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Abstract

We present a solution to the problem of long-range obstacle/path recognition in
autonomous robots. The system uses sparse traversability information from a
stereo module to train a classifier online. The trained classifier can then accu-
rately classify the entire scene. A distance-normalized image pyramid makes it
possible to efficiently train a learning network on each frame seen by the robot,
using large windows that contain contextual information as well as shape, color,
and texture. Traversability labels are initially obtained for each target using a
stereo module, then propagated to other views of the same target using temporal
and spatial concurrences, producing a classifier that is largely view-invariant. A
ring buffer simulates short-term memory and ensures that the discriminative learn-
ing is balanced and consistent. This long-range obstacle detection system (LROD)
sees obstacles and paths at 30-40 meters, far beyond the maximum stereo range of
12 meters, and adapts very quickly to new environments. Experiments were run
on the LAGR robot platform.

1 Introduction

The method of choice for vision-based driving in off-road mobile robots is to construct a traversabil-
ity map of the environment using stereo vision. In the most common approach, a stereo matching
algorithm, applied to images from a pair of stereo cameras, produces a point-cloud, in which the
most visible pixels are given an XYZ position relative to the robot. A traversability map can then
be derived using various heuristics, such as counting the number of points that are above the ground
plane in a given map cell. Maps from multiple frames are assembled in a global map in which path
finding algorithms are run [5, 7, 2]. The performance of such stereo-based methods is limited, be-
cause stereo-based distance estimation is often unreliable above 10 or 12 meters (for typical camera
configurations and resolutions). This may cause the system to drive as if in a self-imposed “fog”,
driving into dead-ends and taking time to discover distant pathways that are obvious to a human
observer (see figure 1). Human visual performance is not due to better stereo perception; in fact,
humans are excellent at locating pathways and obstacles in monocular images.

We present a learning-based solution to the problem of long-range obstacle and path detection, using
the paradigm of near-to-far learning or bootstrap learning. Near-to-far learning provides a way to
see beyond the limits of stereo by learning traversability labels from stereo-labeled image patches
in the near-range, then classifying image patches in the far-range. If this training is done online,
the robot can adapt to changing environments while still accurately assessing the traversability of
distant areas. However, the approach is limited to classifying simple color or texture information
and can be easily foiled by monochromatic environments, shadows, lighting changes, etc.



Figure 1: Left: Top view of a map generated from stereo (stereo is run at 320x240 resolution). The map is
”smeared out” and sparse at long range because range estimates from stereo become inaccurate above 10 to 12
meters. Traversibility maps built from this are either short range or inaccurate.
Right: Examples of human ability to discern navigational information from monocular images. The obstacles
in the mid-range are obvious to a human, as is the pathway through the trees in the far-range. Note that for
navigation, directions to obstacles and paths are more important than exact distances.

Building on this paradigm, our long-range obstacle detection system (LROD) overcomes the lim-
itations of other approaches by applying three innovative techniques. First, we use a distance-
normalized pyramid to train on large, context-rich windows from the image. This allows for im-
proved path and obstacle detection (compared to just learning from color or texture). Secondly, the
traversability labels from stereo are used to label not only the target window, but also all other pre-
viously seen views of that target. Thus LROD can train on far-away views that were taken before the
stereo label was available. This process of temporal label propagation allows the system to learn
view-invariant classifications of scenes and objects. Finally, LROD uses a ring buffer to simulate
short term memory. LROD allows the robot to reliably “see” 35-40m away and opens the door to
the possibility of human-level navigation.

Experiments were run on the LAGR (Learning Applied to Ground Robots) robot platform. Both
the robot and the reference “baseline” software were built by Carnegie Mellon University and the
National Robotics Engineering Center. In this program, in which all participants are constrained to
use the given hardware, the goal is to drive from a given start to a predefined (GPS) goal position
through unknown off-road terrain using only passive vision.

2 Previous Work

Considerable progress has been made over the last few years in designing autonomous off-road
vehicle navigation systems. One direction of research involves mapping the environment from mul-
tiple active range sensors and stereo cameras [8, 10], and simultaneously navigating and building
maps [7, 15] and classifying objects.

Estimating the traversability of the terrain of the environment constitutes an important part of the
navigation problem, and solutions have been proposed by many; see [1, 3, 11, 13, 14, 16]. However,
the main disadvantage of these techniques is that they assume that the characteristics of obstacles
and traversable regions are fixed, and therefore they cannot easily adapt to changing environments.
The classification features are hand designed based on the knowledge of properties of terrain features
like 3-D shape, roughness etc. Without learning, these sytems are constrained to a limited range of
predefined environments. However, the infinite variety of the possible obstacles in the real world
constitues a major challenge that remains to be solved in offroad robot navigation. By contrast, the
vision system presented in this paper uses online learning and is adaptable to any environment.

