an obstacle equally well, or a language modelichithe sentence segment
“the cat ate the” can be followed equally well by “mouse” oirtfj.

More generally, the dependency betweérmndY sometimes cannot be expressed
as a function that map% to Y (e.g., consider the constraiii® +Y? = 1). In this case,
which we callimplicit regressionwe model the constraint thaf andY must satisfy
and design the energy function such that it measures thatinlof the constraint.
Both X andY can be passed through functions, and the energy is a funatithreir
outputs. A simple example is:

1
E(W,Y, X) = 5[|Gx (Wx, X) = Gy (Wy, V)|, (41)
For some problems, the functi@iy must be different from the functio@y-. In
other cases(zx andGy must be instances of the same funct@@n An interesting

example is th&iamesarchitecture [18]: variableX; and X, are passed through two
instances of a functiof'y,. A binary labelY” determines the constraint @y (X)
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and Gy (X2): if Y = 0, Gw(X1) andGw (X2) should be equal, and ¥ = 1,
Gw(X1) andGw (X2) should be different. In this way, the regression’®dnand X,

is implicitly learned through the constraiit rather than explicitly learned through
supervision. Siamese architectures are used to learnasitpimetrics with labeled
examples. When two input samplég and X, are known to be similar (e.g. two
pictures of the same person),= 0; when they are different] = 1.

Siamese architectures were originally designed for sigeaverification [18].
More recently they have been used with the square-exp@iéods (Eq. 17) to learn
a similarity metric with application to face recognitiorf]1 They have also been used
with the square-square loss (Eq. 16) for unsupervisedilgguof manifolds [30].

In other applications, a single non-linear function conelsif andY". An example
of such architecture is the trainable language model of Beegal [9]. Under this
model, the inputX is a sequence of a several successive words in a text, and the
answerY is the the next word in the text. Since many different words ftdlow a
particular word sequence, the architecture must allow iplalvalues ofY” to have
low energy. The authors used a multilayer neural net as theitn G(W, X,Y"), and
chose to train it with the negative log-likelihood loss. Bese of the high cardinality
of ) (equal to the size of the English dictionary), they had to agproximations
(importance sampling) and had to train the system on a clostehine.

The current section often referred to architectures in tvttie energy was linear or
quadratic inlW, and the loss function was convexlifi, but it is important to keep in
mind that much of the discussion applies equally well to nam@plex architectures,
as we will see later.

4 Latent Variable Architectures

Energy minimization is a convenient way to represent theggmprocess of reasoning
and inference. In the usual scenario, the energy is mininiziéh respect to the vari-
ables to be predicteH, given the observed variablés. During training, the correct
value ofY is given for each training sample. However there are nunseapplications
where it is convenient to use energy functions that deperals®t of hidden variables
Z whose correct value is never (or rarely) given to us, eveinduraining. For ex-
ample, we could imagine training the face detection systepioted in Figure 2(b)
with data for which the scale and pose information of the $asenot available. For
these architectures, the inference process for a giveri satiablesX andY” involves
minimizing over these unseen variablés

E(Y.X) = min E(Z,Y, X). (42)

Such hidden variables are callledent variablesby analogy with a similar conceptin
probabilistic modeling. The fact that the evaluationHy(fY, X) involves a minimiza-
tion overZ does not significantly impact the approach described stiarthe use of
latent variables is so ubiquitous that it deserves spa@atment.

In particular, some insight can be gained by viewing therifee process in the

20



presence of latent variables as a simultaneous minimizatierY” and 2
Y* = argminYeyﬂzezE(Z, Y, X) (43)

Latent variables can be viewed as intermediate results @méy to finding the best
outputY”. Atthis point, one could argue that there is no conceptutdréince between
the Z andY variables:Z could simply be folded intd”. The distinction arises during
training: we are given the correct value¥ffor a number of training samples, but we
are never given the correct value 6f

Latent variables are very useful in situations where a mdderacteristic of the
process being modeled can be inferred from observatiomgamnot be predicted di-
rectly. One such example is in recognition problems. Formgta, in face recognition
the gender of a person or the orientation of the face coulddtent variable. Knowing
these values would make the recognition task much easi@wlise in invariant object
recognition the pose parameters of the object (locatiaentation, scale) or the illumi-
nation could be latent variables. They play a crucial rolprisblems where segmenta-
tion of the sequential data must be performed simultangavith the recognition task.
A good example is speech recognition, in which the segmentaf sentences into
words and words into phonemes must take place simultanewitsl recognition, yet
the correct segmentation into phonemes is rarely avaithlriag training. Similarly, in
handwriting recognition, the segmentation of words intareleters should take place
simultaneously with the recognition. The use of latentalales in face recognition is
discussed in this section, and Section 7.3 describes & leiable architecture for
handwriting recognition.

4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consitiertask of face detection,
beginning with the simple problem of determining whetheaeefis present or not in
a small image. Imagine that we are provided with a face degeéinctionGyace(X)
which takes a small image window as input and produces arsgcatput. It outputs
a small value when a human face fills the input image, and & heatpe if no face is
present (or if only a piece of a face or a tiny face is presefit).energy-based face
detector built around this function is shown in Figure 8{&)e variableY” controls the
position of a binary switchl( = “face”, 0 = “non-face”). The output energy is equal
t0 Grace(X) whenY = 1, and to a fixed threshold val@e@whenY = 0:

E(Y,X) = YGree(X)+ (1 - Y)T.

The value ofY” that minimizes this energy function Is(face) if Gr...(X) < T and0
(non-face) otherwise.

Let us now consider the more complex tasldefecting and locating single face
in a large image. We can apply oG¥%...(X) function to multiple windows in the large
image, compute which window produces the lowest valu&gf.(X ), and detect a
face at that location if the value is lower thdh This process is implemented by
the energy-based architecture shown in Figure 8(b). Tlatidtocation” variableZ
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Figure 8: (a): Architecture of an energy-based face detector. Given amgéma outputs a
small value when the image is filled with a human face, and h Wédue equal to the threshold
T when there is no face in the imagéb): Architecture of an energy-based face detector that
simultaneously locates and detects a face in an input imggesimg the location of the face as
a latent variable.

selects which of thé( copies of the7,.. function is routed to the output energy. The
energy function can be written as

K
E(ZY,X) =Y | 8(Z = k)Grace(Xx) | + (1= YT, (44)
k=1

where theX,’s are the image windows. Locating the best-scoring locatidhe image
consists in minimizing the energy with respecftfcand Z. The resulting value ot
will indicate whether a face was found, and the resultingigaif Z will indicate the
location.

4.2 Probabilistic Latent Variables

When the best value of the latent variable for a giweandY” is ambiguous, one may
consider combining the contributions of the various pdssitalues by marginalizing
over the latent variables instead of minimizing with redgie¢hose variables.

When latent variables are present, the joint conditionstrithution overY and Z
given by the Gibbs distribution is:

e—BE(Z,Y.X)

P(Z,Y|X)= fyey — RGN

(45)
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Marginalizing overZ gives:

f ez e—BE(Z,YX)
z

PY|X) = — . (46)
fyey, ez € PEWEX)
Finding the best” after marginalizing ove# reduces to:
1
Y™ = argminy ¢y — — log/ e BEGEY.X) 47)
ﬁ z2€EZ

This is actually a conventional energy-based inferencéiickmthe energy function has
merely been redefined froi(Z, Y, X) to F(2) = —% log [, e #P=Y-X), which

is thefree energyf the ensemblé E(z,Y, X), z € Z}. The above inference formula
by marginalization reduces to the previous inference fdany minimization when
B — oo (zero temperature).

5 Analysis of Loss Functions for Energy-Based Models

This section discusses the conditions that a loss functiost satisfy so that its mini-
mization will result in a model that produces the correctaars. To give an intuition
of the problem, we first describe simple experiments in wigigttain combinations of
architectures and loss functions are used to learn a sinapdeset, with varying results.
A more formal treatment follows in Section 5.2.

5.1 “Good” and “Bad” Loss Functions

Consider the problem of learning a function that computesstijuare of a number:
Y = f(X), wheref(X) = X2. Though this is a trivial problem for a learning
machine, it is useful for demonstrating the issues invoiveithe design of an energy
function and loss function that work together. For the failog experiments, we use
a training set 000 samples( X%, V') whereY® = X#*, randomly sampled with a
uniform distribution between-1 and+1.

