Efficient Learning of Sparse Representations
with an Energy-Based Model

Marc’Aurelio Ranzato Christopher Poultney Sumit Chopra Yann LeCun
Courant Institute of Mathematical Sciences
New York University, New York, NY 10003
{ranzat o, cri spy, sunm t, yann}@s. nyu. edu

Abstract

We describe a novel unsupervised method for learning spaveecomplete fea-
tures. The model uses a linear encoder, and a linear decoetsded by a spar-
sifying non-linearity that turns a code vector into a quaisiary sparse code vec-
tor. Given an input, the optimal code minimizes the distanesveen the output
of the decoder and the input patch while being as similar asipte to the en-
coder output. Learning proceeds in a two-phase EM-likeifash(1) compute
the minimum-energy code vector, (2) adjust the paramefehe@ncoder and de-
coder so as to decrease the energy. The model producese'stetdctors” when
trained on handwritten numerals, and Gabor-like filters mirained on natural
image patches. Inference and learning are very fast, iaguilo preprocessing,
and no expensive sampling. Using the proposed unsupenvistitbd to initialize
the first layer of a convolutional network, we achieved awerate slightly lower
than the best reported result on the MNIST dataset. Finaflyextension of the
method is described to learn topographical filter maps.

1 Introduction

Unsupervised learning methods are often used to produeprpoessors and feature extractors for
image analysis systems. Popular methods such as Wavetghgesition, PCA, Kernel-PCA, Non-
Negative Matrix Factorization [1], and ICA produce compagiresentations with somewhat uncor-
related (or independent) components [2]. Most methodsym®@depresentations that either preserve
or reduce the dimensionality of the input. However, severaént works have advocated the use
of sparse-overcomplete representations for images, inhathie dimension of the feature vector is
larger than the dimension of the input, but only a small number of gonents are non-zero for
any one image [3, 4]. Sparse-overcomplete representgpi@sent several potential advantages.
Using high-dimensional representations increases teéHikod that image categories will be easily
(possibly linearly) separable. Sparse representatianpicavide a simple interpretation of the input
data in terms of a small number of “parts” by extracting thheacture hidden in the data. Further-
more, there is considerable evidence that biological misges sparse representations in early visual
areas [5, 6].

It seems reasonable to consider a representation “comléts possible to reconstruct the input
from it, because the information contained in the input wimged to be preserved in the represen-
tation itself. Most unsupervised learning methods fordeaextraction are based on this principle,
and can be understood in terms ofancoder module followed by alecoder module. The encoder
takes the input and computes a code vector, for example aespad overcomplete representation.
The decoder takes the code vector given by the encoder andiges a reconstruction of the in-
put. Encoder and decoder are trained in such a way that reeaotisns provided by the decoder
are as similar as possible to the actual input data, wher tinggit data have the same statistics
as the training samples. Methods such as Vector QuantizaioA, auto-encoders [7], Restricted
Boltzmann Machines [8], and others [9] have exactly thihisecture but with different constraints
on the code and learning algorithms, and different kindsnabeler and decoder architectures. In
other approaches, the encoding module is missing but isisalaken by a minimization in code

space which retrieves the representation [3]. Likewisedn-causal models the decoding module
is missing and sampling techniques must be used to receh#triinput from a code [4]. In sec. 2,
we describe aenergy-based model which has both an encoding and a decoding part. Ataring,
the encoder allows very fast inference because finding @septation does not require solving an
optimization problem. The decoder provides an easy waydmgruct input vectors, thus allowing
the trainer to assess directly whether the representatimacts most of the information from the
input.