A number of systems that incorporate learning have also been proposed. These include ALVINN
[12] by Pomerlau, MANIAC [4] by Jochem et. al, and DAVE [9] by LeCun et. al. The main
disadvantage of these systems is that they are trained purely in a supervised setting. This requires
large amount of labeled data which often requires a lot of human effort. In addition, these systems
don’t learn a traversability mapping and don’t have a representation and mapping of the environment.

Recently Kim et. al [6] proposed an autonomous off-road navigation system that estimates the
traversability of terrains in an unstructured, unknown outdoor environment. Their method is unsu-
pervised; the robot learns traversability from its experiences as it navigates through the world.
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Figure 2: A flow chart of the full LAGR navigation system. The LROD and the stereo obstacle detector both
populate the vehicle map, where local navigation is done. The local map gets written to the global map after
every frame, where route planning is done with the global planner.

The work presented here combines unsupervised and semi-supervised online learning with the abil-
ity to generalize traversibility classification. The LROD system was developed in the LAGR pro-
gram, as was the approach of Kim et. al. As compared to their approach we are able to identify the
traversibility of regions that are far beyond the stereo range, using the labels generated by the stereo
module and propogating them to long range, using temporal and spatial information.

3 The LAGR Vehicle: Overview of Path Planning and Local Navigation

This section gives a general overview of the LAGR navigation system. This section discusses the
full navigation system developed for the LAGR robot. Although reference “baseline” software was
provided, none was used in our system. Our LAGR system consists of 4 major components (see
figure 2).

Vehicle Map. The vehicle map is a local map in polar coordinates that is fixed relative to the robot
position. It is 100◦ wide and has a 40m radius, including the outputs from the long-range vision
system described in this paper. It stores cost and confidence data which is delivered by the various
obstacle detectors. The map has no memory.

Local Navigation. The local navigation is based on the vehicle map. It determines a set of candidate
way points based on cost, confidence, and steering requirements. The candidate way point is picked
which lets the vehicle progress toward the goal. Driving commands are issued based on this choice.
The local navigation is robust against positioning errors.

Global Map. The global map is a Cartesian grid map into which cost and confidence informa-
tion from the vehicle map is copied after each processed frame. The global map is the system’s
“memory”.

Global Planner. The global planner finds a route to the goal in the global map, starting with candi-
date points proposed by the local navigation module. The algorithm is a modified A-Star algorithm
which operates on rays rather than grid cells. It is much faster than A-Star and generates far fewer
waypoints.

4 Long-Range Vision from Distance-Normalized Monocular Images

4.1 Motivation and Overview

Humans can easily locate pathways from monocular views, e.g. trails in a forest, holes in a row
of bushes. In this section, we present LROD, a vision system that uses online learning to provide
the same capability to a mobile robot. One approach for autonomous learning in robots is to use
the short-range output of reliable modules (such as stereo) to provide labels for a trainable module
(such as a long-range obstacle detector). LROD builds on this paradigm in three important ways.
First, LROD does horizon leveling and disance normalization in the image space, producing a multi-
resolution pyramid of sub-images. This transformation is essential for generalizing the classifier to
long-range views. Second, the system propagates labels temporally using spatial concurrences in a
quad-tree. This allows us to directly train on previously seen views that are out of stereo range. Last,
LROD uses a ring buffer to hold a balanced set of traversable and nontraversable training samples.
This creates a sort of short-term memory.
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Figure 3: This figure uses isolated objects in an image to demonstrate the problem of distance scaling. left:
The trees in the image vary widely in size because of different distances from the camera. This makes near-to-
far learning extremely difficult. center and right: If windows are cropped from the image and resized such that
the cropping window is proportional to their distance from the camera, then a classifier can train on uniformly
sized and positioned objects.

The operations in LROD can be summarized here and details are discussed in the following sections.

1. All points in the current frame are inserted into a quad-tree according to their XYZ coor-
dinates. The XYZ coordinates are determined by mapping pixels in image space to world space, and
can be computed if the parameters of the ground plane are known. This is discussed in section 4.2.
2. The stereo module labels the traversability of visible points up to 15 meters.
3. Each point that was given a stereo label in the previous step is now used as a query point for label
propagation. The XYZ quad-tree is queried to find all previously seen points (and their associated
windows) that are within a radius r of the queried location. These points are labeled with the stereo
label of the query point.
4. All stereo-labeled query points and points returned by the quad-tree are added to a ring buffer.
5. A discriminative classifier trains on the samples associated with points in the ring buffer to map
windows in the image pyramid to the traversibility at the corresponding location on the ground.
6. The trained module classifies all windows in the pyramid, at a range of 1 to 35 meters (far beyond
stereo range).

