
Output-Sensitive Algorithms for Optimally

Constructing the Upper Envelope of Straight

Line Segments in Parallel 1

N. Gupta a,∗, S. Chopra b,

aDepartment of Computer Science, University of Delhi, New Delhi 110007, India.
bDepartment of Computer Science, New York University, New York, NY 10012,

USA

Abstract

The importance of the sensitivity of an algorithm to the output size of a problem
is well known especially if the upper bound on the output size is known to be
not too large. In this paper we focus on the problem of designing very fast parallel
algorithms for constructing the upper envelope of straight-line segments that achieve
the O(n log H) work-bound for input size n and output size H. When the output
size is small, our algorithms run faster than the algorithms whose running times are
sensitive only to the input size. Since the upper bound on the output size of the
upper envelop problem is known to be small (nα(n)), where α(n) is a slowly growing
inverse-Ackerman’s function, the algorithms are no worse in cost than the previous
algorithms in the worst case of the output size. Our algorithms are designed for the
arbitrary CRCW PRAM model. We first describe an O(log n·(log H+log log n)) time
deterministic algorithm for the problem, that achieves O(n log H) work bound for
H = Ω(log n). We then present a fast randomized algorithm that runs in expected
time O(log H ·log log n) with high probability and does O(n log H) work. For log H =
Ω(log log n), we can achieve the running time of O(log H) while simultaneously
keeping the work optimal. We also present a fast randomized algorithm that runs in
Õ(log n/ log k) time with nk processors, k > logΩ(1) n. The algorithms do not assume
any prior input distribution and the running times hold with high probability.

Key words: Parallel algorithm, Computational geometry, Upper envelope,
Randomized algorithm

∗ Corresponding author. Tel. : +91-11-2766-7591; Fax: +91-11-2766-2553
Email addresses: ngupta@cs.du.ac.in (N. Gupta), sumit@cs.nyu.edu (S.

Chopra).
1 A preliminary version of the paper appeared in twenty first annual symposium
on FSTTCS

Preprint submitted to JPDC 11 January 2007

1 Introduction

The upper envelope of a set of n line segments in the plane is an important
concept in visibility and motion planning problems. The segments are regarded
as opaque obstacles, and their upper envelope consists of the portion of the
segments visible from the point (0, +∞). The complexity of the upper envelope
is the number of distinct pieces of segments that appear on it. If the segments
are non-intersecting, then the complexity of their upper envelope is linear in
n. On the other hand, if the segments are allowed to intersect, then the worst
case complexity of the upper envelope increases to O(nα(n)), where α(n) is
the functional inverse of Ackermann’s function [2]. A maximal appearance of
a line segment s in the upper envelope is a maximal open interval (a, b) such
that s appears on the envelope for all x in (a, b). Thus the complexity of the
upper envelope is the total number of maximal appearances of all the line
segments. We shall call a maximal appearance of a line segment in the upper
envelope as an edge of the upper envelope.

There exists an O(n logn) algorithm to compute the upper envelope of n
line segments, and this is worst case optimal [23]. However this is true only
if the output size, i.e., the number of vertices (or the edges) of the upper
envelope is large. More specifically, the time-bound of O(n logn) is tight when
the ordered output size is Ω(n). However if the output size is small then we
should be able to do much better. For example consider the arrangement
of the input line segments shown in figure 1. Clearly the complexity of the
upper envelope (the output size) is a constant. In such situations an algorithm
whose sequential running time is O(nH) (H being the output size), would
runs faster than an O(nlogn) sequential time algorithm. The same argument
carries to parallel algorithms as well. Thus the output-size of a problem is an
important parameter in measuring the efficiency of an algorithm and one can
get considerably superior algorithms in terms of it. There exists an O(n logH)
algorithm for the problem [26], where H is the output size. This implies a linear
time algorithm for constant output size. Thus, a parameter like the output-
size captures the complexity of the problem more accurately enabling us to
design superior algorithms.

The primary objective of designing parallel algorithms is to obtain very fast
solutions to problems keeping the total work (the processor-time product)
close to the best sequential algorithms. We are aiming at designing an output
size sensitive parallel algorithm that speeds up optimally with output size
in the sub-logarithmic time domain. We also present a sub-logarithmic time
algorithm that uses super linear number of processors. The results have been
obtained for arbitrary Concurrent Read Concurrent Write Parallel Random
Access Machine (CRCW PRAM).

2

Fig. 1. An example of arrangement of line segments where the size of the upper
envelope is constant. In such cases an algorithm whose running time depends on
the output size H, for example O(n log H), will run in almost linear time.

1.1 Previous results

In the context of sequential algorithms, it has been observed that the up-
per envelope of n line segments can be computed in O(nα(n) logn) time, by
a straight forward application of divide-and-conquer technique. Hershberger
describes an optimal O(n log n) algorithm by reorganizing the divide-and-
conquer computation [23].

