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ABSTRACT
In many regression problems, the variable to be predicted
depends not only on a sample-specific feature vector, but
also on an unknown (latent) manifold that must satisfy
known constraints. An example is house prices, which de-
pend on the characteristics of the house, and on the desir-
ability of the neighborhood, which is not directly measur-
able. The proposed method comprises two trainable com-
ponents. The first one is a parametric model that predicts
the “intrinsic” price of the house from its description. The
second one is a smooth, non-parametric model of the latent
“desirability” manifold. The predicted price of a house is
the product of its intrinsic price and desirability. The two
components are trained simultaneously using a determinis-
tic form of the EM algorithm. The model was trained on a
large dataset of houses from Los Angeles county. It produces
better predictions than pure parametric and non-parametric
models. It also produces useful estimates of the desirability
surface at each location.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Structural, Statis-

tical, Neural Nets; I.2.6 [Artificial Intelligence]: Learn-
ing—Parameter Learning

General Terms
Algorithm, Experimentation, Performance

Keywords
Energy-Based Models, Structured Prediction, Latent Mani-
fold Models, Expectation Maximization
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1. INTRODUCTION
In a number of real world regression problems, the vari-

ables to be predicted not only depend on the features spe-
cific to the given sample, but also on a set of other vari-
ables that are not known during training. These unknown
variables usually have some structural constraints associated
with them. One can use these constraints to infer their val-
ues from the data. The problem of real estate price predic-
tion falls into such a class of problems. It involves predicting
the price of a real estate property P , given the set of features
X associated with it. These features include attributes that
are specific to the individual house, like the number of bed-
rooms, the number of bathrooms, the living area, etc. They
could also include information about the area or the neigh-
bourhood in which the house lies. For example, features
could include census tract specific information like the aver-
age household income of the neighbourhood, average com-
mute time to work etc. Features could also include school
district information.

This problem has a strong underlying spatial structure as-
sociated with it, which when exploited can improve the pre-
diction performance of the system. The price of a house is
obviously influenced by its individual characteristics. Given
a particular locality, a large house with 3 bedrooms and 2
bathrooms will be more expensive compared to a smaller
house with 1 bedroom and 1 bathroom. However, in addi-
tion to the dependence on its individual features, the price
is also influenced by the so called “desirability” of its neigh-
bourhood. The price of a house is primarily determined by
the price of similar houses in the vicinity. For example, a
house with the same set of features, say 3 bedrooms and 2
bathrooms, will have a higher value if located in an upscale
neighbourhood than if it were in a poor neighbourhood. We
say that the upscale locality has a higher “desirability” than
the poor neighbourhood, and hence houses will generally
have higher prices. This desirability has a strong structure
associated with it, namely the spatial smoothness. The de-
sirability of a location should change gradually when moving
from one neighbourhood to the adjacent one. Hence it can
be viewed as a smooth surface in a 3D space where the first
two coordinates are GPS coordinates and the third coordi-
nate is the desirability value. However note that this desir-



ability surface is not directly measurable. Its value is only
indirectly reflected in the selling prices of similar, nearby
houses. While the actual desirability is hidden (latent) and
not given during training, the smoothness constraint associ-
ated with it can help us infer it from the data.

This paper addresses the problem of predicting the house
prices by modeling and learning such a desirability surface.
However we note that the model proposed is very general
and can be applied to other problems that fall into the
class of regression problems described above. The proposed
model has two components.

• The first component is a non-parametric model that
models such a latent desirability manifold.

• The second component is a parametric model that only
considers the individual features of the house and pro-
duces an estimate of its “intrinsic price”.

Prediction of a sample is given by combining the value of
the manifold at its location, along with the description of
the sample (output of the parametric model). In addition,
the paper also proposes a novel learning algorithm that si-
multaneously learns both the parameters of the parametric
“intrinsic price” model and the desirability manifold.

The first component models the latent desirability sur-
face in a non-parametric manner. The idea is to associate
a single desirability coefficient to each training sample. The
value of the manifold at any point is obtained by interpola-
tion on the coefficients of the training samples that are local
to that point (according to some distance measure). The
way this interpolation is done is problem dependent. In fact
the interpolation algorithm plays an important role in the
performance of the system. There is no restriction imposed
on the nature/architecture of the second component. The
question remaining is, how to learn the desirability coeffi-
cients associated with each training sample.