Most methods find representations by minimizing an appad@iioss function during training. In
order to learn sparse representations, a term enforcimgigpia added to the loss. This term usually
penalizes those code units that are active, aiming to makdigtribution of their activities highly
peaked at zero with heavy tails [10] [4]. A drawback for thegpg@roaches is that some action
might need to be taken in order to prevent the system fromya\aativating the same few units and
collapsing all the others to zero [3]. An alternative apios to embed a sparsifying module, e.g.
a non-linearity, in the system [11]. This in general forckdree units to have the same degree of
sparsity, but it also makes a theoretical analysis of theréilgn more complicated. In this paper, we
present a system which achieves sparsity by placing a meatlity between encoder and decoder.
Sec. 2.1 describes this module, dubbed tBmf'sifying Logistic”, which is a logistic function with
an adaptive bias that tracks the mean of its input. This moatity is parameterized in a simple
way which allows us to control the degree of sparsity of thesentation as well as the entropy of
each code unit.

Unfortunately, learning the parameters in encoder anddiaman not be achieved by simple back-
propagation of the gradients of the reconstruction ertaSparsifying Logistic is highly non-linear
and resets most of the gradients coming from the decoderto Z&erefore, in sec. 3 we propose
to augment the loss function by considering not only the ipatars of the system but also the
code vectors as variables over which the optimization ifopered. Exploiting the fact that 1) it is
fairly easy to determine the weights in encoder and decottenwgood” codes are given, and 2)
it is straightforward to compute the optimal codes when ti@meters in encoder and decoder are
fixed, we describe a simple iterative coordinate descemindgtion to learn the parameters of the
system. The procedure can be seen as a saktafministic version of the EM algorithmin which

the code vectors play the role of hidden variables. The iegralgorithm described turns out to be
particularly simple, fast and robust. No pre-processingéglired for the input images, beyond a
simple centering and scaling of the data. In sec. 4 we repperénents of feature extraction on
handwritten numerals and natural image patches. When hemyhas a linear encoder and decoder
(remember that the Sparsifying Logistic is a separate n&)dihie filters resemble “object parts” for
the numerals, and localized, oriented features for therakitnage patches. Applying these features
for the classification of the digits in the MNIST dataset, vavédr achieved by a small margin the
best accuracy ever reported in the literature. We conclyddbwing a hierarchical extension which
suggests the form of simple and complex cell receptive fieldd leads to a topographic layout of
the filters which is reminiscent of the topographic maps tbimarea V1 of the visual cortex.

2 The Model

The proposed model is based on three main components, as éhéig. 1:

e Theencoder: A set of feed-forward filters parameterized by the rows ofrird¥, that
computes a code vector from an image patch

o The Sparsifying Logistic: A non-linear module that transforms the code vedfointo a
sparse code vectdf with components in the range, 1].

e Thedecoder: A set of reverse filters parameterized by the columns of imatfp, that
computes a reconstruction of the input image patch fromphesg code vectar.

Theenergy of the system is the sum of two terms:
E(X7Z5W07WD):EC(X7Z5WC)+ED(X527WD) (1)

The first term is theode prediction energy which measures the discrepancy between the output of
the encoder and the code vectorin our experiments, it is defined as:

1 1
Ec(X,Z,We) = =||Z — Enc(X, We)||> = =||Z — W X||? (2
2 2

The second term is theeconstruction energy which measures the discrepancy between the recon-
structed image patch produced by the decoder and the inggieipatchX . In our experiments, it

B (X.Z,W.) Sparse Code Code Z

V4
< 1X-DecZW)P |g—] DECODER W, g { Sp. Logistic

3

»-| ENCODER W_ | 17 - Enc(X,W I [

Input X E(XZW)

Figure 1: Architecture of the energy-based model for leagisparse-overcomplete representations.
The input image patclX is processed by thencoder to produce an initial estimate of the code
vector. Theencoding prediction energy F.c measures the squared distance between the code vector
Z and its estimate. The code vectois passed through tt#parsifying Logistic non-linearity which
produces a sparsified code vectorThedecoder reconstructs the inputimage patch from the sparse
code. Theaeconstruction energy Ep measures the squared distance between the reconstruation a
the input image patch. The optimal code vecidrfor a given patch minimizes the sum of the two
energies. The learning process finds the encoder and degadeneters that minimize the energy
for the optimal code vectors averaged over a set of trairanges.