Clarkson describes a randomized O(nα(n) logn) algorithm for computing a
face in an arrangement of line segments [11]. The upper envelope of line seg-
ments can be viewed as one such face. Guibas et al. [18], gave a determin-
istic algorithm which computed a face for a collection of line segments in
O(nα2(n) log n) time.

The process of gift wrapping amounts to locating an extreme segment of the
upper envelope and then “walking” along successive segments of the envelope
which are defined by the points of intersection of the lines in the given ar-
rangement. Thus if H is the size of the output, then it is easy to design an
O(nH) time algorithm like the Jarvis’ March for convex hulls. There exists a
deterministic sequential output sensitive algorithm due to Franck Nielsen and
Mariette Yvinec that computes the upper envelope in O(n log H) time [26].
Their algorithm is based on the marriage-before-conquest paradigm to com-
pute the convex hull of a set of fixed planar convex objects, which they also
apply to compute the upper envelope of line segments. They use the partition-
ing technique of Hershberger to get an O(n log H) time for upper envelope.
They claim that their algorithms are easily parallelizable onto EREW PRAM
multi-computers following the algorithm of S. Akl [3]. This implies a parallel
output sensitive algorithm which is optimal for number of processors bounded
by O(nz), 0 < z < 1.

Dehne etal. in [14] have presented a parallel algorithm for the problem. Their
algorithm runs in O(n log n

p
+Ts(n, p)) time, where Ts(n, p) is the time for global

3

sorting on p processors each with O(n
p
) local memory. Their bounds hold for

small number of processors, i.e., for p ≤ √
n. Ts(n, p) depends upon a particular

architecture. It is Θ(n
p
(log n +

√
p)) on a 2d-mesh, O(n

p
(log n + log2 p)) on a

hypercube and O(n log n
p

) on a fat-tree [14]. Since Ts(n, p) dominates for all the

architectures, it leads to an algorithm with the same complexities as Ts(n, p).
Since p ≤ √

n, the best time achievable is
√

n log n on any architecture. In [5]
Bertolotto etal. have also given a parallel algorithm with similar complexity.
They also present an algorithm that runs in O(n log n

p
+ nα(n)) time. Here

also their algorithm is optimal only for a very small number of processors
(when p < log n/α(n)) and the time taken is at least nα(n). Later Wei Chen
and Koichi Wada gave a deterministic algorithm that computes the upper
envelope of line segments in O(logn) time using O(n) processors [9]. If the
line segments are non-intersecting and sorted, the envelope can be found in
O(log n) time using O(n/ logn) processors. Their methods also imply a fast
sequential result: the upper envelope of n sorted line segments can be found in
O(n log log n) time, which improves the best-known bound O(n logn). A more
detailed comparison of our algorithms with the others is given in the end.

1.2 Our algorithms and results

We present algorithms whose running times are output-sensitive in the sub-
logarithmic time range while keeping the work (processor-time product) opti-
mal [20]. For designing fast output-sensitive algorithms we have to cope with
the problem that the output-size is an unknown parameter. Moreover we also
have to rapidly eliminate input line segments that do not contribute to the final
output without incurring a high cost. The two most successful approaches used
in the sequential context, namely gift-wrapping and divide-and-conquer do not
translate into fast parallel algorithms. By ‘fast’ we imply a time complexity of
O(log H) or something very close. The gift-wrapping is inherently sequential
taking O(H) sequential phases. Even the divide-and-conquer method is not
particularly effective as it cannot divide the output evenly – in fact this aspect
is the crux of the difficulty of designing fast output-sensitive algorithms that
run in O(logH) time.

We present one deterministic and two randomized algorithms that construct
the upper envelope of n line segments. Both our randomized algorithms are of
Las Vegas type. That is we always provide a correct output and the bounds
hold with high probability. The term high probability implies probability ex-
ceeding 1-1/nc for any predetermined constant c and the input size n.

We first describe a deterministic algorithm for the problem that takes O(logn·
(log H + log log n)) time using O(n/ logn) processors. The algorithm is based
on the ideas presented by Neilsen and Yvinec [26] to bound the size of the sub-

4

problems. Our algorithm achieves O(n log H) work bound for H = Ω(log n).
Our algorithm is faster than the only parallel output sensitive algorithm (as
claimed by Neilsen and Mariette) which is optimal for the number of processors
bounded by O(nz), 0 < z < 1.

Next we present a fast randomized algorithm. The expected running times
hold with high probability. The fastest algorithm runs in O(log H) expected
time using n processors for H > logε n, and ε > 0. For smaller output sizes,
the algorithm has an expected running time of O(log H · log log n) keeping the
number of operations optimal. Therefore for small output sizes our algorithm
runs very fast. Comparing this with (n, log n) algorithm of Chen and Wada [9],
our algorithm is faster for small H . The algorithm uses the iterative method
of Gupta and Sen [21]. We pickup a sample of constant size, filter out the
redundant line segments and iterate, squaring the size of the sample at each
iteration, until the size of the problem reduces to some threshold or the sample
size increases to some threshold. We are able to achieve the bounds due to the
Random Sampling Lemmas of Clarkson and Shor [12].