We propose a novel energy-based learning algorithm, which
we call Latent Manifold Estimation (LME), that learns the
desirability coefficients of the first component and the pa-
rameters of the second component simultaneously. The algo-
rithm consists of iterating alternatively through two phases
until convergence. It can be seen as a deterministic form
of generalized EM method [7]. In the first phase, the para-
metric model is kept fixed and the desirability coefficients
are learned by minimizing a loss function while at the same
time preserving the smoothness. This phase is similar to the
expectation phase of the EM algorithm. The second phase
fixes the desirability coefficients and learns the parameters
of the first component. This is similar to the maximization
phase of the EM algorithm. As in the case of generalized
EM, in both the phases the loss is not fully minimized but
merely decreased up to a certain threshold. The algorithm
iterates through the two phases alternatively until conver-
gence. The algorithm is energy-based [15], in the sense that
while training we only minimize over the latent variables and
not marginalize over their distribution. Moreover our aim
is to achieve good prediction accuracy and not to estimate
the underlying distribution of the input samples.

1.1 Previous Work
The problem of predicting prices of real estate properties

has a long history in the economics literature. Linear para-
metric methods and their derivatives have been long used

by Goodman [11], and Hallvorsen and Pollakowski [12]. An
extension of the linear regression is the Box-Cox transforma-
tions proposed by Box and Cox [3]. All the functional forms
studied so far can be seen as special cases of the quadratic
Box-Cox transformation. However because these functional
forms were too restrictive, they usually resulted in poor per-
formance. Some work has also been done in the domain of
non-linear methods. For example, Meese and Wallace in [16]
used locally weighted regressions, whereas Clapp in [6] and
Anglin and Gencay [1] used semi-parametric methods for
the problem.

In line with the widely accepted belief that while predict-
ing the price of a house, the price of its neighbouring houses
contain useful information, a number of people have also ex-
plored the possibility of using spatio-temporal models. Can
in [4, 5], model house prices using spatial autoregressions.
Dubin [9], Pace and Giley [19], and Basu and Thibodeau [2]
claim that it is hard to capture all spatial and neighborhood
effects using available data. Hence they directly model the
spatial autocorrelation of the regressions residuals. Finally,
there is a class of models that recognizes that vicinity in
both space and time will matter. Such Spatio Temporal Au-
toregressive (STAR) models have been developed by Pace et
al [18] and Gelfand et al [10].

However, throughout the economics literature very little
emphasis is given on predictability. The focus is more to-
wards estimating the model parameters efficiently and pre-
cisely and on index construction. Very little has been done
to handle the problem purely from the machine learning
point of view. In the limited attempts at using machine
learning methods, either the models are too simplistic or the
setting in which they have been applied (example dataset
etc) is not representative of the real world situation. For
instance, Do and Grudnitski [8], and Nguyen and Cripps
in [17] have used very simple neural networks on a very
small dataset. In contrast, the dataset used in the present
paper is considerably larger and more diverse and the learn-
ing architecture is considerably more flexible. Some work
has been done to automatically exploit the locality structure
present in the problem. Kauko in [13], used the Self Orga-
nizing Map (SOM) technique proposed by Kohonen [14] to
automatically segment the spatial area and learn a separate
model for each segment. However, since SOM does not pro-
duces a mapping function, it is not possible to predict the
price of a new sample that has not been seen before during
training. To the best of our knowledge, the method we pro-
pose is the first attempt to automatically learn the influence
of the underlying spatial structure inherent in the problem,
and use it for prediction. A key characteristic of our learn-
ing algorithm is that it learns both the parametric and non
parametric models simultaneously.

2. THE LATENT MANIFOLD MODEL
In this section we give the details of the architecture, the

training and the inference of the latent manifold model in
the light of predicting house prices. Simultaneously we point
out that the model is general enough to be used for other
problems that have similar characteristics.

2.1 The Architecture
Let S = {(X1, Y 1), . . . , (Xn, Y n)} be the set of labeled

training samples. In house price prediction, the input Xi

consists of the set of features associated with the house P i,
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Figure 1: The regression model is composed of two
learning modules: the parametric model G(W, X)
and the non parametric model H(D,X).

such as the number of bedrooms, number of bathrooms etc.
The full list of house specific features that were used in the
experiments is discussed in section 3. The architecture of
the model is shown in figure 1. It consists of two trainable
components. The first component is the parametric function
G(W, X), parameterized with W , that takes X as input and
produces an output m = G(W,X). This output can be in-
terpreted as the “intrinsic price” of the sample. Other than
differentiability with respect to W , no restriction is imposed
on the form/architecture of this function. For the house
price prediction application, the function G(W, X) was a
fully connected neural network with two hidden layers.