First, we use the architecture shown in Figure 9(a). Thetidpis passed through
a parametric functiordy, which produces a scalar output. The output is compared
with the desired answer using the absolute value of therdifige (.1 norm):

EW,Y, X) = ||Gw(X) =Y. (48)

Any reasonable parameterized family of functions could seduforGy,. For these
experiments, we chose a two-layer neural network with 1 tinit, 20 hidden units
(with sigmoids) and 1 output unit. Figure 10(a) shows théahshape of the energy
function in the space of the variabl&sandY’, using a set of random initial parameters
W. The dark spheres mark the location of a few training samples

First, the simple architecture is trained with the energgI(Eq. 6):

P P
1 S 1
Lenergy(W,S) = Iz E EW,)Y', X") = B E [|IGw (X) =Y. (49)
i=1 i=1
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Figure 9:(a): A simple architecture that can be trained with thieergyloss. (b): An implicit
regression architecture wher® andY” are passed through functior@s, ,,, andGz,,, respec-
tively. Training this architecture with the energy loss sas a collapse (a flat energy surface). A
loss function with a contrastive term corrects the problem.

This corresponds to a classical form of robust regressibe.l@arning process can be
viewed as pulling down on the energy surface at the locafitmedraining samples (the
spheres in Figure 10), without considering the rest of thiatpmn the energy surface.
The energy surface as a functioni6for any X has the shape of a V with fixed slopes.
By changing the functioidry, (X ), the apex of that V can move around for different
X®. The loss is minimized by placing the apex of the V at the pasit” = X2 for
any value ofX, and this has the effect of making the energies of all othewans
larger, because the V has a single minimum. Figure 10 shasvsttape of the energy
surface at fixed intervals during training with simple stasfic gradient descent. The
energy surface takes the proper shape after a few iteratiwasgh the training set.
Using more sophisticated loss functions such as the NLL dogke perceptron loss
would produce exactly the same result as the energy lossibecwith this simple
architecture, their contrastive term is constant.

Consider a slightly more complicated architecture, shawhigure 9(b), to learn
the same dataset. In this architectufeis passed through functiof¥;,,, andY is
passed through functio@'s,,,. For the experiment, both functions were two-layer
neural networks with 1 input unit, 10 hidden units and 10 autmits. The energy is
the L,; norm of the difference between their 10-dimensional owtput

EW,X,Y) = [|Gry, (X) = Gay, (V)]]1, (50)

whereW = [W;Ws]. Training this architecture with the energy loss resulta aol-
lapseof the energy surface. Figure 11 shows the shape of the esarfpce during
training; the energy surface becomes essentially flat. \Wasthappened? The shape
of the energy as a function &f for a givenX is no longer fixed. With the energy loss,
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Figure 10:The shape of the energy surface at four intervals while ingjnthe system in Fig-
ure 9(a) with stochastic gradient descent to minimizeghergy loss The X axis is the input,
and theY axis the output. The energy surface is shown (a) at the staraiming, (b) after 10
epochs through the training set, (c) after 25 epochs, anaftd)y 39 epochs. The energy surface
has attained the desired shape where the energy aroundricgasamples (dark spheres) is low
and energy at all other points is high.

there is no mechanism to prevert andG, from ignoring their inputs and producing
identical output values. This results in the collapsedtsmiu the energy surface is flat
and equal to zero everywhere.

(b) (d)

Figure 11:The shape of the energy surface at four intervals while ingjthe system in Fig-
ure 9(b) using the energy loss. Along tReaxis is the input variable and along thé axis is the
answer. The shape of the surface (a) at the start of the rginib) after 3 epochs through the
training set, (c) after 6 epochs, and (d) after 9 epochs. Qyethe energy is collapsing to a flat
surface.

Now consider the same architecture, but trained witrstieare-squaréoss:

LW,Y', X') = E(W,Y", X")? — (maz(0,m — E(W,Y",X"))".  (51)
Herem is a positive margin, andl? is the most offending incorrect answer. The second
term in the loss explicitly prevents the collapse of the gpdry pushing up on points
whose energy threatens to go below that of the desired an$sigure 12 shows the
shape of the energy function during training; the surfacesssfully attains the desired
shape.

Another loss function that works well with this archite@us thenegative log-

likelihoodloss:

LW, Y', X)) = BE(W, Y, X?) + %log (/ ye—ﬁEWM”) . (52)
ye
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Figure 12:The shape of the energy surface at four intervals while ingjnthe system in Fig-
ure 9(b) usingsquare-squarkess. Along the x-axis is the variahlé and along the y-axis is the
variable Y. The shape of the surface at (a) the start of the trainingaftgr 15 epochs over the
training set, (c) after 25 epochs, and (d) after 34 epochse @ergy surface has attained the
desired shape: the energies around the training sampletoarend energies at all other points
are high.

Figure 13:The shape of the energy surface at four intervals while ingjrthe system in Fig-
ure 9(b) using the negative log-likelihood loss. Along #heauxis is the input variable and along
theY axis is the answer. The shape of the surface at (a) the stardioing, (b) after 3 epochs
over the training set, (c) after 6 epochs, and (d) after 11obgo The energy surface has quickly
attained the desired shape.

The first term pulls down on the energy of the desired answiitewthe second term
pushes up on all answers, particularly those that have thesibenergy. Note that
the energy corresponding to the desired answer also apipeiues second term. The
shape of the energy function at various intervals using ggative log-likelihood loss
is shown in Figure 13. The learning is much faster than thesgaquare loss. The
minimum is deeper because, unlike with the square-squssetloe energies of the in-
correct answers are pushed up to infinity (although with aesesing force). However,
each iteration of negative log-likelihood loss involvesisierably more work because
pushing up every incorrect answer is computationally ezjenwhen no analytical
expression for the derivative of the second term exists.hig éxperiment, a simple
sampling method was used: the integral is approximated lyraaf 20 points regu-
larly spaced between -1 and +1 in tHalirection. Each learning iteration thus requires
computing the gradient of the energy at 20 locations, vePslaggeations in the case
of the square-square loss. However, the cost of locatingnib&t offending incorrect
answer must be taken into account for the square-square loss

An important aspect of the NLL loss is that it is invariant tolgal shifts of energy
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values, and only depends on differences between the es@ftfieeY's for a givenX.
Hence, the desired answer may have different energiesfferatit X, and may not be
zero. This has an important consequertbe:quality of an answer cannot be measured
by the energy of that answer without considering the ensrgiall other answers.

In this section we have seen the results of training four doattons of architec-
tures and loss functions. In the first case we used a simplétecture along with a
simple energy loss, which was satisfactory. The consgamthe architecture of the
system automatically lead to the increase in energy of ureteanswers while de-
creasing the energies of the desired answers. In the seeseda& more complicated
architecture was used with the simple energy loss and th&imacollapsed for lack
of a contrastive term in the loss. In the third and the fouabecthe same architecture
was used as in the second case but with loss functions cargairplicit contrastive
terms. In these cases the machine performed as expectediamat dollapse.

5.2 Sufficient Conditions for Good Loss Functions

In the previous section we offered some intuitions abouttvhdss functions are good
and which ones are bad with the help of illustrative expenitseln this section a more
formal treatment of the topic is given. First, a set of sudfiticonditions are stated.
The energy function and the loss function must satisfy tlveselitions in order to be
guaranteed to work in an energy-based setting. Then wesdishe quality of the loss
functions introduced previously from the point of view oé#e conditions.

5.3 Conditions on the Energy

Generally in energy-based learning, the inference metlnadses the answer with
minimum energy. Thus the condition for the correct infeeean a sampléX?, Y?) is
as follows.

Condition 1 For sample(X‘, Y?), the machine will give the correct answer f&¥ if

EW, Y, X)) < E(X,Y,X"),YY €¢Yand Y #Y". (53)

In other words, the inference algorithm will give the cotragswer if the energy of the
desired answeY" is less than the energies of all the other answers

To ensure that the correct answer is robustly stable, we inagse to impose that
its energy be lower than energies of incorrect answers bysiiy® marginm. If Y
denotes the most offending incorrect answer, then the tondor the answer to be
correct by a margim is as follows.

Condition 2 For a variableY and samplé X*, Y*) and positive margimn, the infer-
ence algorithm will give the correct answer & if

EW,Y", X)) < E(W,Y", X") —m. (54)
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5.4 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the lossiturad should be designed in
such a way that minimizing it will causB(W, Y'?, X?) to be lower tharE (W, Y, X%)
by some margimn. Since only the relative values of those two energies mattonly
need to consider the shape of a slice of the loss functiorthki2D space of those two
energies. For example, in the case whEris the set of integers frorhto &, the loss
functional can be written as:

LW, Y , X" = L(Y', EOW,1, X", ..., E(W,k, X")). (55)

The projection of this loss in the space BfW,Y?, X%) and E(W,Y?, X*) can be
viewed as a functioy) parameterized by the othkr— 2 energies:

LW, Y", X") = Qg (E(W,Y", X"), E(W,Y", X")), (56)

where the parametéF, | contains the vector of energies for all valuesoéxcepty
andY’.
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Figure 14:Figure showing the various regions in the plane of the twagies Ec and E;. Ec
are the (correct answer) energies associated WiXtt, Y*), and E; are the (incorrect answer)
energies associated wittX ¢, Y*).