Next we describe a randomized algorithm that solves the problem in O(log n/ log k)
time with high probability using super linear number of processors for k >
logΩ(1) n. This algorithm is based on the general technique given by Sen to
develop sub-logarithmic algorithms [34].

We finally compare the performance of our algorithm with other parallel algo-
rithms both in terms of time complexity and work done. We are not aware of
any previous work where the parallel algorithms for computing the upper enve-
lope speed-up optimally with output size in the sub-logarithmic time domain.
However it is claimed that using Chen and Wada’s algorithm [9] together with
the filtering technique described by Clarkson and Shor [12], one can obtain
fast output sensitive algorithms for the problem.

2 Deterministic algorithm for upper envelope

2.1 The Idea

Our algorithm is based on the Marriage-before-conquest technique and it uses
the ideas presented by Neilsen and Yvinec [26] to bound the size of the sub-
problems. Let S be the set of n line segments. Let its upper envelope be
denoted by UE(S). If we know that there exists a partition ∪k

i=1Pi of S into
k subsets such that each subset Pi, for i ∈ [1, k] is a set of x-separated line
segments, then in the marriage-before-conquest procedure we can bound the
size of the sub-problems by (n/2 + k). We transform the set S into a set

5

T of line segments partitioned into subsets, each subset consisting of a set
of non-overlapping line segments, such that UE(S) = UE(T). We now apply
the marriage-before-conquest procedure on the set T . To compute the set
T , we partition the set S using a partition tree and use the communication
of J. Hershberger to make the number of line segments in T linear (i.e. to
make the size of T linear). With a good estimate of k, we run the marriage-
before-conquest procedure on the set T (the number of stages of this procedure
depends on k), and reduce the total size of the problem to n/log n, after which
the problem is solved directly. We use an iterative technique to estimate the
value of k.

2.2 The vertical decomposition

Let Q be a subset of S. Through each vertex of the upper envelope of Q, we
draw a line parallel to y-axis. These parallel lines induce a decomposition of
the line segments of Q into smaller line segments, which we call the tiny line
segments (see Figure 2). We only keep the tiny line segments that participate
in the upper envelope.

Fig. 2. Tiny line segments formed after vertical decomposition of Q.

Note that the part of a line segment not contributing to the upper envelope
of Q will not contribute to the final upper envelope. The tiny line segments
are x-separated i.e. they are non-overlapping. The number of these tiny line
segments is equal to the complexity of the upper envelope. Each tiny line
segment is defined by a single line segment.

2.2.1 The partition tree

To generate the set T from the set S, we group the line segments of the set
S into k groups and compute the vertical decomposition of each group. Thus
the tiny line segments formed in this decomposition form the set T , which
is partitioned into k subsets, each consisting of non-overlapping segments.
However such a grouping technique does not guarantee that the size of the set
T i.e., the total number of such tiny line segments is linear.

6

We use the technique of J. Hershberger to group the line segments of S. The
main idea is to create groups so that the size of the vertical decomposition of
each group remains linear. Let p be an integer. We define x(q) as the abscissa
of the point q. We first compute a partition tree of depth log p on the end
points of the line segments as presented by Neilsen and Yvinec. Consider the
2n endpoints of the n line segments. Compute, by recursive application of an
algorithm to compute the median, a partition P = {P1, P2, . . . , Pp} of the 2n
endpoints so that each sheaf Pi has size 2n/p and the sheaves are x-ordered,
(i.e., x(p) < x(q) for all p ∈ Pi and for all q ∈ Pi+1). We consider the following
p − 1 reference abscissa and p x-ranges:

• For each sheaf Pi, we associate the x-range Xi = {x(pi) : pi ∈ Pi}. Note
that all the x-ranges of the sheaves are disjoint.

• Two successive sheaves Pi and Pi+1 are separated by a vertical line x = ai,
where ai could be any value between the right most abscissa in sheaf Pi and
the left most abscissa in the sheaf Pi+1. We shall call ai as the reference
abscissa between two consecutive x-ranges Xi and Xi+1.

We build an interval tree IT upon these p−1 reference abscissa and p x-ranges:
each leaf of the interval tree corresponds to the x-range of a sheaf and each
internal node to an abscissa separating the sheaves. Then, we allocate the n
line segments according to the lowest common ancestor of their two endpoints.
At this step, all the segments are located in two kinds of sets:

(1) Those staying at a leaf of IT. This means that the abscissa of the end
points of these line segments is included in the x-range of the sheaf. We
say that these line segments are unclassified.