The second component H(D, X) models the latent man-
ifold and is non-parametric in nature. In the light of house
price prediction, as pointed out in the previous section, the
price of the house P with a set of features X, is strongly
affected by the “desirability” of its neighbourhood. This
“desirability” (which can be viewed as a smooth manifold
spanning the concerned geographic region) is modeled by
assigning a “desirability coefficient” di to each training sam-
ple Xi. One can interpret the value of the coefficient di as
a number specifying how desirable the location of the house
that corresponds to Xi is. The higher the value, the more
desirable it is. Since the value of these coefficients is not
known during training and should be learned, one can view
these coefficients as the latent variables associated with the
model. For a detailed discussion of latent variable energy-
based architectures refer to [15]. Denote by D = [d1, . . . , dn]
the vector of all such desirabilities. The hidden desirability
manifold is modeled by the desirability vector D and the
non-parametric model H(D, X). This function takes as in-
put the sample X (not necessarily a training sample) and the
desirability vector D and produces an output h = H(D, X),
which gives the estimate of the desirability of the location
of sample X as a function D. How this estimate is com-
puted plays a crucial role in the performance of the system.
Hence one must take special care while designing H(D, X).

In the present paper, two versions were used: one was a sim-
ple kernel-based interpolating function and the other was a
weighted local linear regression model.

2.1.1 Kernel Based Interpolation
For a sample X, let N (X) denote the set of indices of K

training samples that are closest to X (according to some
pre-determined similarity measure), for some K. Then the
output h of the function H(D, X) is given by

h = H(D, X) =
X

j∈N (X)

Ker(X,X
j) · dj

. (1)

The kernel function Ker(X, Xj) is defined as

Ker(X, X
j) =

e−q||X−Xj ||2

P

k∈N (X) e−q||X−Xk||2
, (2)

with q a constant.

2.1.2 Weighted Local Linear Regression
Another method used for computing the output of the

function H(D, X) involves fitting a weighted local linear re-
gression model in the set of neighbouring training samples
to the sample X. Let α be the parameter vector and β be
the bias of the local linear model. Then fitting a weighted
local linear model in the set of neighbouring training sam-
ples, amounts to finding the parameters α∗ and the bias β∗,
such that

(β∗
, α

∗) = arg min
β,α

X

j∈N (X)

(dj − (β + αX
j))2Ker(X,X

j).

(3)
The function Ker(X, Xj) could be any parametric kernel
appropriate to the problem. However the one used for the
experiments was the same as the one given in equation 2.
Then the solution to the system (or the output of the func-
tion H(D, X)) is given by

h = H(D, X) = β
∗ + α

∗
X. (4)

Remark 1. Even in this case the output h of the func-
tion H(D, X) for a sample X can be expressed as a linear
combination of the desirabilities dj of the training samples
Xj that lie in the neighbourhood of X, such that the linear
coefficients do not depend on the desirabilities. That is

h = H(D, X) =
X

j∈N (X)

a
j
d

j
. (5)

The outputs m and h are combined using a function J to
get the prediction of the input sample X. Particularly in
the present paper, instead of predicting the actual prices of
the houses, the model predicts the log of the prices. This
allows us to combine the intrinsic price m predicted by the
parametric model G(W,X) and the desirability coefficient h

predicted by the non-parametric model H(D,X) additively,
rather than multiplicatively. Thus the function J takes the
simple form

J(m, h) = J(G(W, X), H(D, X)) (6)

= G(W, X) + H(D,X). (7)

Another advantage of predicting the log of the price instead
of the actual price is that the absolute prediction error in
the log price corresponds to the relative prediction error in
the actual price, which is what we care about.



Finally the discrepancy between the predicted log price p

and the actual log price Y is given by the energy function
E(W,D, Y, X). The energy function used for the experiment
was half of the square of euclidean distance.

E(W,D, Y, X) =
1

2
(Y − (m + h))2 (8)

=
1

2
(Y − (G(W,X) + H(D, X)))2. (9)

2.2 The Learning Algorithm
Given the training set S = {(X1, Y 1), . . . , (Xn, Y n)}, the

objective of the training is to simultaneously find the pa-
rameters W and the desirability coefficients D (the latent
variables of the system) such that the sum of the energy
over the training set is minimized. This is done by minimiz-
ing the following loss function over W and D

L(W, D) =
n

X

i=1

E(W,D, Y
i
, X

i) + R(D) (10)

=

n
X

i=1

1

2
(Y i − (G(W,X

i) + H(D, X
i)))2 + R(D).(11)

R(D) is a regularizer on D that prevents the desirabilities
from varying wildly, and helps keep the surface smooth. In
the experiments an L2 regularizer R(D) = r

2
||D||2 was used,

where r is the regularization coefficient.
The learning algorithm is iterative and can be seen as a

deterministic form of an EM (a coordinate descent method)
algorithm, where D plays the role of auxiliary variables. The
idea is to break the optimization of the loss L with respect to
W and D into two phases. In the first phase the parameters
W are kept fixed and the loss is minimized with respect to D
(the expectation phase of EM). The second phase involves
fixing the parameters D and minimizing the loss with respect
to W (maximization phase of EM). The training proceeds by
iterating through each of the two phases alternatively until
convergence. We now explain the details of the two training
phases for the experiments in this paper.