70.01 330 1 330 70.1 £10

Ll

Figure 2: Toy example of sparsifying rectification produbgdhe Sparsifying Logistic for different
choices of the parametersand 5. The input is a sequence of Gaussian random variables. The
output, computed by using eq. 4, is a sequence of spikes whtsand amplitude depend on the
parameterg andg3. In particular, increasing has the effect of making the output approximately
binary, while increasing increases the firing rate of the output signal.

il

I,M,.L\J,A. -

is defined as:
1 _ 1 _
Ep(X,Z,Wp) = S|IX — Dec(Z, Wp)||* = SlIX - WpZ|? 3)

whereZ is computed by applying the Sparsifying Logistic non-liriseto Z.

2.1 The Sparsifying Logistic

The Sparsifying Logistic module is a non-linear front-end to the decoder that trans$dhe code
vector into a sparse vector with positive components. Letamsider how it transforms thie-th
training sample. Let;(k) be thei-th component of the code vector aBdk) be its corresponding
output, withe € [1..m] wherem is the number of components in the code vector. The relation
between these variables is given by:

neﬁzi(k)
Gk

where it is assumed that € [0,1]. ¢;(k) is the weighted sum of values ef* (") corresponding

to previous training samples with n < k. The weights in this sum are exponentially decaying as
can be seen by unrolling the recursive equation in 4. Thislm&arity can be easily understood as

a weighted softmax function applied over consecutive sagpl the same code unit. This produces
a sequence of positive values which, for large values ahd small values of, is characterized

by brief and punctuate activities in time. This behavioramimiscent of the spiking behavior of
neuronss controls the sparseness of the code by determining the HiMadtthe time window over
which samples are summed upcontrols the degree of “softness” of the function. Lafhealues
yield quasi-binary outputs, while smatlvalues produce more graded responses; fig. 2 shows how
these parameters affect the output when the input is a Gaussidom variable.

i€ [l.m] with Gi(k) = e ® 4 (1 —n)Gi(k — 1) (4)

Zi

Another view of the Sparsifying Logistic is as a logistic @tion with an adaptive bias that tracks
the average input; by dividing the right hand side of eq. 4&%:(*) we have:

5ilk) = 1Jre—ﬁ(zxk)—%1og(%<q,(k_1>>>}_1 e lm] 5)

Notice howg directly controls the gain of the logistic. Large valueshiStparameter will turn the
non-linearity into a step function and will makg k) a binary code vector.

In our experimentsg; is treated as trainable parameter and kept fixed after theifgpphase. In
this case, the Sparsifying Logistic reduces to a logisticfion with a fixed gain and a learned bias.
For larges in the continuous-time limit, the spikes can be shown tamfela homogeneous Poisson
process. In this framework, sparsity is a “temporal” prépeharacterizing each single unit in the
code, rather than a “spatial” property shared among all this in a code. Spatial sparsity usually
requires some sort of ad-hoc normalization to ensure tigatdimponents of the code that are “on”
are not always the same ones. Our solution tackles this gmobifferently: each unit must be
sparse when encoding different samples, independently ine activities of the other components
in the code vector. Unlike other methods [10], no ad-hocaisg of the weights or code units is
necessary.

3 Learning

Learning is accomplished by minimizing the energy in eqndlidating with superscripts the indices
referring to the training samples and making explicit thpaetelencies on the code vectors, we can
rewrite the energy of the system as:

P
EWe,Wp,Z',...,2") =Y |Ep(X',Z',Wp) + Ec(X*, 2", W¢)] (6)

i=1

This is also the loss function we propose to minimize duniaging. The parameters of the system,
We andWp, are found by solving the following minimization problem:

(W&, Wi} = argmingw, wyming: zeE(We,Wa, Z*,...,Z") (7)

Itis easy to minimize this loss with respectiia: andWWp when theZ* are known and, particularly
for our experiments where encoder and decoder are a see@f fiifters, this is a convex quadratic
optimization problem. Likewise, when the parameters insystem are fixed it is straightforward to
minimize with respect to the codé8. These observations suggest a coordinate descent ogtioniza
procedure. First, we find the optim&f for a given set of filters in encoder and decoder. Then, we
update the weights in the system fixigg to the value found at the previous step. We iterate these
two steps in alternation until convergence. In our expenittiave used aon-line version of this
algorithm which can be summarized as follows:

1. propagate the inpuf through the encoder to get a codewdtg;;

2. minimize the loss in eq. 6, sum of reconstruction and caddiption energy, with respect
to Z by gradient descent usirig,,;; as the initial value

3. compute the gradient of the loss with respediie andW, and perform a gradient step

where the superscripts have been dropped because we aringefe a generic training sample.
Since the code vectar minimizes both energy terms, it not only minimizes the restorction
energy, but is also as similar as possible to the code peztimt the encoder. After training the de-
coder settles on filters that produce low reconstructiooreifrom minimum-energy, sparsified code
vectorsZ*, while the encoder simultaneously learns filters that mtete corresponding minimum-
energy codesZ*. In other words, the system converges to a state where minienergy code
vectors not only reconstruct the image patch but can als@abigygredicted by the encoder filters.
Moreover, starting the minimization ov&rfrom the prediction given by the encoder allows conver-
gence in very few iterations. After the first few thousanéhireg samples, the minimization over
requires just 4 iterations on average. When training is detapa simple pass through the encoder
will produce an accurate prediction of the minimum-energgiec vector. In the experiments, two
regularization terms are added to the loss in eq. 6: a “lasai equal to thd,; norm of W and
Wp, and a “ridge” term equal to theft, norm. These have been added to encourage the filters to
localize and to suppress noise.

Notice that we could differently weight the encoding and teeonstruction energies in the loss
function. In particular, assigning a very large weight te émcoding energy corresponds to turning
the penalty on the encoding prediction intbaid constraint. The code vector would be assigned the
value predicted by the encoder, and the minimization woedidice to a mean square error minimiza-
tion through back-propagation as in a standard autoencddigfiortunately, this autoencoder-like

ETENIMEFASHEANSHETIEIOENTSASMRIINSSESNMEE
EAED NN NESEE B IREEEERNER YR e =G B RS TR
i 1 O 7 U e 0 050 5 0) 0 0 R R) e SR T
N 0 T 0 0 0 2 D 0 L e a7 5 0 P R B B BN

=l EHEHIAWES SRS 1R = NV AESRSRAEE R e

Figure 3: Results of feature extraction from 12x12 patchksri from the Berkeley dataset, showing
the 200 filters learned by the decoder.

learning fails because Sparsifying Logistic is almost glsvaighly saturated (otherwise the repre-
sentation would not be sparse). Hence, the gradients bhagagated to the encoder are likely to be
very small. This causes the direct minimization over encpdeameters to fail, but does not seem
to adversely affect the minimization over code vectors. Wenise that the large number of degrees
of freedom in code vectors (relative to the number of encpdeameters) makes the minimization
problem considerably better conditioned. In other worls dlternated descent algorithm performs
a minimization over a much larger set of variables than r@dadck-prop, and hence is less likely to
fall victim to local minima. The alternated descent overeatid parameters can be seen as a kind
of deterministic EM. It is related to gradient-descent over parameters (stdrakck-prop) in the
same way that the EM algorithm is related to gradient asegmhfiximum likelihood estimation.

This learning algorithm is not only simple but also very faBbr example, in the experiments of
sec. 4.1 it takes less than 30 minutes to learn 200 filters #@®n000 patches of size 12x12, and after
just a few minutes the filters are already very similar to thalfones. This is much more efficient and
robust than what can be achieved using other methods. For@aain Olshausen and Field’s [10]
linear generative model, inference is expensive becausamzation in code space is necessary
during testing as well as training. In Teh et al. [4], leanig very expensive because the decoder
is missing, and sampling techniques [8] must be used to geawireconstruction. Moreover, most
methods rely on pre-processing of the input patches sucthisning, PCA and low-pass filtering
in order to improve results and speed up convergence. Inxqeargnents, we need only center the
data by subtracting a global mean and scale by a constant.