(2) Those lying in an internal node of IT. The line segments whose lowest
common ancestor of the abscissa of their endpoints is the node corre-
sponding to the abscissa ai, cross the vertical line x = ai. Following the
communication of J. Hershberger [23], their upper envelope is linear in
the number of line segments. He shows that the upper envelope of the
segments allocated to a given internal node is linear because all these line
segments cross a vertical line. We say that these segments are classified.

We notice that the upper envelope of the line segments allocated to different
nodes at the same internal level of IT is linear in the number of line segments

By grouping the line segments of each internal level of the interval tree into
⌈ni/p⌉ groups, each of size p, and computing for each group the vertical de-
composition of their upper envelope, we obtain an O(n/p+log p) groups. Thus

we have a partition of the original set of n line segments into
∑⌈log p⌉−2

i=0 ⌈ni/p⌉ =
O(n/p+log p) subsets each consisting of p x-separated line segments. We also
group the unclassified line segments as follows: we pick up one segment from
each leaf and form a group. There are at most n/p such groups, each of size

7

p.

Thus we obtain a new set T , which is partitioned into O(2n/p+log p) subsets,
each consisting of p x-separated tiny line segments, such that UE(T) = UE(S).
Thus a total of O((2n/p + log p) · p) tiny line segments are formed. To make
the size of the set T linear, we choose p such that p log p < n.

The partition tree can be constructed in O(log n · log p) time using n/ log n
processors. Using (n, log n) algorithm of [9] to compute the upper envelope,
the vertical decomposition in each group can be computed in O(log p) time
with p processors or in O(log p · log n) time with p/ log n processors. We arrive
at the following lemma.

Lemma 1 For a fixed integer p such that p log p < n, the time taken to
generate the set T partitioned into O(2n/p + log p) subsets each consisting
of p x-separated line segments from the set S, such that UE(S) = UE(T) is
O(log n · log p) using O(n/ logn) processors.

Remark 2 Since median can be computed in constant time with high proba-
bility with n processors, we have a randomized algorithm to obtain the above
partition in O(log p) time with n processors.

2.3 The Marriage-before-conquest procedure

We assume that the partition ∪k
i=1Pi of the set T into k subsets such that each

subset Pi, is a set of non-overlapping line segments, is given. Let |T | = cn. Find
the median xm of the x− coordinates of the 2cn endpoints of the segments.
Compute the edge b of the upper envelope intersecting the vertical line through
xm. Delete the segments lying completely below b. Split the problem into two
subproblems one consisiting of all those segments at least one of whose end
points lie to the left of end point of b and the other consisiting of all those
segments at least one of whose end points lie to the right of end point of b.
Solve each subproblem recursively and merge the output together with the
edge b. Since at most k segments (one from each partition) can intersect any
vertical line, the size of the sub-problems is bounded by O(n/2 + k) , where
k = O(2n/p + log p) = O(n/p), for p log p < n.

Note 1 At every stage each sub-problem has at least one output edge.

2.3.1 The analysis

Computing the median takes O(log n) time using n/ log n processors. The
edge of the upper envelope intersecting the vertical line x = xm belongs to

8

the line segment whose intersection point with the line has the maximum y-
coordinate. To find the two endpoints bounding the edge, we need to compute
the intersection of the line segment (to which the edge belongs), with the rest
of the line segments and find amongst them the two points lying immediately
to the right and left of the vertical line x = xm. This can be done in O(log n)
time using n/ log n processors. Thus at each stage of recursion O(logn) time
is spent using n/ log n processors.

Lemma 3 The size of the problem reduces to n/ log n after log H + log log n
stages of the MBC procedure, which is ≤ log p if the integer p is such that
H log n ≤ p .

2.4 The main algorithm

We now present our main algorithm that computes the upper envelope of the
set S of n line segments. The algorithm works in two phases:

(1) The estimation phase : During this phase we find a good estimate of p
such that p log p < n and after O(log p) stages of the MBC procedure,
the size of the problem reduces to n/ log n. During the process, we also
transform the set S of n line segments into the set T of O(n) line segments.

(2) The terminating phase: During this phase we solve the problem (of size
n/ log n) directly.

Det-UE

(1)a. p = c, where c is some constant (> 4).
b. If p log p > n use an O(n, logn) algorithm to solve the problem directly

and stop.
c. Use the algorithm of Section 2.2.1. to form a set T of tiny line segments

using p, from the set S.
d. Use the MBC procedure on T for log p stages.
e. Compute the total size of the sub-problems after this. If the size < n/log

n, then goto Step 2, else square p and repeat.
(2) Solve the problem directly using an O(n, log n) algorithm.

From Lemma 3, the loop is guaranteed to terminate as soon as p > H log n.
Hence p < (H log n)2 for all the iterations.

2.4.1 The analysis

Let pe denote the estimate of p. Then pe < (H log n)2. If pi is the ith estimation
of p, then the total time spent in the estimation phase is

9

< O(log n · ∑

log pi)

= O(log n · log pe)

= O(log n · (log H + log log n))

The terminating phase takes additional O(log n) time. Thus we have the fol-
lowing theorem

Theorem 4 The upper envelope of n line segments can be constructed in
O(log n·(log H+log log n)) time using O(n/ logn) processors in a deterministic
CRCW PRAM.