Phase 1 It turns out that the loss function given by equa-
tion 10 is quadratic in D and the process of minimizing it
reduces to solving a large scale sparse quadratic system. As-
sociate with each training sample Xi a vector U i of size n
(equal to the number of training samples). This vector is
very sparse and has only K non zero elements, whose in-
dices are given by the elements of the neighbourhood set
N (X). The value of the jth non-zero element of this vector
is equal to the linear coefficient that is multiplied with the
desirability dj while estimating the desirability of X. Thus,
when the kernel based interpolation is used (equation 1) then
it is equal to Ker(X, Xj), and when local linear regression
model is used (equation 5) then it is aj . The loss function
(see equation 10) for this phase can now be written as the
following sparse quadratic program

L1(D) =
r

2
||D||2 +

1

2

n
X

i=1

(Y i − (mi + D
T
U

i))2. (12)

There are two things in particular that one should be careful
about this loss function.

• During the process of training with sample Xi, we
must interpolate its desirability hi using the desirabil-
ities of the training samples whose indices are given by

the set N (Xi). However, special care must be taken to
ensure that the index of the sample Xi itself is removed
from the set N (Xi). Not doing so can result in a sys-
tem that trivially sets the desirability of each training
sample equal to the price to be predicted. This would
make loss equal to zero, but lead to poor predictions.

• The regularization term plays the crucially important
role of ensure that the surface be smooth. Without it,
the system would overfit the training data and learn a
highly-varying surface, leading to poor predictions.

Another possible modification to the loss given in equa-
tion 12, includes an explicit self-consistency term. The idea
is to have an explicit constraint that will drive the esti-
mate hi of the desirability of training sample Xi given by
hi = DT U i to its assigned desirability di. Note that the
estimate hi does not involve the term di. Hence the loss
function now becomes

L1(D) =

r1

2
||D||2+

1

2

n
X

i=1

(Y i−(mi+D
T
U

i))2+
r2

2

n
X

i=1

(di−D
T
U

i)2.

(13)

Here r1 and r2 are some constants. This loss function is still
a sparse quadratic program and can be solved in the same
way as above.

The above systems can be solved using any sparse sys-
tem solvers. However, instead of using a direct method we
resorted to iterative methods. The motivation was that at
each iteration of the algorithm, we were only interested in
the approximate solution of the system. We used the conju-
gate gradient method with early stopping (also called partial
least squares). The conjugate gradient was started with a
pre-determined tolerance which was gradually lowered until
convergence.

Phase 2 This phase involves updating the parameters W
of the function G(W,X) by running a standard stochastic
gradient decent algorithm for all the samples (Xi, Y i) in the
training set, keeping D fixed. For a sample Xi the forward
propagation was composed of the following steps. Run Xi

through the function G to produce the log of the intrinsic
price mi = G(W,Xi). Interpolate the desirability hi of Xi

from its neighbours using the function hi = H(D, Xi). Add
the desirability to the intrinsic price to get the prediction
pi = mi + hi. Compare the predicted value pi with the
actual value Y i to get the energy E(W,D) = 1

2
(Y i − pi)2.

Finally, the gradient of the energy with respect to W is com-
puted using the back propagation step and the parameters
W are updated. Here again, we do not train the system to
completion, but rather stop the training after a few epochs.

The algorithm for training the latent manifold model is
summarized in algorithm 1.

2.3 The Testing Algorithm
Testing the input sample X involves a single forward prop-

agation step through the system to compute the predicted
price p = m + h = G(W,X) + H(D, X), using the learned
parameters W and the manifold variables D. This predic-
tion is compared with the desired value Y to get the error
on the current sample. The exact measure of error used was
the Absolute Relative Forecasting error and is discussed in
section 4.



3. EXPERIMENTS
The model proposed in this paper was trained on a very

large and diverse dataset. In this section we describe the
details of the dataset. In addition, we also discuss the details
of the various standard techniques that have been used for
the problem, with which the performance of the model was
compared. The results of the various techniques are given
in the next section.

3.1 The Dataset
The dataset used was obtained from First American. The

original dataset has around 750,000 transactions of single-
family houses in Los Angeles county. The transactions range
from the year 1984 to 2004. The dataset has a very hetero-
geneous set of homes spread over an area of more than 4000
sq miles, with very different individual characteristics. Each
house is described by a total of 125 attribute variables. The
attributes specific to the home include, number of bedrooms,
bathrooms, the living area of the house, the year built, the
type of property (single family residence etc), number of
stories, number of parking spaces, presence of a swimming
pool, number of fire places, type of heating, type of air con-
ditioning, material used for making the foundations etc. In
addition to this, there are financial attributes including the
taxable land values. Each house is also labeled with a set of
geographic information like its mailing address, the census
tract number, and the name of the school district in which
the house lies.