4.2 Horizon Leveling and Distance Normalization

Recent applications of near-to-far bootstrap learning in robots have trained classifiers on small image
patches, thus limiting the learning to color and texture discrimination. However, it is preferable
to use larger windows from the image, thus providing a richer context for more accurate training
and classification. Larger windows can encompass, and learn, characteristic vertical patterns such
as road-trees-sky or grass-rocks-sky or dirt-foot-of-object-sky. Recognizing the feet of objects is
critical for obstacle detection, and the task is easier with large, context-rich windows.

There is an inherent difficulty with training on large windows instead of color/texture patches. In
image space, the size of obstacles, paths, etc. varies greatly with distance, making generalization
from near-range to far-range unlikely. Our approach deals with this problem by building a distance-
invariant pyramid of images at multiple scales, such that the appearance in the image at scale X of
an object sitting on the ground X meters away is identical to the appearance in the image of scale
Y of the same object when sitting on the ground Y meters away. This also makes the feet of objects
appear at a consistent position in a given image, allowing for easier and more robust learning. See
figure 3 for further explanation of this strategy.

In order to build a pyramid of horizon-leveled sub-images, the ground plane in front of the robot
must first be identified by performing a robust fit of the point cloud obtained through stereo. A
Hough transform is used to produce an initial estimate of the plane parameters. Then, a least-
squares fit refinement is performed using the points that are within a certain distance of the initial
plane estimate.

To build the image pyramid, differently sized sub-images are cropped from the original RGB frame
such that each is centered around an imaginary footline on the ground. Each footline is a prede-
termined distance (using a geometric progression) from the robot’s camera. For [row, column, dis-
parity, offset] plane parameters P = [p0, p1, p2, p3] and desired disparity d, the image coordinates
(x0, y0, x1, y1) of the footline can be directly calculated.



(a). sub-image extracted from 
far range. (21.2 m from robot). 

(b). sub-image extracted at 
close range. (2.2 m from robot). 

(a)

(b)

(c). the pyramid, with rows (a) and (b) 
corresponding to sub-images at left.

Figure 4: Sub-images are extracted around imaginary lines on the ground that are computed using the ground
plane fit. (a) Extraction around a footline that is 21m away from the vehicle. (b) Extraction around a footline
that is 1.1m away from the robot. The extracted area is large, because it is scaled to make it consistent with
the scale of the other bands. (c) All the sub-images are reduced down to 12 pixels high. The size-normalized
image pyramid is shown, containing 20 bands (36 are actually used in the system).
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Figure 5: Temporal label propagation. At position/time A, the robot can see the black object, but the object is
out of stereo range, so it cannot be labeled. It is inserted into the quad-tree. At position/time B, the object is
seen from a different, closer view and a stereo label is obtained. Now the view of the object from position A
can be extracted from the quad-tree and trained on using the label from position B.

After cropping a sub-image from around its footline, the sub-image is then subsampled to make it
a uniform height (12 pixels), resulting in image bands in which the apperance of an object on the
ground is independent of its distance from the camera (see figure 4). These uniform-height, variable-
width bands form a distance-normalized image pyramid whose 36 scales are separated by a factor
of 2 1

6 .

4.3 Temporal Label Propagation

We expand the number of labeled training samples per frame by propagating labels backward in
time. This is done using a quad-tree that indexes XYZ locations in the world surrounding the robot.
The quad-tree is a very efficient data structure for storing spatial information, and concurrent views
can be inserted and queried in O(lgn) time. Given a labeled window and its corresponding world
XYZ location, we can query the quad-tree to retrieve all previously stored views of the same location
(see figure 5). Label propagation on a graph is a variant of semi-supervised learning that exploits
knowledge about the robot’s position and heading to expand the training set on every frame.

The stereo-labeled points and the query-extracted points are stored in 2 large ring buffers, one for
traversable points, and one for non-traversable points. On each frame, the classifier trains on all the
data in both ring buffers. The ring buffer acts like short-term memory, since samples from previous
frames persist in the buffer until replaced. The ring buffer also balances the training, ensuring that
the classifier always trains on a constant ratio of traversable/non-traversable points.

4.4 Training Architecture and Loss Function

The long-range OD goes through a labeling, training, and classification cycle on every frame. First,
each overlapping 12x3 pixel RGB window from the right camera is assigned a traversibility label



Figure 6: The centers of the 120 radial basis functions, trained using unsupervised K-means learning. The
width of each RBF is variable, and is determined by the variance of the associated K-means cluster. The RBFs
are used to generate feature vectors from each window of each band of the image pyramid
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Figure 7: left: The online learning architecture for the LROD system.X is the input window, D is the feature
vector calculated from the RBF layer, and W is a weight vector. The function g is a logistic function for
inference on y
right: ROC curves comparing classifier labels vs. stereo labels. dotted The LROD was initialized with random
weights, and the online learning was turned off. dashed: The LROD was initialized with default trained
weights, but online learning was turned off. solid: The full system: trained default weights and online learning.