Strictly speaking, we must add the time for processor allocation to this time.
However that can also be done in the same bounds.

Theorem 5 The upper envelope of n line segments can be constructed in
O(n log H

p
+log n · (log H +log log n)) time using p processors in a deterministic

CRCW PRAM.

Proof. Follows from Brent’s slow down lemma [7]. 2

3 The Randomized Output Sensitive Algorithm

In this section we present an output-size sensitive randomized algorithm using
O(n) processors. Our algorithm is an iterative one. The underlying algorithm
is similar to the algorithm described for the planar convex hulls by Gupta
and Sen [21]. Hence the entire analysis of their algorithm goes through in
our case also. However here we shall detail out the steps that are specific to
our problem. We assume for simplicity that no more than two line segments
intersect at the same point and the abscissa and ordinate of the end points
of no two line segments and that of points of intersection are the same. We
also include a line segment, say L at y = M , as one of our input, where M =
min{yi} - ε, (ε > 0, 1 ≤ i ≤ n and yi = the minimum y-coordinate of the ith

line segment). The x-coordinate of the left and the right end points of L are
(min{xli} - ε) and (max{xri} + ε) respectively, (ε > 0, 1 ≤ i ≤ n and xli and
xri are the left and the right x-coordinate respectively of the endpoints of the
ith line segment). By the introduction of such a line segment the complexity of
the upper envelope will at most double. Thus the upper envelope would look
like as shown in Figure 3.

10

L : Y = M

Fig. 3. The Upper Envelope after including the line segment L.

3.1 The Idea

Let us denote the input set of straight line segments by S and their upper
envelope by UE(S). The idea is to construct the upper envelope of a ran-
dom sample R of line segments and filter out the redundant segments that
do not contribute to UE(S). We pickup a sample of line segments of constant
size, compute its upper envelope, discard all the redundant line segments and
iterate on the reduced problem. In each successive iteration we square the
size of the sample to be chosen. We iterate until either the size of the prob-
lem reduces to some threshold or the sample size becomes greater than some
threshold. At this point, if the problem size reduces to less than nε, then we
use a brute force algorithm to solve the problem in constant time, else we use
the algorithm described by Chen and Wada [9] to compute the upper envelope
directly.

To prove any interesting result we must determine how quickly the problem
size decreases. The Random Sampling Lemmas discussed in the next section
guarantee that when a sample of size = Ω(H2) is chosen, the problem size
reduces fast.

3.2 The Random Sampling Lemmas

For any subset P ⊆ S, consider an edge of the upper envelope of P . Draw
two vertical lines, one through the left end point of this edge and the other
through the right end point of this edge. We define a slab as the portion of the
Euclidian plane E2 between these two vertical lines. A configuration σ (which
we call region) is the region lying above the upper envelope in such a slab. No
two such regions overlap. See Figure 4. We say that the line segments adjacent
to σ define σ. Example in Figure 4 segments s1, s2, s3 define σ1.

Notice that we include the line segment L at y = M (defined previously) in

11

s1

s2

s3

σ1

Fig. 4. Regions formed by a subset of the set S. The defining line segments of the
region σ1 are s1, s2, s3.

every subset P of S. From now onwards, whenever we talk of a subset P of S
we would actually be meaning P ∪ L.

Let Π∗(R) denote the set of regions induced by a random sample R and Πh(R)
denote the set of critical regions i.e. the regions not containing any output
vertex. The set of line segments intersecting a region σ is called the conflict
list of σ and is denoted by L(σ) and its cardinality |L(σ)| denoted by l(σ) is
called the conflict size. We will use the following results to bound the size of
the reduced problem.

l1
l2

li l
rα(r)

Fig. 5. Regions belonging to the subspace Π∗(R) of Π(R).

Lemma 6 [12,25]. For some suitable constant k and large n,

Pr





∑

σ∈Π∗(R)

l(σ) ≥ knα(r)



 ≤ 1/c ,

for some constant c > 1, where probability is taken over all possible choices of
the random sample R.

The above lemma gives a bound on the size of the union of the conflict lists.

Lemma 7 [12,25]. For some suitable constant k1 and large n,

12

Pr

[

max
σ∈Π∗(R)

l(σ) ≥ k1(n/r) log r

]

≤ 1/c ,

for some constant c > 1, where probability is taken over all possible choices of
random sample R such that |R| = r.

This lemma gives a bound on the maximum size of each sub-problem.

A sample is “good” if it satisfies the properties of Lemmas 6 and 7 simulta-
neously. In fact, we have the following.

Lemma 8 We can find a sample R which satisfies both Lemmas 6 and 7
simultaneously with high probability. Moreover, this can be done in O(log r)
time and O(n log r) work with high probability.