In our experiments, we only considered the transactions
that took place in the year 2004. For the homes transact-
ing in 2004, the three geographic fields were used to append
neighborhood and GPS (latitude and longitude) informa-
tion to the database. First, the mailing address was used to
extract GPS co-ordinates for each home. For neighborhood
information, we used the year 2000 census tape. For each
census tract in our database, we used data on median house-
hold income, proportion of units that are owner-occupied,
and information on the average commuting time to work.
Finally, we used the school district field for each home to
add an academic performance index (API) to the database.

The dataset is diverse even in terms of the neighbourhood
characteristics with transactions spreading across 1754 cen-

Algorithm 1 LME Trainer

Input: training set S = {(Xi, Y i) : i = 1 to N}
Initialization: W to random values and D to 0
repeat

Phase 1
Fix the value of W
Solve the quadratic program using conjugate-gradient
method with early stopping to get a new value of D
Phase 2
Fix the value of D

for i = 1 to N do
Make a forward pass through the model to compute
the energy
Make a backward pass to compute the gradients of
energy with respect to W
Update the parameters W

end for
until convergence

sus tracts and 28 school districts.The smallest census tracts
have as few as 1 transaction, while the biggest census tract
has 350 transactions. The biggest school district in Los An-
geles county is Los Angeles Unified with 25,251 transactions.
Other school districts have between 200 and 1500 transac-
tions.

Out of the numerous house specific and neighbourhood-
specific attributes associated with each house, we only con-
sidered number of bedrooms, number of bathrooms, year
of construction, living area, median house hold income, em-
ployment accessibility index, proportion of units owner occu-
pied, and the academic performance index (API). All those
houses that had missing values for at least one or more of
these attributes were filtered from the data. In addition,
only single family residences were considered. After the fil-
tering, there were a total of 70,816 labeled houses in the
dataset. Out of these, 80% of them (56,652 in total) were
randomly selected to be used for training purpose and the
remaining 20% (14,164) were used for testing.

3.2 The Latent Manifold Model
The training and testing of the model was done in the way

described in the previous section. The function G(W,X)
was chosen to be a 2 hidden layer fully connected neural
network. The first hidden layer had 80 units, and the sec-
ond hidden layer had 40 units. The network had 1 out-
put unit that gave the “intrinsic price” of the house. For
the function H(D, X), both the modeling options - kernel
smoothing, and weighted local linear regression - were tried.
In the case of kernel smoothing, the value of K, which gives
the size of the neighbourhood set N (X), was chosen to be
13. The motivation behind such a choice was the fact that
the K nearest neighbour algorithm for the problem, gave the
best performance with 13 neighbours. When weighted local
linear regression model was used, K was set to 20. This is
because the local linear regression model, when ran on the
dataset directly, performed best when the size of the neigh-
bourhoods was 20. The optimization of the quadratic loss
function (see equation 12) was done using the conjugate gra-
dient method with early stopping. The idea is to stop the
optimization once the residual of the linear system reaches a
pre-determined threshold. The value of the threshold is de-
creased gradually as a function of the number of iterations of
the training algorithm. A number of experiments were per-
formed using different values of the regularization coefficient
r and the factor q in the kernel function. A variation of the
quadratic loss that involved an additional explicit smooth-
ing term (equation 13) was also tried. Experiments were
done with a number of different values of the coefficients r1

and r2. The results are reported for the best combination
of values of these coefficients.

3.3 Other Models Used for Comparison
The performance of the proposed model was compared

to a number of standard techniques that have been in use
to solve this problem. We now briefly give a description of
these techniques.

3.3.1 K - Nearest Neighbour
In this technique, the process of predicting the price of the

sample X involves finding the K nearest training samples
(using some similarity measure) and computing the average
price of these neighbours. Two different similarity measures



were tried. One measure was a euclidean distance in the
input space, where the input consisted of only house spe-
cific features and no neighbourhood information like GPS,
school district information, and census tract information.
The other measure was also a euclidean distance but with
the input having both the house specific and neighbourhood
specific information. Experiments were done with different
values of K and results for the best value are reported.

3.3.2 Regularized Linear Regression
In the process of regularized linear regression we try to fit

a single linear model on the entire data set without consid-
ering the inherent local structure that is associated with it.
This is done by minimizing the following objective function

R(W ) =
r

2
||W ||2 +

1

2n

N
X

i=1

(Y i − W
T
X

i)2. (14)

In this equation W are the parameters to be learned and r

is the regularization coefficient.