We assume the existence of at least one set of parani€téwss which condition 2
is satisfied for a single training samgl& ¢, Y'?). Clearly, if such d¥ does not exist,
there cannot exist any loss function whose minimizationldiéead to condition 2. For
the purpose of notational simplicity let us denote the epét@iV, Y*, X*) associated
with the training sampléX®, Y?) by E¢ (as in “correct energy”) and (W, Y, X?)
by E; (as in “incorrect energy”). Consider the plane formedAy and E;. As an
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illustration, Figure 17(a) shows a 3-dimensional plot &thuare-squaréss function
in which the abscissa i8¢ and the ordinate i&;. The third axis gives the value of
the loss for the corresponding values Bf and E;. In general, the loss function
is a family of 2D surfaces in this 3D space, where each surdaceesponds to one
particular configuration of all the energies excépt and E;. The solid red line in the
figure corresponds to the points in the 2D plane for whigh= E;. The dashed blue
line correspond to the margin lidé; +m = E;. Letthe two half plane&c+m < Ej
andEq +m > E; be denoted by P, and H P, respectively.

Let R be thefeasible regiondefined as the set of valuéE¢, E;) corresponding
to all possible values of’ € W. This region may be non-convex, discontinuous,
open, or one-dimensional and could lie anywhere in the plétne shown shaded in
Figure 14. As a consequence of our assumption that a soletists which satisfies
conditions 2,R must intersect the half plané P; .

Let two points(ey,e2) and (e}, e5) belong to the feasible regioR, such that
(e1,e2) € HP; (thatis,e; +m < e3) and(e), eb) € HP, (thatis,ef +m > e5). We
are now ready to present the sufficient conditions on theflosstion.

Condition 3 Let (X, Y?) be thei'” training example andn be a positive margin.
Minimizing the loss functioi, will satisfy conditions 1 or 2 if there exists at least one
point(e1, e2) with e; + m < ey such that for all pointge’, e5) with e} + m > €}, we
have

Qe (e1,e2) < Qip,) (€], €5), (57)

whereQ g, is given by

LW, Y", X") = Qg )(E(W,Y', X"), E(W,Y", X")). (58)

In other words, the surface of the loss function in the spdcB®and E; should be
such that there exists at least one point in the part of thelflsaregionR intersecting
the half plane/d P, such that the value of the loss function at this point is lbas tits
value at all other points in the part &fintersecting the half plan& P.

Note that this is only a sufficient condition and not a necgssandition. There
may be loss functions that do not satisfy this condition bbhbge minimization still
satisfies condition 2.

5.5 Which Loss Functions are Good or Bad

Table 1 lists several loss functions, together with the eafithe margin with which
they satisfy condition 3. The energy loss is marked “non&aoese it does not satisfy
condition 3 for a general architecture. The perceptron dmekthe LVQ2 loss satisfy
it with a margin of zero. All others satisfy condition 3 wittstictly positive value of
the margin.
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Table 1: A list of loss functions, together with the margin which afothem to satisfy con-
dition 3. A margin> 0 indicates that the loss satisfies the condition for any #jripositive
margin, and “none” indicates that the loss does not satis#y tondition.

Loss (equation #) | Formula Margin
energy loss (6) E(W, Y XY none
perceptron (7) E(W,Y% X%) — minyey BE(W,Y, X?) 0
hinge (11) max (0,m + E(W,Y", X1) — E(W,Y?, X%)) m
log (12) log (14 B0V X0 BT LX) >0
LVQ2 (13) min (M, max(0, E(W, Y, X%) — E(W,Y?, X*)) 0
MCE (15) (1 + e*(EWW7X1‘>*E<W=YivX1‘>)) B >0
square-square (16) E(W,Y?, X")? — (max(0,m — E(W,Y?, Xi)))2 m
square-exp (17) | E(W,Y*, X1)2 4 e~ B(W.Y'.XH) >0
NLL/MMI (23) E(W,Y", X%) + Llog [ ), e PEWwX") >0
MEE (27) 1 — e BEWYSLXYY Jyey e PEW.y,X7) >0

5.5.1 Energy Loss

The energy loss is a bad loss function in general, but thereatain forms of energies
for which it is a good loss function. For example consider aargy function of the
form

BW, Y, X') 26 BIIT* - G (X, (59)

This energy passes the output of the functigy through K radial basis functions
(one corresponding to each class) whose centers are thas@ét If the centerd/*
are fixed and distinct then the energy loss satisfies comditend hence is a good loss
function.

To see this, consider the two-class classification caseréhsoning fork’ > 2
follows along the same lines). The architecture of the sgsseshown in Figure 15.

Letd = ||[U—U?||%, dy = ||[U'-Gw (X?)||?, anddy = ||U?—Gw (X?)||. Since
U' andU? are fixed and distinct, there is a strictly positive lower bdwnd; + ds
for all Gy. Being only a two-class problent;c and E; correspond directly to the
energies of the two classes. In thE-, E;) plane no part of the loss function exists
in whereE- + E; < d. The region where the loss function is defined is shaded in
Figure 16(a). The exact shape of the loss function is shovirigare 16(b). One can
see from the figure that as long @s> m, the loss function satisfies condition 3. We
conclude that this is a good loss function.
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2
EW,Y.X) = 6(Y —k)-|[U* - Gw (X)|]
k=1
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Figure 15: The architecture of a system where two RBF units with ceritérand U? are
placed on top of the machir@w, to produce distanceg; anddx.
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Figure 16:(a): When using the RBF architecture with fixed and distinct RBfers, only the
shaded region of theFE ¢, Er) plane is allowed. The non-shaded region is unattainablabse
the energies of the two outputs cannot be small at the sanee flihe minimum of the energy
loss is at the intersection of the shaded region and veragés. (b): The 3-dimensional plot of
the energy loss when using the RBF architecture with fixeddistihct centers. Lighter shades
indicate higher loss values and darker shades indicate toxakies.
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However, when the RBF centetg' andU? are not fixed and are allowed to be
learned, then there is no guarantee thatt- do > d. Then the RBF centers could
become equal and the energy could become zero for all in@stslting in a collapsed
energy surface. Such a situation can be avoided by havingteastive term in the loss
function.

5.5.2 Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Tdrerdf could lead to a

collapsed energy surface and is not generally suitabledorihg energy-based models.
However, the absence of a margin is not always fatal [43,2it$t, the set of collapsed
solutions is a small piece of the parameter space. Secahdugh nothing prevents
the system from reaching the collapsed solutions, nothimgsl the system toward
them either. Thus the probability of hitting a collapsedusioh is quite small.

5.5.3 Generalized Margin Loss

08
Enerd)ys: EI 0.4 Dénergy: Ec

EC :EI

Ec+m:EI

(@) (b)

Figure 17: (a) The square-squaréoss in the space of energigs- and E;). The value of
the loss monotonically decreases as we move b into H P, indicating that it satisfies
condition 3. (b) Thesquare-exponentidbss in the space of energida- and E;). The value
of the loss monotonically decreases as we move fiafs into H P, indicating that it satisfies
condition 3.

We now consider thequare-squarend square-exponentidbsses. For the two-
class case, the shape of the surface of the losses in theapBigeand £ is shown in
Figure 17. One can clearly see that there exists at least@ng(p,, e2) in HP; such
that

Qig,)(e1,€2) < Qqp,(€}, €5), (60)
for all points(ef, €) in H P,. These loss functions satisfy condition 3.
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5.5.4 Negative Log-Likelihood Loss

It is not obvious that the negative log-likelihood loss sfis condition 3. The proof
follows.
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Figure 18:Figure showing the direction of gradient of the negative-lizgglihood loss in the
feasible regionR in the space defined by the two energias and E;.

For any fixed parameté¥ and a sampl¢X?, Y'*) consider the gradient of the loss
with respect to the energyc of the correct answer? and the energy¥; of the most
offending incorrect answér®. We have

o = OLW,Y', X') _ e P , (61)
9Ec S ey e BT XD
and o
g = LWYLX) P (62)
OET Zyey e~ EW,Y,X?)"

Clearly, for any value of the energieg; > 0 andg; < 0. The overall direction of
the gradient at any point in the spaceff and E; is shown in Figure 18. One can
conclude that when going froi P, to H Py, the loss decreases monotonically.