Proof. This can be done using Resampling and Polling technique of Reif and
Sen [28]. See Appendix A for referrence. 2

Since |Πh(R)| ≤ H , a good sample clearly satisfies the following property also.

Lemma 9 For a good sample R,

∑

σ∈Πh(R) l(σ) = O(nH log r/r),

where |R| = r and Πh(R) is the set of all the regions that contain at least one
output point.

3.3 The Algorithm

We pick up a random sample R of S and compute its upper envelope. We
will use this to delete the line segments which we know will not contribute
to the final output and iterate. We say that a line segment is redundant if it
does not intersect any critical region. That is, either it lies entirely below the
upper envelope of R (see segment s1 in Figure 6) or it intersects some region
lying above the upper envelope but not the critical region (segments s2, s3 in
figure 6).

Consider a region that does not contain any output point. Clearly only one
line segment is useful in this region, which is the line segment that has the
maximum y-coordinate in that region. Such a line segment must intersect at
least one of the regions containing an output point and is therefore retained.
In Figure 6, the region Q2 does not contain any output point and the line
segment L is the one with the maximum y-coordinate. Clearly L intersects

13

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

s1

s2

s3

v1 v2 v3

Fig. 6. Critical regions are Q1, Q6 and Q8. Non Critical regions are Q2, Q3, Q4, Q5

and Q7. The line segment L is retained because of regions Q1 and Q6 which contain
output points namely v1 and v2.

atleast one region containing an output point, namely Q1 and Q6 and hence
is retained. Output points in these regions are v1 and v2 respectively.

We delete the redundant line segments and iterate on the reduced problem.
Lemma 9 will be used to estimate the non-redundant line segments whenever
H ≤ r/ log r.

Let Π∗(R) denote the set of regions induced by a sample R (as defined in
Section 3.2) and let ni (respectively ri) denote the size of the problem (re-
spectively sample size) at the ith iteration with n1 = n. Repeat the following
procedure until ri > nε (this condition guarantees that the sample size is never
too big) or ni < nε for some fixed ε between 0 and 1. If ni < nε, then find out
the upper envelope of ni line segments directly using a brute force algorithm.
Otherwise do one more iteration and find out ni+1. If ni+1 = O(n1−ε/4), then
we use a brute force algorithm, otherwise we use the algorithm of Chen and
Wada [9] to find the upper envelope of ni+1 line segments.

The following is the description of the ith iteration of the algorithm.

Rand-UE

(1) Use the procedure of Lemma 8. to choose a “good” sample R of size ri

= constant for i = 1 and r2
i−1 for i > 1.

(2) Find out the upper envelope of R.
(3) (a) For every line segment find out the slabs that it intersects.

(b) Discard the redundant line segments lying below the upper envelope

14

of R. (Section 4 discusses this in detail).
(c) If the sum taken over all the remaining line segments, of the number

of regions intersecting a line segment is O(nα(r)) then continue else
goto Step 1.

(4) Filter out the segments not conflicting with any critical region as follows.
(a) Compute Πh(R) as follows.

For every region σ do the following:
(i) Find out the line segments intersecting σ and assign l(σ)/α(r)

processors to it (see Lemma 6. and Step 3(c) above).
(ii) Consider the points of intersection of the line segments with the

vertical lines defining the region (the boundaries of the slab lying
above the edges of the upper envelope) including the intersection
points by the edges of the upper envelope. If the points with
maximum y-coordinate belong to the same line segment say s,
and there does not exist any segment above s lying entirely in
σ, then σ /∈ Πh(R) else σ ∈ Πh(R).

(b) Delete a line segment if it does not belong to ∪σ∈Πh(R)L(σ)
(5) The set of line segments for the next iteration is ∪σ∈Πh(R)L(σ) and its

size is ni+1 = | ∪σ∈Πh(R) L(σ)|

Increment i and go to 1.

3.4 The Analysis

The analysis of Gupta and Sen [21] goes through here also. However detecting
and deleting the redundant segments require further explanation which is done
in Section 4.

Assume that H = O(nδ) for some δ between 0 and 1, for otherwise the problem
can be solved in O(log n) = O(log H) time. Let n be the number of processors.
Step 3(a) (finding the regions that a segment intersects) takes O(log ri) time
initially (when there is no processor advantage) until the sample size grows to
Ω(H2) (giving a geometric series with log H as the leading term) and constant
time there onwards taking a total of O(log H + log log n) time, log log n being
the total number of iterations. Steps 3(c), 4(a)(i) and 4(b) are implemented
using procedures for Interval allocation, Processor allocation, Semisorting and
Approximate compaction. These steps take O(α(r)+log∗ n) time initially until
the size of the problem reduces to n/ log n (taking O(log∗ n log log log n) time,
α(r) = O(α(n)) gets subsumed in O(log ∗n), log log log n being the number of
iterations required to reduce the problem size to n/ log n), and constant time
there onwards taking a total of O(log∗ n log log log n + log log n) time. Step
4(a)(ii) can be done in O(α(r)) time using n processors [21] until the size of
the problem reduces to n/α(n) and constant time there onwards. Hence the

15

time for this step gets subsumed in that for the other steps.