4 Experiments

In this section we present some applications of the propesedgy-based model. Two standard
data sets were used: natural image patches and handwrigién dAs described in sec. 2, the
encoder and decoder learn linear filters. As mentioned in¥séele inputimages were only trivially

pre-processed.

4.1 Feature Extraction from Natural Image Patches

In the first experiment, the system was trained on 100,000 Igreel patches of size 12x12 extracted
from the Berkeley segmentation data set [12]. Pre-proegssi images consists of subtracting
the global mean pixel value (which is about 100), and divgdine result by 125. We chose an
overcomplete factor approximately equal to 2 by repreagrttie input with 200 code units The
Sparsifying Logistic parametersand 5 were equal to 0.02 and 1, respectively. The learning rate
for updatingiv~ was set to 0.005 and fd# to 0.001. These are decreased progressively during
training. The coefficients of the; and L. regularization terms were about 0.001. The learning rate
for the minimization in code space was set to 0.1, and wasiplial by 0.8 every 10 iterations, for

at most 100 iterations. Some components of the sparse cosiebmawallowed to take continuous
values to account for the average value of a patch. For thisore during training we saturated
the running sumg to allow some units to be always active. ValuesCofvere saturated ta0°.

We verified empirically that subtracting the local mean freach patch eliminates the need for this
saturation. However, saturation during training makesirtgdess expensive. Training on this data
set takes less than half an hour on a 2GHz processor.

Examples of learned encoder and decoder filters are showguiref8. They are spatially localized,
and have different orientations, frequencies and scalé®y &re somewhat similar to, but more
localized than, Gabor wavelets and are reminiscent of tbeptéve fields of V1 neurons. Interest-

t0overcompleteness must be evaluated by considering theenwhbode units and the effective dimension-
ality of the input as given by PCA.

e 5 T .IIII II!
AR [FAE =k S =B s e S A2 [S S
=4 g el et fed [eps [rogn] w0 |

Figure 4: Top: A randomly selected subset of encoder filleasrled by our energy-based model
when trained on the MNIST handwritten digit dataset. Bott#n example of reconstruction of a
digit randomly extracted from the test data set. The recoason is made by adding “parts”: it is
theadditive linear combination of few basis functions of the decodehwibsitive coefficients.

ingly, the encoder and decoder filter values are nearly icnip to a scale factor. After training,
inference is extremely fast, requiring only a simple matrctor multiplication.

4.2 Feature Extraction from Handwritten Numerals

The energy-based model was trained on 60,000 handwrittgts diom the MNIST data set [13],
which contains quasi-binary images of size 28x28 (784 p)xeThe model is the same as in the
previous experiment. The number of components in the codermeias 196. While 196 is less than
the 784 inputs, the representation is still overcompleteahse the effective dimension of the digit
dataset is considerably less than 784. Pre-processingstethsf dividing each pixel value by 255.
Parameterg and g in the temporal softmax were 0.01 and 1, respectively. Thergparameters
of the system have been set to values similar to those of #hequs experiment on natural image
patches. Each one of the filters, shown in the top part of figodtains an elementary “part” of a
digit. Straight stroke detectors are present, as in thequewexperiment, but curly strokes can also
be found. Reconstruction of most single digits can be aelidy a linear additive combination of
a small number of filters since the output of the Sparsifyilgiktic is sparse and positive. The
bottom part of fig. 4 illustrates this reconstruction by ‘tgar