Now we need to show that there exists at least one poihtih at which the loss
is less than at all the points HH P». Let A = (Ef, Ef + m) be a point on the margin
line for which the loss is minimumgy, is the value of the correct energy at this point.
That is,

Eé = argmin{Q[Ey] (Ec, Ec + m)} (63)

Since from the above discussion, the negative of the gradiethe lossQ|z,; at all
points (and in particular on the margin line) is in the dir@etwhich is insideH P;, by
monotonicity of the loss we can conclude that

Qe (EG, EG +m) < Qe (Ec, Er), (64)
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whereEs +m > Ej.
Consider a poinB at a distance away from the pointE¢, Ef + m), and inside
H Py (see Figure 18). That is the point

(E& — e, B +m +e). (65)
Using the first order Taylor's expansion on the value of thes lat this point, we get

Qe,)(E6 — 6 EG +m +¢)

. g Q) | 0Qm, 5
- Q[Ey](EC’EC+m) — € 8EC +e 3E1 +O(€ )
- 0Qe,) Q]| —1 )
= Q) (Ee. Bo+m) + e —5p + —p } 1 +0(e%).  (66)

From the previous discussion the second term on the rigltt side is negative. So for
sufficiently smalle we have

Qie,|(Ec — 6, E& + m +¢€) < Qg (Ec, E¢ +m). (67)

Thus we conclude that there exists at least one poif i at which the loss is less
than at all points i Ps.

Note that the energy of the most offending incorrect ansiijeis bounded above
by the value of the energy of the next most offending incdraeswer. Thus we only
need to consider a finite range Bf’s and the point3 cannot be at infinity.

6 Efficient Inference: Non-Probabilistic Factor Graphs

This section addresses the important issue of efficientggriessed inference. Se-
guence labeling problems and other learning problem witicgired outputs can often
be modeled using energy functions whose structure can Beieedgfor efficient infer-
ence algorithms.

Learning and inference with EBMs involves a minimizatiorttoé energy over the
set of answer®’ and latent variableg€. When the cardinality o) x Z is large, this
minimization can become intractable. One approach to tbblpm is to exploit the
structure of the energy function in order to perform the mization efficiently. One
case where the structure can be exploited occurs when thigyecan be expressed
as a sum of individual functions (called factors) that eagpeshd on different subsets
of the variables iy and Z. These dependencies are best expressed in the form of a
factor graph[55, 47]. Factor graphs are a general form of graphical nmaelbelief
networks.

Graphical models are normally used to represent probgaditributions over vari-
ables by directly encoding the dependency relationshipsd®n variables. At first
glance, it is difficult to dissociate graphical models frorolpabilistic modeling (wit-
ness their original name: “Bayesian networks”). Howewatdr graphs can be studied
outside the context of probabilistic modeling, and EBM teag applies to them.
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Figure 19:Top: A log domain factor graph. The energy is a sum of factbas take differ-
ent subsets of variables as inputs. Bottom: Each possibiigroation of Z and Y can be
represented by a path in a trellis. Hef& , Z», andY; are binary variables, whil&> is ternary.
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A simple example of a factor graph is shown in Figure 19 (tdjh)e energy func-
tion is the sum of four factors:

E(Y,Z,X)=FE.X,Z1) + Ey(X, Z1,Z2) + Ec(Z2,Y1) + E4(Y1,Y2),  (68)

whereY = [Y1, Ys] are the output variables atifl= [Z;, Z,] are the latent variables.
Each factor can be seen as representing soft constraimiedrethe values of its input
variables. The inference problem consists in finding:

(Y,Z) = argmingcy ez (Ea(X,21) + Ep(X, 21, 22) + Ec(22,y1) + Ea(y1,92)) -

(69)
This factor graph representsstructured outpuproblem, because the factér; en-
codes dependencies betwééhandY 2 (perhaps by forbidding certain combinations
of values).

Let's assume that, Z, andY; are discrete binary variables, alig is a ternary
variable. The cardinality of the domain &f is immaterial sinceX is always observed.
The number of possible configurations@fandY given X is2 x 2 x 2 x 3 = 24.

A naive minimization algorithm through exhaustive searauls evaluate the entire
energy function 24 times (96 single factor evaluations)wkleer, we notice that for a
given X, E, only has two possible input configurations; = 0 andZ; = 1. Sim-
ilarly, F, and E. only have 4 possible input configurations, ahg has 6. Hence,
there is no need for more th&w 4 + 4 + 6 = 16 single factor evaluations. The set
of possible configurations can be represented by a graplel({@)tas shown in Fig-
ure 19 (bottom). The nodes in each column represent thelpessilues of a single
variable. Each edge is weighted by the output energy of ttterfdor the correspond-
ing values of its input variables. With this representatimisingle path from the start
node to the end node represents one possible configuratialhtbie variables. The
sum of the weights along a path is equal to the total energghfocorresponding con-
figuration. Hence, the inference problem can be reducedaaisimg for the shortest
path in this graph. This can be performed using a dynamicraroming method such
as the Viterbi algorithm, or the A* algorithm. The cost is postional to the number
of edges (16), which is exponentially smaller than the nunobg@aths in general. To
computeE(Y, X) = min,cz E(Y, z, X ), we follow the same procedure, but we re-
strict the graph to the subset of arcs that are compatible thvé prescribed value of
Y.

The above procedure is sometimes calledrttie-sum algorithmand it is the log
domain version of the traditional max-product for graphinadels. The procedure can
easily be generalized to factor graphs where the factossradre than two variables
as inputs, and to factor graphs that have a tree structuteaith®f a chain structure.
However, it only applies to factor graphs that are bipattites (with no loops). When
loops are present in the graph, the min-sum algorithm mag aivapproximate solu-
tion when iterated, or may not converge at all. In this casleszent algorithm such as
simulated annealing could be used.

As mentioned in Section 4, variables can be handled throuiglmization or
through marginalization. The computation is identicalhte bne required for comput-
ing the contrastive term of the negative log-likelihoodsidthe log partition function),
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hence we will make no distinctions. The contrastive ternhariegative log-likelihood
loss function is:

—llog/ e PE(ZY.X) (70)
ﬁ Yey, zeZ
or simply
1 _BE(Y,X)
——log e ) (71)
B vey

when no latent variables are present.

At first, this seems intractable, but the computation carab®fized just like with
the min-sum algorithm. The result is the so-caliedvard algorithmin the log domain.
Values are propagated forward, starting at the start nodbeteft, and following the
arrows in the trellis. Each nodecomputes a quantity;:

1
ap = —=logy e AlBritai) (72)
£=-3 27:

whereFE;; is the energy attached to the edge linking ngde nodek. The finalx at
the end node is the quantity in Eq. 70. The procedure redodke min-sum algorithm
for large values of.

In a more complex factor graph with factors that take more tha variables as
input, or that have a tree structure, this procedure gemesato a non-probabilistic
form of belief propagation in the log domain. For loopy graptihe procedure can be
iterated, and may lead to an approximate value for Eq. 70cdnverges at all [62].

The above procedures are an essential component for cotirstyumodels with
structures and/or sequential output.

6.1 EBMs versus Internally Normalized Models

It is important to note that at no point in the above discussiol we need to manip-
ulate normalized probability distributions. The only gtiaes that are manipulated
are energies. This is in contrast with hidden Markov modetsteaditional Bayesian
nets. In HMMs, the outgoing transition probabilities of aleanust sum to 1, and the
emission probabilities must be properly normalized. Thisuges that the overall dis-
tribution over sequences is normalized. Similarly, in dieel Bayesian nets, the rows
of the conditional probability tables are normalized.

EBMs manipulate energies, so no normalization is neces¥dhen energies are
transformed into probabilities, the normalization o¥eoccurs as the very last step in
the process. This idea ¢dte normalizationsolves several problems associated with
the internal normalization of HMMs and Bayesian nets. That firoblem is the so-
calledlabel bias problemfirst pointed out by Bottou [13]: transitions leaving a give
state compete with each other, but not with other transtinthe model. Hence, paths
whose states have few outgoing transitions tend to haveshjgtobability than paths
whose states have many outgoing transitions. This seematilartificial constraint.
To circumvent this problem, a late normalization schemefirsisproposed by Denker
and Burges in the context of handwriting and speech reciogri23]. Another flavor
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of the label bias problem is thissing probability mass problediscussed by LeCun
et al. in [43]. They also make use of a late normalization sehéo solve this prob-
lem. Normalized models distribute the probability mass agall the answers that
are explicitly modeled by the system. To cope with “junk” dher unforeseen and
un-modeled inputs, designers must often add a so-chdelground moddhat takes
some probability mass away from the set of explicitly-medeinswers. This could be
construed as a thinly disguised way of removing the norrafibna constraint. To put it
another way, sincevery explicit normalization is another opportunity forsimandling
unforeseen eventsne should strive to minimize the number of explicit norizetions
in a model. A recent demonstration of successful handlindp@flabel bias problem
through normalization removal is the comparison betweeximmam entropy Markov
models by McCallum, Freitag and Pereira [48], and condi#tisandom fields by Laf-
ferty, McCallum and Pereira [40].