Let the terminating condition be satisfied in the tth iteration. If nt < nǫ,
then computing the upper envelope of nt line segments takes constant time.
Otherwise, if nǫ < rt < nt or nǫ < nt < rt then we have the following:
Let ǫ be < 1/2. Clearly, rt−1 < nǫ and rt < n2ǫ. Hence we can afford to do
one more iteration within the same bounds. Now, nt+1 = O(ntH log rt/rt) =
O(ntH(2ǫ log n)/nǫ) = O(n1−ǫ/2H). Now if nt+1 = O(n1−ǫ/4) the problem
is solved directly in constant time using brute force method. Otherwise, we
must have H = Ω(nǫ/4) and hence using the algorithm of Chen and Wada, the
algorithm runs in O(log n) = O(logH) time. We thus arrive at the following
lemma.

Lemma 10 The upper envelope of n possibly intersecting straight line seg-
ments can be constructed in O(max{log H, log log n}) time with high probabil-
ity using a linear number of processors, where H is the output size.

Remark 11 For log H = Ω(log log n), this attains the ideal O(log H) running
time with n processors, keeping the work optimal.

Using n/ log log n processors instead of n and Brent’s Slow down Lemma, we
have the following result

Theorem 12 The upper envelope of n possibly intersecting straight line seg-
ments can be constructed in O(log H · log log n) expected time and O(n logH)
operations with high probability in a CRCW PRAM model where H is the size
of the upper envelope.

Theorem 13 The upper envelope of n line segments can be constructed in
O(n log H

p
+ log H · log log n) time using p processors in a deterministic CRCW

PRAM.

Proof. Follows from Brent’s slow down lemma [7]. 2

4 Finding the Redundant Line Segments

Recall that a segment is redundant if it does not intersect any critical region,
i.e. either it lies entirely below the upper envelope of the random sample or
it intersects some region lying above the upper envelope but not the critical
region. For the purpose of this section, by the term redundant we mean the
segments lying below the upper envelope of the sample. We develop a fast sub-
logarithmic algorithm that determines whether a line segment is redundant or

16

s1

s2
s3

s6

s5

v1

v2

v3

v5

v6

v7 N o nR e d u n d a n tR e d u n d a n t
v4

s4

r1 r2 r3 r4 r5 r6 r7 r8

Fig. 7. Segments s1, s2, s3, s5, s6 are Non Redundant. Segment s4 is Redundant.

not. The algorithm runs in O(log m/ log k) time using k processors, where m
is the size of the upper envelope.

4.1 The idea

Consider an upper envelope of a random sample of line segments, divided into
regions (as defined in Section 3.2). Consider any line segment (see Figure 7).
If the line segment intersects the upper envelope at any point then it is non-
redundant. However, if it does not intersect, then two cases arise: 1. Either
the line segment lies entirely above the upper envelope in which case, it is
non-redundant (segment s1). 2. The line segment lies entirely below the upper
envelope (segment s4) in which case, it is redundant. So to determine if the line
segment is redundant or not, we need to determine if it intersects the upper
envelope. Let the vertices of the upper envelope spanned by a line segment be
called the defining points for that line segment (for example v1, v2, . . . , v6, v7

for line segment s6). If the line segment intersects the part of the envelope
defined only by the defining points (segments s3 and s6), then the line segment
intersects the upper envelope and hence, it is declared non-redundant. But if
it does not intersect this part, then if the line segment lies above the upper
envelope of its defining vertices, then it is non redundant. Else, if the line
segment lies below the upper envelope of its defining vertices, we consider the
two extreme slabs which the line segment intersects (for example s2 intersects
the upper envelope in r7 and s5 in r2). If the line segment intersects the part
of the envelope in these extreme slabs then it is non-redundant, else it is
redundant.

Thus the problem reduces to determining whether a line segment intersects
part of the upper envelope defined by its defining vertices and whether it
lies entirely below it, in case it does not. Then in additional constant time
(checking the extreme slabs for intersection) we can determine whether the
segment is redundant or not. The case when a line segment belongs entirely
to one region is a special one in which the two extreme regions coincide.

17

Clearly, If a line segment intersects the lower convex chain of its defining
vertices then it intersects the upper envelope defined by them. Note that the
converse is not true.

v1

v2

v

v

Fig. 8. Any segment that intersects the lower convex chain of its defining vertices
intersects it in two points, and it must intersect the upper envelope of these defining
vertices.

Lemma 14 Given an upper envelope of size m, we can preprocess its vertices
in constant time using O(m6) processors, such that given any arbitrary line
segment with k processors, we can determine whether it is redundant or not in
O(log m/ log k) time.