3.3.3 Box-Cox Transformation
An extenstion of the linear regression is the Box-Cox trans-

form of the linear regression [3], which while maintaining the
basic structure of the linear regression, allows for some non-
linearities. The quadratic Box-Cox transform of the hedonic
equation is given by

P
(θ) = α0 +

k
X

i=1

αiZ
(λi)
i +

1

2

k
X

i=1

k
X

j=1

γijZ
(λi)
i Z

(λj)

j . (15)

P is the price, Zi are the attributes, and P (θ) and Z
(λi)
i

are the Box-Cox transforms.

P
(θ) =

P θ − 1

θ
, θ 6= 0 (16)

= ln(P ), θ = 0 (17)

Z
(λi)
i =

Z
λi
i − 1

λi

, λi 6= 0 (18)

= ln(Zi), λi = 0 (19)

All popularly used functional forms in the literature from
linear (θ = 1), semi-log (θ = 0), log linear (θ = 0, λ = 0,
γij = 0), and translog (θ = 0, λ = 0) etc. are all special
cases of the above equation. The above system is first solved
for the optimal parameters using a combination of maximum
likelihood estimation and grid search on the training data.

3.3.4 Weighted Local Linear Regression
Apart from the nearest neighbour method, the above meth-

ods ignore the local structure that is inherent to the problem
of house price prediction. The motivation behind using lo-
cal regression models is to exploit such a local structure and
improve upon prediction. In weighted local linear regression
models, in order to make a prediction for a sample X, a sep-
arate weighted linear regression model is fitted using only
those training samples that are its neighbours. The weights
are obtained from an appropriately chosen kernel function.
Let N (X) be the indices of the neighbouring training sam-
ples for sample X. The loss function that is minimized is

min
β(X)

X

i∈N (X)

Kλ(X, X
i)[Y i − β(X)f(Xi)]2. (20)

In the above loss β(X) are the regression parameters that
needs to be learned, f(Xi) is some polynomial function of
Xi, and Kλ(X, Xi) is an appropriately chosen kernel width
parameter λ. Once minimized, the prediction P of the sam-
ple X is given by

P = β(X) · f(X). (21)

A variation of this model, called the Varying Coefficient

Model (VCM) provides the flexibility of choosing the at-
tributes from the input space that are to be used for regres-
sion. The idea is to pick two subsets of attributes of the
input sample X. The first subset X1 is used to make a pre-
diction, while the second subset X2 is used to determine the
neigbors. The following loss function is minimized:

min
β(X2)

X

i∈N (X)

Kλ(X1, X
i
1)[Y

i − β(X2)f(Xi
1)]

2
. (22)

We used this model to study the variation of prediction er-
rors as a function of attributes, by trying a number of dif-
ferent combinations. In particular, the model was tested
using only house specific attributes in X1, using different
neighbourhood attributes in X2, like GPS coordinates.

3.3.5 Fully Connected Neural Network
A fully connected neural network also falls into the class

of architectures that do not explicitly make use of the lo-
cation information, which characterizes this type of data.
However the motivation behind using such an architecture
is to capture some non linearities that are hidden in the re-
gression function. A number of architectures were tried, and
the one that achieved the best performance was a 2-hidden
layer network with 80 units in the first layer, 40 units in the
second, and 1 unit in the output layer.

LME combines the best of both worlds: since there is
no restriction on the function G(W, X), it can be a highly
complicated non linear function capturing non linearities of
regression function, and at the same time D and H(D,X)
model the latent manifold which captures the location in-
formation associated with the data.

4. RESULTS AND DISCUSSION
The performance of the systems was measured in terms of

the Absolute Relative Forecasting error (fe) [8]. Let Ai be
the actual price of the house Pi, and let Pri be its predicted
price. Then the Absolute Relative Forecasting error (fei) is
defined as

fei =
|Ai − Pri|

Ai

. (23)

Two performance quantities on the test set are reported;
percentage of houses with a forecasting error of less than
5%, and percentage of houses with a forecasting error of less
than 15%. The greater these numbers the better the system.
Simply using the root mean square error in this setting is not
very informative, because it is overly influenced by outliers.