The second problem is controlling the relative importanicprobability distribu-
tions of different natures. In HMMs, emission probabiltiare often Gaussian mix-
tures in high dimensional spaces (typically 10 to 100), eiansition probabilities
are discrete probabilities over a few transitions. The dyicaange of the former
is considerably larger than that of the latter. Hence ttarsprobabilities count for
almost nothing in the overall likelihood. Practitionerseof raise the transition prob-
abilities to some power in order to increase their influen€his trick is difficult to
justify in a probabilistic framework because it breaks themalization. In the energy-
based framework, there is no need to make excuses for brptilerrules. Arbitrary
coefficients can be applied to any subset of energies in tidemadhe normalization
can always be performed at the end.

The third problem concerns discriminative learning. Disdnative training often
uses iterative gradient-based methods to optimize the Ibissoften complicated, ex-
pensive, and inefficient to perform a normalization stepragach parameter update by
the gradient method. The EBM approach eliminates the pnol3]. More impor-
tantly, the very reason for internally normalizing HMMs aBédyesian nets is some-
what contradictory with the idea of training them discriedimely. The normalization
is only necessary for generative models.

7 EBMs for Sequence Labeling and Structured Out-
puts

The problem of classifying or labeling sequences of symboksequences of vectors
has long been a topic of great interest in several technaahtunities. The earliest
and most notable example is speech recognition. Discrim&kearning methods were
proposed to train HMM-based speech recognition systemiseirate 1980's [3, 46].
These methods for HMMs brought about a considerable impnew¢in the accuracy
of speech recognition systems, and remains an active tbpésearch to this day.
With the appearance of multi-layer neural network trainprgcedures, several
groups proposed combining neural networks and time alighnmmethods for speech
recognition. The time alignment was implemented eitheoubh elastic template
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matching (Dynamic Time Warping) with a set of reference vgpmtr using a hidden
Markov model. One of the main challenges was to design agriated training method
for simultaneously training the neural network and the tatignment module. In the
early 1990's, several authors proposed such methods fobicimy neural nets and
dynamic time warping [25, 26, 28, 27, 24], as well as for camry neural net and
HMM [6, 17, 13, 32, 33, 7, 34, 31, 24, 52, 38]. Extensive listsaferences on the
topic are available in [49, 5]. Most approaches used one miinaal convolutional
networks {ime-delay neural networks$o build robustness to variations of pitch, voice
timbre, and speed of speech. Earlier models combined distative classifiers with
time alignment, but without integrated sequence-levéting [56, 50, 29].

Applying similar ideas to handwriting recognition proveara challenging, be-
cause the 2D nature of the signal made the segmentationepnadinsiderably more
complicated. This task required the integration of imaggrsentation heuristics in or-
der to generate segmentation hypotheses. To classify ¢fmeses with robustness to
geometric distortions, 2D convolutional nets were used 411 12]. A general formu-
lation of integrated learning of segmentation and recogmivith late normalization
resulted in thegyraph transformer networarchitecture [42, 43].

Detailed descriptions of several sequence labeling madetee framework of
energy-based models are presented in the next three section

7.1 Linear Structured Models: CRF, SVMM, and MMMN

E(W,Y,X)

A

‘f(X7Yz7Y3)

‘f(X7Y17Y2)

‘f(x, Y3, Yy)

Y, Y5 Y3 Y,

X

Figure 20:A log domain factor graph for linear structured models, whinclude conditional
random fields, support vector Markov models, and maximungimatarkov networks.

Outside of the discriminative training tradition in speexid handwriting recog-
nition, graphical models have traditionally been seen abatilistic generative mod-
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els, and trained as such. However, in recent years, a remegd interest for dis-
criminative training has emerged, largely motivated byusege labeling problems in
natural language processing, notably conditional randetddi[40], perceptron-like
models [21], support vector Markov models [2], and maximuargin Markov net-
works [58].

These models can be easily described in an EBM setting. Téggifunction in
these models is assumed to be a linear function of the pacashEt

EW,Y,X)=WTF(X,Y), (73)

whereF' (X,Y) is a vector of feature functions that dependXrandY. The answer
Y is a sequence df individual labels(Ys,...,Y;), often interpreted as a temporal
sequence. The dependencies between individual labels setfuence is captured by a
factor graph, such as the one represented in Figure 20. Batdr fs a linear function
of the trainable parameters. It depends on the idpand on a pair of individual labels
(Y:,Y,,). Ingeneral, each factor could depend on more than two iddalilabels, but
we will limit the discussion to pairwise factors to simplifye notation:

EW,Y,X)= Y W fon(X, Y, Yy). (74)
(m,n)eF

HereF denotes the set of factors (the set of pairs of individuadlsithat have a direct
inter-dependency)V,...., is the parameter vector for facton, n), andf,,, (X, Y, Y»)
is a (fixed) feature vector. The global parameter vegtors the concatenation of all
theW,,,,,. Itis sometimes assumed that all the factors encode thelsachef interac-
tion between input and label pairs: the model is then calledraogeneous field. The
factors share the same parameter vector and features,@rddigy can be simplified
as:

EW,Y,X)= Y  WI'f(X,Yn,Yn). (75)

(m,n)eF

The linear parameterization of the energy ensures thatdhvesponding probability
distribution overlV is in the exponential family:

e~ WTF(X)Y)

P(W[Y,X) = (76)

—wTF(X,Y)"
fw/EW e ( )
This model is called thinear structured model

We now describe various versions of linear structured nsithelt use different loss

functions. Sections 7.2 and 7.3 will describe non-lineat laierarchical models.

7.1.1 Perceptron Loss

The simplest way to train the linear structured model is \ilith perceptron loss. Le-
Cun et al. [43] proposed its use for general, non-linearggn&rnctions in sequence
labeling (particularly handwriting recognition), calfjrit discriminative Viterbi train-

ing. More recently, Collins [20, 21] has advocated its use fogdir structured models
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in the context of NLP:

P
1 L L
Lpereepron(W) = 5 3 E(W, Y, X) = BOV, Y™, XY), (77)

=1

whereY** = argmin, .y, E(W,y, X") is the answer produced by the system. The
linear property gives a particularly simple expressiortfarloss:

P
ﬁpcrccptron(W) = ﬁ Z WT (F(Xla YZ) - F(sz Y )) . (78)
=1

Optimizing this loss with stochastic gradient descent detada simple form of the
perceptron learning rule:

We—W-—n(F(X"Y") - F(X",Y*). (79)

As stated before, the main problem with the perceptron b#sd absence of margin,
although this problem is not fatal when the energy is a lifigaction of the parameters,
as in Collins’ model. The lack of a margin, which theoretigahay lead to stability
problems, was overlooked in [43].

7.1.2 Margin Loss: Max-Margin Markov Networks

The main idea behind margin-based Markov networks [2, 1{5®] use a margin loss
to train the linearly parameterized factor graph of FigubeRith the energy function
of Equation 73. The loss function is the simple hinge los$éwait L, regularizer:

P
1 o o
Lhinge(W) = 55 >_max(0,m + E(W,Y", X') = E(W,Y", X)) ++||W|*. (80)
=1
Because the energy is lineariii, the loss becomes particularly simple:

P
1 o
ﬁhingc(” ) = F E max (Oam+ W TAF(leyz)) +7||H ||27 (81)

=1

whereAF (X' Y?) = F(X',Y?) — F(X',Y?). This loss function can be optimized
with a variety of techniques. The simplest method is staihgsadient descent. How-
ever, the hinge loss and linear parameterization allowtferuse of a dual formulation
as in the case of conventional support vector machines. Thbstipn of which op-
timization method is most suitable is not settled. As witlunad net training, it is
not clear whether second order methods bring a significaagdsimprovement over
well tuned stochastic gradient methods. To our knowledgsystematic experimental
study of this issue has been published.