4.3 Learning Local Features for the MNIST dataset

Deep convolutional networks trained with backpropagatiofd the current record for accuracy
on the MNIST dataset [14, 15]. While back-propagation paedugood low-level features, it is
well known that deep networks are particularly challendimggradient-descent learning. Hinton
et al. [16] have recently shown that initializing the weiglof a deep network using unsupervised
learning before performing supervised learning with bpoépagation can significantly improve the
performance of a deep network. This section describes dasimxperiment in which we used the
proposed method to initialize the first layer of a large cdutional network. We used an architecture
essentially identical theNet-5 as described in [15]. However, because our model produegsesp
features, our network had a considerably larger numberaifife maps: 50 for layer 1 and 2, 50
for layer 3 and 4, 200 for layer 5, and 10 for the output laydre iumbers for LeNet-5 were 6, 16,
100, and 10 respectively. We refer to our larger network asth50-200-10 network. We trained
this networks on 55,000 samples from MNIST, keeping the eimg 5,000 training samples as a
validation set. When the error on the validation set readisedinimum, an additional five sweeps
were performed on the training set augmented with the viddideset (unless this increased the
training loss). Then the learning was stopped, and the fimaf eate on the test set was measured.
When the weights are initialized randomly, the 50-50-200&hieves a test error rate of 0.7%, to
be compared with the 0.95% obtained by [15] with the 6-16-10&etwork.

In the next experiment, the proposed sparse feature lgamithod was trained on 5x5 image
patches extracted from the MNIST training set. The modeleha@dimensional code. The encoder
filters were used to initialize the first layer of the 50-5021D net. The network was then trained
in the usual way, except that the first layer was kept fixedHerfirst 10 epochs through the training
set. The 50 filters after training are shown in fig. 5. The testreate was 0.6%. This is comparable
to the best result ever reported on the original MNIST sehevit augmenting the training set with

distorted samples.

The training set was then augmented with samples obtainesldsyically distorting the original
training samples, using a method similar to [14]. The erate of the 50-50-200-10 net with random
initialization was 0.49% (to be compared to 0.40% repontefd4]). By initializing the first layer

with the filters obtained with the proposed method, the tesireate dropped to 0.39%. While this
is the best numerical result ever reported on MNIST, it isstatistically different from [14].

HENNEE RSO IS NSNS S NI C R ENE NN FS S ENEE
dFdEE S eSS RS AN CNnr SRS I ENSFs FEESAN= 3200

Figure 5: Filters in the first convolutional layer after triaig when the network is randomly initial-
ized (top row) and when the first layer of the network is iritiad with the features learned by the
unsupervised energy-based model (bottom row).

Architecture Training Set Size

20K 60K 60K + Distortions
6-16-100-10]15 - -1 0.95 -1 0.60 -
5-50-100-10114 - - 10.60 -10.40 -
50-50-200-1 1.01 0.89| 0.70 0.60] 0.49 0.39

Table 1: Comparison of test error rates on MNIST dataset using catievlal network architectures with
various training set size: 20,000, 60,000, and 60,000 BAs0®O elastic distortions. For each size, results are
reported with randomly initialized filters, and with firgtyler filters initialized using the proposed algorithm
(bold face).

4.4 Hierarchical Extension: Learning Topographic Maps

It has already been observed that features extracted framahamage patches resemble Gabor-like
filters, see fig. 3. It has been recently pointed out [6] thaséfilters produce codes with somewhat
uncorrelated but not independent components. In ordemttusahigher order dependencies among
code units, we propose to extend the encoder architectuadding to the linear filter bank a second
layer of units. In this hierarchical model of the encodeg thits produced by the filter bank are
now laid out on a two dimensional grid and filtered according fixed weighted mean kernel. This
assigns a larger weight to the central unit and a smaller weathe units in the periphery. In
order to activate a unit at the output of the Sparsifying ktigj all the afferent unrectified units in
the first layer must agree in giving a strong positive respdaghe input patch. As a consequence
neighboring filters will exhibit similar features. Also,ghop level units will encode features that
are more translation and rotation invariatie facto modeling complex cells. Using a neighborhood
of size 3x3, toroidal boundary conditions, and computindeceectors with 400 units from 12x12
input patches from the Berkeley dataset, we have obtairedofographic map shown in fig. 6.
Filters exhibit features that are locally similar in oriatibn, position, and phase. There are two
low frequency clusters and pinwheel regions similar to whagxperimentally found in cortical
topography.