A comparison of the performance of various algorithms is
given in table 1. The second and third columns give the
performance of the algorithms when the location dependent
information, like GPS, census tract information, and school
district information is not used as part of the input to the
algorithm. The fourth and fifth columns give the perfor-
mance when the location information is used as part of the
input. Various versions of the LME algorithm were trained



Table 1: Prediction accuracies of various algorithms
on the test set. The second and third columns
(“Without Loc”) gives the results when no location
dependent information was used as part of the in-
put. The fourth and fifth column (“With Loc”) give
the results when the location dependent information
(GPS coordinates, census tract fields and school dis-
trict fields) is used in the inputs. The various ver-
sions of LME algorithms reported are: (a) LME -
kernel : when kernel smoothing is used in H(D, X).
(b) LME - llr : when local linear regression is used
in H(D, X). (c) S-LME - llr : when local linear re-
gression is used, and in addition to it, an explicit
smoothing constraint in the quadratic loss is used.

Algorithm Without Loc With Loc

< 5% < 15% < 5% < 15%

Nearest Neighbor 25.29 62.81 27.51 68.31

Linear Regression 14.04 40.75 19.99 55.20

Box-Cox 19.00 51.00 - -

Local Regression 24.87 62.89 29.20 70.43

Neural Network 24.60 64.54 27.43 70.10

LME - kernel - - 29.39 71.70

LME - llr - - 29.67 72.06

S-LME - llr - - 29.69 72.15

and tested. Three such versions are reported. “LME - ker-

nel” denotes the LME algorithm when kernel smoothing is
used to model the function H(D, X) (equation 1), “LME -
llr” means when local linear regression is used (equation 5),
and “S-LME -llr” means that in addition to using local lin-
ear regression, an explicit smoothing constraint in the loss
function is used (equation 13).

One can clearly see that the LME algorithm outperforms
all the other algorithms. The best performing version is
the “S-LME-llr”, which predicts 29.69% of houses within an
error margin of less than 5% and 72.15% of houses within
an error margin of less than 15%.

4.1 Importance of Location Dependent
Information

From the results given in the table, one can conclude
that information dependent on the geographic location of
the house, like its GPS coordinates, fields from census tract
data, and fields from the school district in which the house
lies, play a crucial role in predicting its price. All the al-
gorithms perform significantly better when used with these
variables than when used without them.

Another thing that is clear from the table is that it is dif-
ficult to fit a single parametric model on the entire dataset.
Rather one should try to look for models in the non-parametric
domain that change according to the neighbourhod. This is
reflected from the fact that methods like linear regression
perform very badly. Whereas a simple method like the K
nearest neighbour, which is a highly local, non smooth, and
a non-parametric method does a reasonable job. Adding
non-linearities to the linear model does not help either, as
evident from the marginally better performance of the Box-
Cox method over its linear counterpart. The fully connected
neural network, though not a non-parametric method, still
gives good performance because of its highly non linear na-
ture. But the fact that a simple local linear regression model

on the entire input space performs better than this neural
network further strengthens our belief that part of the model
should be non-parametric that should take into account the
locality dependent information.

Moreover, how intelligently the locality dependent infor-
mation is used is also crucial in making predictions. For in-
stance local linear regression method performs better than
the non linear neural network. Again, this is so because this
method fits a separate linear model on the neighbouring
samples for the sample X. It is these samples that are very
likely to have a huge influence on the price of X. Here note
that the term “neighbouring” does not necessarily mean
physical proximity. One could define a neighbourhood space
that includes physical proximity (GPS coordinates), and
area information (census fields and school fields). Among
all the algorithms, the LME uses the location dependent in-
formation in the most sophisticated manner. As mentioned
before, the price of a house not only depends on its individ-
ual characteristics but also on the so called “desirability”
of the neighbourhood, which can be modeled as a smooth
manifold. LME models this desirability manifold in a non-
parametric manner using the function H(D, X) and the de-
sirability coefficients D assigned to each training sample,
and learns them from the data. Prediction is done by com-
bining the local desirability value obtained from the learned
manifold with the description of the house (the “intrinsic
price” obtained from the parametric model). This process
is very intuitive and highly reflective of the real world situa-
tion. From the table one can see that all the versions of LME
perform better than the rest of the algorithms. In particu-
lar “LME - llr” performs better than “LME - kernel. This
indicates that the way the locality dependent information is
used is very crucial to the performance of the system. The
best performance of “S-LME - llr” speaks in favor of smooth
desirability manifolds as opposed to non-smooth ones.

4.2 The Desirability and Sensitivity Maps
In this section we give some discussion that provides in-

sights into the working of LME algorithm and argue that
it is representative of the real world scenario. This claim is
supported by providing a number of energy maps of the test
samples which we shall discuss.