Altun, Johnson, and Hofman [2] have studied several vessafrthis model that
use other loss functions, such as the exponential margrpiaposed by Collins [20]:

P
1 L _
Lhinge(W) = 55 Y exp(B(W, Y, X') = E(W,Y', X)) +1||W|[*.  (82)
=1
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This loss function tends to push the energi&$V, Y?, X?) and E(W, Y?, X?) as far
apart as possible, an effect which is moderated only by eegmaition.
7.1.3 Negative Log-Likelihood Loss: Conditional Random Félds

Conditional random field§CRF) [40] use the negative log-likelihood loss function to
train a linear structured model:

P
1 . . 1
Lon(W) = FE E(W,Y', X") + 3 log Y e PEWwXY), (83)
i=1 yey

The linear form of the energy (Eg. 75) gives the following eegsion:

P
1 S 1 i
La(W) = 5 S WTF(XLY') + Slog Y e W ), (84)
i=1 yey

Following Equation 24, the derivative of this loss with resptoWV is:

P
MB%(VW-) = % S OF(XLYH) =Y F(X'y)Py|XL W), (85)
i=1 yeY
where
) e—BWTF (X' y)
P(y| X', W) = (86)

Yoy e PVTFR )

The problem with this loss function is the need to sum ovepatfsible label com-
binations, as there are an exponentially large number df sambinationsZ* for a
sequence of binary labels). However, one of the efficient inference gthms men-
tioned in Section 6 can be used.

One of the alleged advantages of CRFs is that the loss funidiconvex with
respect tdl. However, the convexity of the loss function, while math&oaly sat-
isfying, does not seem to be a significant practical advanta@dthough the original
optimization algorithm for CRF was based on iterative sgalrecent work indicates
that stochastic gradient methods may be more efficient [61].

7.2 Non-Linear Graph Based EBMs

The discriminative learning methods for graphical modelsedoped in the speech and
handwriting communities in the 90’s allowed for non-lingerameterizations of the
factors, mainly mixtures of Gaussians and multi-layer akaets. Non-linear fac-

tors allow the modeling of highly complex dependencies leetwinputs and labels
(such as mapping the pixels of a handwritten word to the spoeding character la-
bels). One particularly important aspect is the use of s&chires that are invariant
(or robust) to irrelevant transformations of the inputsstsas time dilation or pitch

variation in speech, and geometric variations in handmgiti This is best handled
by hierarchical, multi-layer architectures that can lelamm level features and higher
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level representations in an integrated fashion. Most asthave used one dimensional
convolutional nets (time-delay neural networks) for speand pen-based handwrit-
ing [6, 13, 32, 33, 25, 26, 28, 27, 7, 34, 31, 24, 5], and 2D chrianal nets for
image-based handwriting [11, 41, 12, 42, 43].

To some observers, the recent interest in the linear steattmodel looks like
somewhat of a throw-back to the past, and a regression orothplexity scale. One
apparent advantage of linearly parameterized energibatisttey make the perceptron
loss, hinge loss, and NLL loss convex. It is often argued doavex loss functions
are inherently better because they allow the use of effi@ptitnization algorithms
with guaranteed convergence to the global minimum. Howeseareral authors have
recently argued that convex loss functions are no guardotemod performance, and
that non-convex losses may in fact be easier to optimize ¢tbamex ones in practice,
even in the absence of theoretical guarantees [36, 22].

Furthermore, it has been argued that convex loss functiande efficiently opti-
mized using sophisticated second-order optimization odth However, it is a well-
known but often overlooked fact that a carefully tuned stmtic gradient descent
method is often considerably faster in practice than evemtbst sophisticated second-
order optimization methods (which appear better on papéis is because stochastic
gradients can take advantage of the redundancy betweearides by updating the
parameters on the basis of a single sample, whereas “bafthfination methods
waste considerable resources to compute exact descectiatie often nullifying the
theoretical speed advantage [4, 43, 44, 15, 16, 61].

feature | vectors

L TR
TDNN |j|j|j|i_||j§

A word templates

Path word in
the lexicon

X (acoustic vectors) A Y

Figure 21:Figure showing the architecture of a speech recognitioriesysusing latent vari-
ables. An acoustic signal is passed through a time-delayaheetwork (TDNN) to produce
a high level feature vector. The feature vector is then coegpdo the word templates. Dy-
namic time warping (DTW) aligns the feature vector with tfeeditemplates so as to reduce the
sensitivity of the matching to variations in pronunciation
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Figure 21 shows an example of speech recognition systenintiegtrates a time-
delay neural network (TDNN) and word matching using dynaimie warping (DTW).
The raw speech signal is first transformed into a sequenamaoftic vectors (typically
10 to 50 spectral or cepstral coefficients, every 10ms). Toastic vector sequence
is fed to a TDNN that transforms it into a sequence of highllévatures. Temporal
subsampling in the TDNN can be used to reduce the tempoutem of the feature
vectors [13]. The sequence of feature vectors is then coedgarword templates. In
order to reduce the sensitivity of the matching to variationspeed of pronunciation,
dynamic time warping aligns the feature sequence with thmplate sequences. In-
tuitively, DTW consists in finding the best “elastic” warpgithat maps a sequence of
vectors (or symbols) to another. The solution can be foufidieftly with dynamic
programming (e.g. the Viterbi algorithm or the A* algorithm

DTW can be reduced to a search for the shortest path in a éiteatyclic graph
in which the cost of each node is the mismatch between twosit@nthe two input
sequences. Hence, the overall system can be seen as a fiabtesEBM in which
Y is the set of words in the lexicon, arfl represents the set of templates for each
word, and the set of paths for each alignment graph. Theesapiroposal for inte-
grated training of neural nets and time alignment is by Dr@amt and Bottou [25],
who proposed using the LVQ2 loss (Eg. 13) to train this systéins a simple mat-
ter to back-propagate gradients through the DTW module aribdr back-propagate
gradients into the TDNN in order to update the weights. Sirhj] gradients can be
back-propagated to the word templates in order to update tewell. Excellent re-
sults were obtained for isolated word recognition, despigezero margin of the LVQ2
loss. A similar scheme was later used by McDermott [49].

A slightly more general method consists in combining neuratworks (e.g.
TDNN) with hidden Markov models instead of DTW. Several aughproposed in-
tegrated training procedures for such combinations duhie@®0's. The first proposals
were by Bengio et al. [8, 7, 5] who used the NLL/MMI loss optedl with stochas-
tic gradient descent, and Bottou [13] who proposed varioss functions. A sim-
ilar method was subsequently proposed by Haffner et al. snnhilti-state TDNN
model [34, 31]. Similar training methods were devised fondhariting recognition.
Bengio and LeCun described a neural net/HMM hybrid with gldbaining using the
NLL/MMI loss optimized with stochastic gradient desceni[41]. Shortly thereafter,
Konig et al. proposed the REMAP method, which applies theeetgiion maximiza-
tion algorithm to the HMM in order to produce targets outpiatsa neural net based
acoustic model [38].

The basic architecture of neural net/HMM hybrid systemsingilar to the one
in Figure 21, except that the word (or language) models awbafiilistic finite-state
machines instead of sequences. The emission probabilttesch node are generally
simple Gaussians operating on the output vector sequenoagqed by the neural net.
The only challenge is to compute the gradient of the loss weigipect to the neural net
outputs by backpropagating gradients through the HMMigre8ince the procedure is
very similar to the one used in graph transformer networlestafer to the next section
for a description.

It should be noted that many authors had previously propossttiods that com-
bined a separately trained discriminative classifier analignment method for speech
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and handwriting, but they did not use integrated traininghoes.

7.3 Hierarchical Graph-Based EBMs: Graph Transformer Net-

works
‘o
N e
@)
fE(WZ Y, X)
Viterbi ‘ PV ’ ______
Transformer ?
Grsel : 4 OZ/‘ [
3 4
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Path Selector [ ;,-—’ __________ }_
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Figure 22:The architecture of graph transformer networflor handwritten word recognition.
(a) The segmentation graghir., is generated from the input image, (b) the hierarchical irult
modular architecture takes a set of graphs and outputs amatht of graphs.
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Sections 7.2 and 7.1 discussed models in which inferencdeanding involved
marginalizing or minimizing over all configurations of valiles of a dynamic factor
graph. These operations are performed efficiently by uijdi trellis in which each
path corresponds to a particular configuration of thosealsées. Section 7.2 concen-
trated on models where the factors are non-linear functidrice parameters, while
Section 7.1 focused on simpler models where the factorsregarly parameterized.