(ground or obstacle) if it is within stereo range (< 12 meters) and if stereo data is available. Then
feature vectors are computed for overlapping windows in the pyramid using a set of 120 radial
basis functions. A feature vector is constructed with Euclidean distances between a 12x3 RGB
window and the 120 fixed rbf centers. For an input window X and a set of n radial basis centers
K = [K1...Kn], the feature vectorD isD = [exp(−β1||X−K1||2) ... exp(−βn||X−Kn||2)where
βi is the variance of rbf center Ki. The radial basis function centers K are trained in advance with
K-means unsupervised learning, using a wide spectrum of logfiles from different environments (see
figure 6). The width of RBF i, βi, is determined by the inverse variance of the points that clustered
to it during K-means learning. A logistic regression on the feature vectors is trained using the labels
provided by stereo. The resulting classifier is then applied to all feature vectors in the pyramid,
including those with stereo labels. The training architecture is shown in Figure 7.

The classifier is a logistic regression trained with stochastic gradient descent to produce binary labels
(0 for traversable, 1 for non-traversable). Weight decay towards a previously learned set of default
weights provides regularization. The loss function is cross-entropy loss. For weights W , feature
vector D, label y, and logistic function g(z) = 1

1+ez , the loss function and gradient of the loss
function are

L = −
n∑

i=1

log(g(y · W ′D))
∂L

∂W
= −(y − g(W ′D)) · D

Learning is done by adjusting the weights with stochastic gradient descent. Although the loss func-
tion is convex and optimal weights could be found exactly, using stochastic gradient descent gives
the system a natural and effective inertia that is necessary for generalizing well over successive
frames and environments.

After training on the feature vectors from labeled windows, all the windows are classified. Inference
on y is simple and fast: y = sign(g(W ′D)) where g(z) = 1

1+ez as before. Although this classifier
is small and relatively simple, it is appropriate for the learning task, and it is fast enough to meet the
tight computational requirements of an online, real time robot.



Figure 8: Examples of performance of the long-range obstacle detector. Each example shows the input image
(top), the map produced by the long-range OD (middle), and the stereo labels (lower). Note that the stereo
(lower map) is shown at a range of 0-11m, whereas the long-range OD map is shown from 0-40 meters.

5 Results

The robot drives smoothly and quickly under the full navigation system described in section 3. It
typically gets to a goal 2 to 4 times faster than the baseline system.

To specifically assess the accuracy of the LROD system, the error of the classifier was measured
against stereo labels. If the classifier was initialized with random weights and no online learning
was used, then the error rate was, predictably, 52.23%. If the classifier was initialized with a set of
default parameters (average learned weights over many logfiles) but with no online learning, then
the classifier had an error of 32.06%. If the full system was used, i.e., initialized with default weights
and online learning on, then the average error was 15.14%. ROC curves were computed for each
test error rate (see figure 7).

Figure 8 shows examples of the maps generated by the long-range obstacle detector. The LROD not
only yields surprisingly accurate traversibility information at distance up to 30 meters (far beyond
stereo range), but also produces smooth, dense traversability maps for areas that are within stereo
range. The stereo-derived maps often have noisy spots or holes - disastrous to a path planner - but
the adaptive long-range OD produces maps that are smooth and accurate, without holes or noise.

The LROD module, when integrated with the whole driving system and tested in offroad environ-
ments, generally produced clear and accurate global maps (see figure 9) that could be successfully
navigated by the robot.

6 Summary and Further Work

We demonstrated an autonomous, on-line learning method for obstacle detection beyond the range
of stereo. At each frame, a pyramid of image bands is built in which the size of objects on the
ground is independent of their distance from the camera. Windows on locations beyond stereo range
are stored in a spatially-indexed quadtree for future reference. Windows within stereo range are
assigned labels, together with windows at the same spatial location stored in the quadtree during
previous frames. A simple on-line logistic regression classifier fed with pre-trained RBF features
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Figure 9: This is a global map produces by the robot while navigating toward a goal (green circle). The robot
sees and follows the path and resists the shorter yet non-traversable direct path through the woods.

is trained on a ring buffer of such windows. The system requires no human intervention, and can
produce accurate traversability maps up at ranges of up to 40 meters.

The method (minus the quadtree-based label propagation), was implemented as part of a complete
vision-based driving system for an off-road robot. The system navigate through unknown com-
plex terrains to reach specified GPS coordinates about 2 to 4 times faster than the baseline system
provided with the robot platform (see supplementary video).

Future work will include the use of more sophisticated learning architectures such as multilayer
convolutional networks [9].
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