Figure 2 gives the color coded prediction error map on the
test samples. Each point in the figure corresponds to a house
in the test sample and is superimposed on top of the satel-
lite image of Los Angeles county using its GPS coordinates.
The points are colored according to the error in prediction
made by LME. The blue color corresponds to lower predic-
tion error and the red color corresponds to higher error. In
order to make the picture discernible, the color of each point
is smoothed out by assigning it the average color of its 15
nearest neighbours. As one can see, the errors made by LME
are not random and seem to have a pattern. In particular,
the algorithm does a fairly good job on the out skirts of the
county. However it is in and around the central part (near
the downtown area), that it makes a lot of mistakes. This
could be attributed to the fact that their is a very high vari-
ability in the data around the central part, and the handful
of attributes used in the experiments might not be enough
to capture such a variability.

We also show the desirability map learned by the LME
algorithm (Figure 3(a)). The map shows the desirability
estimates of the location of all the houses in the test set.



For each test sample, this estimate is computed from the
learned desirabilities D of the training samples and the func-
tion H(D,X), as described earlier. The points are colored
according to the value of their desirability estimates. Blue
color implies less desirable and red color implies more desir-
able. One can conclude that the value of the desirabilities
estimated by the algorithm does encode some meaningful
information which is a reflection of the real world situa-
tion. This is evident from the fact that the areas around
the coastline are generally labeled more desirable. Likewise,
the areas of Pasadena and near Beverly Hills are also classi-
fied as highly desirable. Areas around the downtown area of
the county, particularly in the south eastern and immediate
east direction, are marked with low desirability.

Finally, we provide some sensitivity analysis; which in-
volves measuring the change in the predicted price for a
sample when the value of one of its attribute is perturbed
by a small amount. The motivation behind such an analysis
is to check whether the learning algorithm is able to capture
in a meaningful way, the non-linearities that are hidden in
the prediction function with respect to the particular at-
tribute. For a sample X, the “sensitivity value” SvX asso-
ciated with it with respect to some attribute is computed as
follows. First the original price is predicted using the actual
values of the attributes of X. This is denoted by Prorig.
Next, the value of the attribute with respect to which the
sensitivity is sought, is increased by one unit. For example,
if the attribute is the number bedrooms, then its value is in-
cremented by 1. Next the price of the sample X is predicted
again using the same machine parameters but with a per-
turbed attribute value. This is denoted by Prpurt. Finally
the “sensitivity value” SvX is computed, which is given by

SvX =
Prpurt − Prorig

Prorig

. (24)

The value of SvX can be interpreted as the expected gain
in the price of the house when its corresponding attribute
is changed by one unit. This information is very important
in solving a seller’s dilemma - whether making certain mod-
ification to his/her house before selling would increase its
value or not.

The experiments were done using the number of bedrooms
as the concerned attribute. For every house in the test set,
its number of bedrooms were increased by 1 and the “sensi-
tivity value” computed. The results are shown in the form
of a color coded map in figure 3(b). The blue color implies
lower values of SvX ; which means that the price of the house
will not change by much even when an additional bedroom
is added to it. The red color implies higher values of SvX

and indicates that the price of the house will change sub-
stantially when a new bedroom is added. From the map, one
can see that the prices in suburban areas of the county are
not as sensitive to an increase in the number of bedrooms
as the central (more congested) parts. Thus we conclude
that LME indeed is able to capture the correct non-linear
relationship between the number of bedrooms and the price
of the house.

5. CONCLUSIONS
In this paper, we proposed a new approach to regression

for a class of problems in which the variables to be pre-
dicted, in addition to depending on features specific to the
sample itself, also depend on an underlying hidden manifold.

Our approach, called LME, combines a trainable parametric
model and a non-parametric manifold model to make a pre-
diction. We give a novel learning algorithm that learns both
models simultaneously. The algorithm was applied to the
problem of real estate price prediction, which falls into such
a class of problems. The performance of LME was compared
with a number of standard parametric and non-parametric
methods. The advantages of the LME approach was demon-
strated through the desirability map and sensitivity map in-
fered by the model. These show that the algorithm is indeed
doing something that is a reflection of a real world situation.

Finally, we emphasize that the model proposed here is
quite general and can be applied to any regression problem
which can be modeled as depending upon an underlying non-
parametric manifold. The real estate prediction model can
easily extended to include temporal dependencies, so as to
learn a spatio-temporal latent manifold in the GPS+Time
space. Such a manifold would be able to capture the in-
fluence on the individual price of a house of neighbourhood
factors, and also of temporal factors such as local market
fluctuations.
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Figure 3: (a). The color coded values of the desirability surface at the location of the test samples. For
every test sample X, the estimate of its desirability is computed using the function H(D, X) and the learned
vector D and is color coded according to its value. Blue color implies low desirability and red color implies
high desirability. (b) The color coded map showing the sensitivity of the prices of houses in the test set with
respect to the number of bedrooms. Blue color implies the price of the house is less sensitive to the change
(increase) in the number of bedrooms and red color implies that the price of the house is more sensitive to
increase in the number of bedrooms.