The present section discusses a class of models gathgudh transformer networks
(GTN) [43]. GTNs are designed for situations where the satjalestructure is so
complicated that the corresponding dynamical factor gregimot be explicitly rep-
resented, but must be represenpedcedurally For example, the factor graph that
must be built on-the-fly in order to recognize an entire hatitbn sentence in English
is extremely large. The corresponding trellis containsth fa every grammatically
correct transcription of the sentence, for every possibtgrentation of the sentence
into characters. Generating this trellis (or its assodid&etor graph) in its entirety is
impractical, hence the trellis must be represented praedlgluinstead of representing
the factor graph, the GTN approach views the trellis as thim mhata structure being
manipulated by the machine. A GTN can be seen as a multilagkitecture in which
the states are trellises, just as a neural net is a multikrghitecture in which the states
are fixed-size vectors. A GTN can be viewed as a network of tesdgalledgraph
transformersthat take one or more graphs as input and produces anoty#r gs out-
put. The operation of most modules can be expressed as theosdin of the input
graph with another graph, called a transducer, associatadive module [51]. The
objects attached to the edges of the input graphs, whicheanfbers, labels, images,
sequences, or any other entity, are fed to trainable fungtidhose outputs are attached
to edge of the output graphs. The resulting architecturdesseen as eompositional
hierarchyin which low level features and parts are combined into hidgaeel objects
through graph composition.

For speech recognition, acoustic vectors are assembleghtnes, phones into
triphones, triphones into words, and words into senten&silarly in handwriting
recognition, ink segments are assembled into charactessacters into words, and
words into sentences.

Figure 22 shows an example of GTN architecture for simubltasly segmenting
and recognizing handwritten words [43]. The first step inmeslover-segmenting the
image and generating a segmentation graph out of it (seed-&fi(a)). The segmen-
tation graphGr,., is a directed acyclic graph (DAG) in which each path from taets
node to the end node represents a particular way of segrgehgninput image into
character candidates. Each internal node is associatbdavgiandidate cut produced
by the segmentation. Every arc between a source and a d&stinade is associated
with the part of the image that lies between the two cuts. Henery piece of ink
appears once and only once along each path. The next staggsihs segmentation
graphGrse, through the recognition transformer which produces therpretation
graphGr;,, with the same number of nodes &s..,. The recognition transformer
contains as many identical copies of the discriminant fionstGy (X ) as there are
arcs in the interpretation graph (this number changes feryavew input). Each copy
of Gy takes the image associated with one arc in the segmentatiqui gnd pro-
duces several arcs between the corresponding nodes inténpratation graph. Each
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output arc is labeled by a character category, and weightelebenergy of assigning
the image to that category. Hence, each path in the intetmatgraph represents one
possible interpretation of the input for one possible sagaten, with the sum of the
weights along the path representing the combined enerdnabiriterpretation. The in-
terpretation graph is then passed through a path selectdulmthat selects only those
paths from the interpretation graph that have the same sequd labels as given by
Y (the answer). The output of this module is another grapledéll-,.;. Finally a so-
called Viterbi transformer selects a single patt@in,.; indexed by the latent variable
7. Each value ofZ corresponds to a different pathd#r,.;, and can be interpreted as a
particular segmentation of the input. The output energyptaioed either by minimiz-
ing or by marginalizing oveZ. Minimizing over Z is achieved by running a shortest
path algorithm on thé&'r,.; (e.g., the Viterbi algorithm, hence the name Viterbi trans-
former). The output energy is then the sum of the arc eneedigsy the shortest path.
Marginalizing overZ is achieved by running the forward algorithm 6,.;, as indi-
cated in Section 6, equation 72. The path selector and Vitentsformer can be seen
as particular types of “switch” modules that select pathi@ir input graph.

In the handwriting recognition systems described in [48§ tliscriminant func-
tion Gw (X) was a 2D convolutional network. This class of function isigesd to
learn low level features and high level representationsiimtegrated manner, and is
therefore highly non-linear if. Hence the loss function is not convexii. The
optimization method proposed is a refined version of stdchgsadient descent.

In [43], two primary methods for training GTNs are proposetiscriminative
Viterbi training, which is equivalent to using the generalized perceptrsa (&q. 7),
and discriminative forward training which is equivalent to using the negative log-
likelihood loss (Eqg. 23). Any of the good losses in Table 1ld@lso be used.

Training by minimizing the perceptron loss with stochagtiadient descent is per-
formed by applying the following update rule:

OE(W,Y',X') 9EW,Y*, X')
W—W-—nq ( Flia S . (87)
How can the gradients df(W, Y, X%) and E(W, Y, X*) be computed? The answer
is simply to back-propagate gradients through the entitectre, all the way back to
the discriminant function&'y, (X'). The overall energy can be written in the following
form:

E(W,Y,X) Zém VG (W, X), (88)

where the sum runs over all arcs @+, G (W, X) is thel-th component of the

k copy of the discriminant function, andl,;(Y') is a binary value equal to 1 if the
arc containing=; (W, X) is present in the final graph, and 0 otherwise. Hence, the
gradient is simply:

OE(WY, X) WYX Zakl 8GMWX)' (89)
One must simply keep track of thg; (V).

a7



In Section 5 we concluded that the generalized perceptsmitonot a good loss
function. While the zero margin may limit the robustnessefsolution, the perceptron
loss seems appropriate as a way to refine a system that wasjmed on segmented
characters as suggested in [43]. Nevertheless, the GTédlmnk check reading sys-
tem described in [43] that was deployed commercially waisécwith the negative
log-likelihood loss.

The second method for training GTNs uses the NLL loss fun¢tidth a marginal-
ization overZ using the forward algorithm of Equation 72 ov@r;, instead of a
minimization.

Training by minimizing the NLL loss with stochastic gradieiescent is performed
by applying the following update rule:

OFz(W, Y, XV 0Fy z(W, X?)
W —W — — : 90
; ( al AU (90)
where ) -
Fz(W,Y', X') = ——log Y e PEIVY12 X0, (91)
ﬁ zZEZ

is the free energy obtained by marginalizing oZeikeepingX® andY fixed, and

Fyz(W,X') = —<log 3 e PEMWwaX), (92)
yeY, z€2

is the free energy obtained by marginalizing o¥eand Z, keepingX '’ fixed. Com-
puting those gradients is slightly more complicated thathéminimization case. By
chain rule the gradients can be expressed as:

0Fyz(W, X") _ > 0Fy z(W, X") 0Gp (W, X)

ow 0G ow 7 (©3)

kl

where the sum runs over all edges in the interpretation grapile first factor is the
derivative of the quantity obtained through the forwardbaidnm (Eq. 72) with respect
to one particular edge in the interpretation graph. Thesatiies can be computed by
back-propagating gradients through the trellis, viewed fed-forward network with
node functions given by Equation 72. We refer to [43] for deta

Contrary to the claim in [40], the GTN system trained with tlileL loss as de-
scribed in [43] does assign a well-defined probability disttion over possible label
sequences. The probability of a particular interpretaayiven by Equation 46:

I s e—BE(Z,Y,X)
P(Y|X) = i z
yeY, z€2

e*ﬁE(ywz-,X) ) (94)

It would seem natural to train GTNs with one of the generdlizmrgin losses. To
our knowledge, this has never been done.
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8 Discussion

There are still outstanding questions to be answered abeugg-based and probabilis-
tic models. This section offers a relatively philosophidigkcussion of these questions,
including an energy-based discussion of approximate ndstfar inference and learn-

ing. Finally, a summary of the main ideas of this chaptervegi

8.1 EBMSs and Probabilistic Models

In Section 1.3, the transformation of energies to probédslithrough the Gibbs distri-
bution was introduced:

e—BE(W,Y,X)

PIVIXW) = T —pry (95)
Yy

Any probability distribution ovey can be approximated arbitrarily closely by a dis-
tribution of that form. With finite energy values, distriiris where the probability
of someY is exactly zero can only be approximated. Estimating thampaters of a
probabilistic model can be performed in a number of difféereays, including max-
imum likelihood estimation with Bayes inversion, maximuwnditional likelihood
estimation, and (when possible) Bayesian averaging (plyssith variational approx-
imations). Maximizing the conditional likelihood of theatning samples is equivalent
to minimizing what we called the negative log-likelihoodo

Hence, at a high level, discriminative probabilistic ma@dedn be seen as a special
case of EBMs in which:

e The energy is such that the integgf%gy e~ PEW.y,X) (partition function) con-
verges.

e The modelis trained by minimizing the negative log-likelidd loss.