5 Conclusions

An energy-based model was proposed for unsupervised hegpohsparse overcomplete representa-
tions. Learning to extract sparse features from data hdgcappns in classification, compression,
denoising, inpainting, segmentation, and super-reswiltiterpolation. The model has none of the
inefficiencies and idiosyncrasies of previously propogedse-overcomplete feature learning meth-
ods. The decoder produces accurate reconstructions ofatbbgs, while the encoder provides a
fast prediction of the code without the need for any paréicpkeprocessing of the input images.

It seems that a non-linearity that directly sparsifies thieds considerably simpler to control than
adding a sparsity term in the loss function, which genenadtyuires ad-hoc normalization proce-
dures [3].

In the current work, we used linear encoders and decodessrfglicity, but the model authorizes

non-linear modules, as long as gradients can be computebakdpropagated through them. As
briefly presented in sec. 4.4, it is straightforward to egtdre original framework to hierarchical

architectures in encoder, and the same is possible in theldecAnother possible extension would
stack multiple instances of the system described in therpapth each system as a module in a
multi-layer structure where the sparse code produced byeatere extractor is fed to the input of a
higher-level feature extractor.

INPUT X

Ed

CODE LEVEL 1

0.08| 0.12 0.08
K={0.12| 0.29 0.12
0.08 0.14 0.08

CODE LEVEL 2

Eucl. Dist.
CODE z

Ec

Figure 6: Example of filter maps learned by the topographécanchical extension of the model.
The outline of the model is shown on the right.

Future work will include the application of the model to vars tasks, including facial feature extrac-
tion, image denoising, image compression, inpaintingsifecation, and invariant feature extraction
for robotics applications.

References
[1] Lee, D.D. and Seung, H.S. (1999) Learning the parts oéaisj by non-negative matrix factorization.
Nature, 401:788-791.

[2] Hyvarinen, A. and Hoyer, P.O. (2001) A 2-layer sparseiggdnodel learns simple and complex cell
receptive fields and topography from natural images. Vislesearch, 41:2413-2423.

[3] Olshausen, B.A. (2002) Sparse codes and spikes. R.Rbl. RA. Olshausen and M.S. Lewicki Eds. -
MIT press:257-272.

[4] Teh, Y.W. and Welling, M. and Osindero, S. and Hinton, G(ZD03) Energy-based models for sparse
overcomplete representations. Journal of Machine LegiRigsearch, 4:1235-1260.

[5] Lennie, P. (2003) The cost of cortical computation. @utrbiology, 13:493-497
[6] Simoncelli, E.P. (2005) Statistical modeling of phataghic images. Academic Press 2nd ed.

[7] Hinton, G.E. and Zemel, R.S. (1994) Autoencoders, minimdescription length, and Helmholtz free
energy. Advances in Neural Information Processing Sys&rsD. Cowan, G. Tesauro and J. Alspector
(Eds.), Morgan Kaufmann: San Mateo, CA.

[8] Hinton, G.E. (2002) Training products of experts by miizing contrastive divergence. Neural Compu-
tation, 14:1771-1800.

[9] Doi E., Balcan, D.C. and Lewicki, M.S. (2006) A theoreti@nalysis of robust coding over noisy over-
complete channels. Advances in Neural Information PracgsSystems 18, MIT Press.

[10] Olshausen, B.A. and Field, D.J. (1997) Sparse codirtly an overcomplete basis set: a strategy employed
by V1? Vision Research, 37:3311-3325.

[11] Foldiak, P. (1990) Forming sparse representation®bgllanti-hebbian learning. Biological Cybernetics,
64:165-170.

[12] The Berkeley Segmentation Dataset http://www.ckddey.edu/projects/vision/grouping/segbench/
[13] The MNIST Database of Handwritten Digits http://ydecun.com/exdb/mnist/

[14] Simard, P.Y. Steinkraus, D. and Platt, J.C. (2003) Reattices for convolutional neural networks. IC-
DAR

[15] LeCun, Y. Bottou, L. Bengio, Y. and Haffner, P. (1998)a@rent-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324.

[16] Hinton, G.E., Osindero, S. and Teh, Y. (2006) A fast téag algorithm for deep belief nets. Neural
Computation 18, pp 1527-1554.