An important question concerns the relative advantageslisadvantages of prob-
abilistic models versus energy-based models. Probabitisbdels have two major
disadvantages. First, the normalization requirementditie choice of energy func-
tions we can use. For example, there is no reason to beliavét model in Figure 7
is normalizable oveY¥ . In fact, if the functionGy, (V) is upper bounded, the integral
ff;o e~ PEW.w.X) 4y does not converge. A common fix is to include an additive term
R,(Y) to the energy, interpreted as a log prior Bnwhose negative exponential is
integrable. Second, computing the contrastive term in #gative log-likelihood loss
function (or its gradient with respect 1) may be very complicated, expensive, or
even intractable. The various types of models can be diviltedive rough categories
of increasing complexity:

e Trivial : When is discrete with a small cardinality, the partition functits
a sum with a small number of terms that can be computed simphother
trivial case is when the partition function does not depemdiig and hence can
be ignored for the purpose of learning. For example, thifésdase when the
energy is a quadratic form i with a fixed matrix. These are cases were the
energy loss can be used without fear of collapse.
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e Analytical: When the partition function and its derivative can be cotagwan-
alytically. For example, when the energy is a quadratic forrd in which the
matrix depends on trainable parameters, the partitiontimmés a Gaussian in-
tegral (with variable covariance matrix) and its derivatis an expectation under
a Gaussian distribution, both of which have closed-fornresgions.

e Computable: When the partition function is a sum over an exponential hum
ber of terms, but the computation can be factorized in suchyag to make it
tractable. The most notable case of this is when the partitiaction is a sum
over configurations of output variables and latent varisblea tree-type graph-
ical model. In this case, belief propagation can be usednwpee the partition
function. When the graphical model is a simple chain graghirfahe case of
HMMSs), the set of configurations can be represented by tHespaita weighted
trellis. Running the forward algorithm through this trellyields the partition
function. A simple backpropagation-like procedure can $eduto compute its
gradient (e.g., see [43] and reference therein).

e Approachable: When the partition function cannot be computed exactlycha
be approximated reasonably well using various methods. moteble example
is when the partition function is a sum over configurationg dbopy graphi-
cal model. The sum cannot be computed exactly, but loopghbetbpagation
or other variational methods may yield a suitable approsimna With those ap-
proximations, the energies of the various answers willlsipulled up, although
not as systematically and with the same force as if usinguh@értition func-
tion. In a sense, variational methods could be interpreteda context of EBM
as a way to choose a subset of energies to pull up.

e Intractable: When the patrtition function is truly intractable with ndiséactory
variational approximation. In this case, one is reducedstogsampling meth-
ods A sampling method is a policy for choosing suitable candidanswers
whose energy will be pulled up. The probabilistic approazihis is to sam-
ple answers according to their probability under the moaledi to pull up their
energy. On average, each answer will be pulled up by the gppte amount
according to the partition function.

In this context, using an energy-based loss function otteer the negative log-likelihood
can be seen as a sampling method with a particular policy itdking the answers
whose energy will be pulled up. For example, the hinge lossesyatically chooses
the most offending incorrect answer as the one whose enbmyidsbe pulled up. In
the end, using such strategies will produce energy surfaithsvhich differences of
energies cannot be interpreted as likelihood ratios (theesia true with variational
methods). We should emphasize again that this is inconstigLié the model is to be
used for prediction, classification, or decision-making.

Variational approximation methods can be interpreted mEBM framework as
a particular choice of contrastive term for the loss funttid. common approach is
to view variational methods and energy-based loss funs@snapproximations to the
probabilistic method. What we propose here is to view théabdistic approach as
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a special case of a much larger family of energy-based mesthodergy-based meth-
ods are equally well justified as probabilistic methods. yTaee merely designed for
training models to answer a different kind of question theobpbilistic models.

An important open question is whether the variational mésttbat are commonly
used (e.g., mean field approximations with popular archites) actually satisfy con-
dition 3 (see Section 5.2).

8.2 Efficiency in Learning

The most important question that affects the efficiency afeng is: “How many en-
ergies of incorrect answers must be explicitly pulled upbethe energy surface takes
the right shape?”. Energy-based loss functions that puthepmost offending incor-
rect answer only pull up on a single energy at each learnargtibn. By contrast, the
negative log-likelihood loss pulls up on all incorrect amssvat each iteration, includ-
ing those that are unlikely to produce a lower energy tharctiteect answer. Hence,
unless the NLL computation can be done at very low cost (akdrcase of “trivial”
and “analytical” models), the energy-based approach istdéa be more efficient.

An important open question is whether alternative losstions exist whose con-
trastive term and its derivative are considerably simpdecampute than that of the
negative log-likelihood loss, while preserving the nicegarty that they pull up a large
volume of incorrect answers whose energies are “threajgniow”. Perhaps, a figure
of merit for architectures and loss functions could be deffiwaich would compare
the amount of computation required to evaluate the loss @nderivative relative to
the volume of incorrect answers whose energy is pulled uprastdt.

For models in the “intractable” category, each individuat¢rgy that needs to be
pulled up or pushed down requires an evaluation of the enanglyof its gradient
(if a gradient-based optimization method is used). Hencelirfg parameterizations
of the energy surface that will cause the energy surfacek tfze right shape with
the minimum amount of pushing of pulling is of crucial impante. If) is high-
dimensional, and the energy surface is infinitely malleatilen the energy surface
will have to be pulled up in many places to make it take a sietabape. Conversely,
more “rigid” energy surfaces may take a suitable shape gk pulling, but are less
likely to approach the correct shape. There seems to be-aitsce dilemma similar
to the one that influences the generalization performance.

8.3 Learning with Approximate Inference

Very often, the inference algorithm can only give us an apionate answer, or is not
guaranteed to give us the global minimum of the energy. Canggrbased learning
work in this case? The theory for this does not yet exist, Hataintuitions may shed
light on the issue.

There may be certain answersJ)hthat our inference algorithm never finds, per-
haps because they reside in far-away regions of the spatctéhalgorithm can never
reach. Our model may give low energy to wrong answers in treggens, but since the
inference algorithm cannot find them, they will never appeahe contrastive term,
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and their energies will never be pulled up. Fortunatelycasithose answers are not
found by the inference algorithm, we do not need to worry alioeir energies.

It is an interesting advantage of energy-based learninigothlg the incorrect an-
swers whose energies are pulled up actually matter. Thisdentrast with probabilis-
tic loss functions (e.g. NLL) in which the contrastive termishpull up the energy of
every single answer, including the ones that our inferedgerithm will never find,
which can be wasteful.

8.4 Approximate Contrastive Samples, Contrastive Divergece

Loss functions differ in how the contrastive sample is gelécand how hard its energy
is pulled up. One interesting suggestion is to pull up on a&mswhat are always near the
correct answer, so as to make the correct answer a local mninjrout not necessarily
a global one. This idea is the basis of ttemtrastive divergence algorithproposed by
Hinton [35, 59]. Contrastive divergence learning can benseean approximation of
NLL learning with two shortcuts. First, the contrastiventein Equation 24 is approx-
imated by drawing samples from the distributiBxy | X, W) using a Markov chain
Monte Carlo method. Second, the samples are picked byrgjare Markov chain at
the desired answer, and by running only a few steps of thexchais produces a sam-
pleY that is near the desired answer. Then, a simple gradienteipéithe parameters
is performed:

(96)

OE(W, Y X'y  QE(W,Y' X1
oW oW ‘

W<—W—77< —

Since the contrastive sample is always near the desiredesneme can hope that the
desired answer will become a local minimum of the energy.ritunMCMC for just a
few steps limits computational expense. However, there iguarantee that all incor-
rect answers with low energy will be pulled up.

8.5 Conclusion

This tutorial was written to introduce and explicate thédaing major ideas:

e Many existing learning models can be be expressed simplyarframework of
energy-based learning.

e Among the many loss functions proposed in the literaturmesare good (with
a non-zero margin), and some can be bad.

e Probabilistic learning is a special case of energy-basathieg where the loss
function is the negative log-likelihood, a.k.a. the maximmutual information
criterion.

e Optimizing the loss function with stochastic gradient noethis often more ef-
ficient than black box convex optimization methods.
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e Stochastic gradient methods can be applied to any lossifumicicluding non-
convex ones. Local minima are rarely a problem in practicabse of the high
dimensionality of the space.

e Support vector Markov models, max-margin Markov netwosgkg] conditional
random fields are all sequence modeling systems that useliingrameterized
energy factors. Sequence modeling systems with non-ljperameterization for
speech and handwriting recognition have been a very aasearch area since
the early 1990’s. since the early 90's.

e Graph transformer networks are hierarchical sequencelngadystems in which
the objects that are manipulated are trellises containinealternative inter-
pretations at a given level. Global training can be perfaimsing stochastic
gradient by using a form of back-propagation algorithm tmpate the gradi-
ents of the loss with respect to all the parameters in thesyst
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