Proof. The lower convex chain for all the segments can be precomputed using
a locus based approach in constant time using O(m6) processors.

Given a line segment with k processors, we can perform k-way search for each
of its end points in O(log m/ log k) time to find the vertices it spans. With
k processors by a k-way search of the convex chain one can determine in
O(log m/ log k) time whether the line segment intersects the convex chain and
hence determine whether the segment is redundant or not. 2

5 The Õ(log n/ log k) time algorithm

5.1 The Algorithm

The general technique given by Sen [34] to develop sub-logarithmic algorithms
can be used to design on O(log n/ log k) algorithm for the problem. Let the

18

number of line segments be n and the number of processors be (nk), k >
logΩ(1) n.

(1) Pick up a good sample R of size (nk)1/c log n, for some suitable constant
c > 1 which will be decided later.

(2) Compute the upper envelope of the sample using a brute force algorithm.
(3) Define the regions as explained in Section 3.2.
(4) Determine the set of critical regions and remove all the redundant line

segments as explained in Section 4.
(5) If the size of the sub-problem is O(logΩ(1) n), then solve directly using a

brute force algorithm else recurse.

5.2 The Analysis

Assume the availabilty of nk processors. For c = 5, the sample size r is
(nk)

1

5 log n and the upper envelope of these segments can be computed in con-
stant time using r4 processors by a brute-force method. Critical regions are de-
termined in O(log n/ log k) time as explained in Section 4 plus O(logn/ log k)
time for semi-sorting. Deletion of redundant segments can be done by com-
paction using sorting. Thus if T (n, m) represents the parallel running time for
the input size n with m processors then

T (n, nk) = T (n/(nk)
1

c , nk/(nk)
1

c) + a log n/ log k (1)

constants c and a are greater than 1. The solution of this recurrence with
appropriate stopping criterion is O(log n/ log k) by induction. Hence we have
the following.

Theorem 15 Given n straight line segments and nk (k > logΩ(1) n) proces-
sors, we can find their upper envelope in O(log n/ log k) steps with high prob-
ability.

6 Comparison with Other Algorithms

In this section we compare the performance of our algorithm with others,
both in terms of time complexity and the work done. The following table
summarizes the relative results.

One can clearly see from the table that our algorithms are work optimal in
the output size and also very efficient in running time when the output size H
is small. Our algorithms are designed for CRCW PRAM model. However, on

19

Algorithm Procs. Time Work Done

Chen, Wada [9] n O(log n) O(n log n)

Nielsen, Yvinec [26] O(nz) O(n1−z log H) O(n log H)

Dehne etal. [14] p ≤ √
n O(n log n

p + Ts(n, p)) O(n log n + p.Ts(n, p))

Bertolotto etal. [5] p O(n log n
p + nα(n)) O(n log n + pnα(n))

Bertolotto etal. [5] p ≤ √
n O(nα(n) log n

p + Ts(n, p)) O(nα(n) log n + pTs(n, p))

DET-UE O(n
log n) O(log n · (log H + log log n)) O(n log H)

RAND-UE O(n
log log n) O(log H · log log n) O(n log H)

Table 1
Table giving the number of processors, time complexity and the work done by vari-
ous algorithms. Ts(n, p) in the third and fifth rows is the time for global sorting on p
processors each with O(n/p) memory [14,5]. It depends on the parallel architecture
used.

any practical architecture, concurrent read and concurrent write operations
can be simulated with communication graph of a complete binary tree of
height log p. For example, a complete binary tree of height l can be embedded
in a 2d-mesh with dilation ⌈ l

2
⌉ and in a hypercube of dimension l + 2 with

dilation 1 [31]. With the direct application of the above facts, our algorithms
can be implemented on a 2d-mesh by a slow down of at most log2 p and on
a hypercube within the same bounds. Even with a slow down of log2 p on a
2d-mesh our algorithms are faster than the previous algorithms.

7 Remarks and Open Problems

First we presented a deterministic algorithm for the problem of upper en-
velope of line segments that runs in O(log n · (log H + log log n)) time and
achieves O(n log H) work bound for H = Ω(log n). For small output sizes,
we presented faster randomized algorithms for the problem. The fastest al-
gorithm runs in O(logH) time using linear number of processors for a large
range of output size, namely H ≥ logε n. For small output size our algorithm
runs in O(log log n · log H) time and speeds up optimally with the output size.
Finally we described a sub-logarithmic time parallel algorithm that runs in
Õ(log n/ log k) time using nk processors, k > logΩ(1) n.

One of the issues that remains to be dealt with is that of speeding up the
algorithm further using a superlinear number of processors such that the time
taken is Ω(log H/ log k) with nk processors, where k > 1. Designing an algo-
rithm that takes O(log H) time and does optimal work for all values of H is
another open problem.

20

The other issue is that of designing a sub-logarithmic time algorithm using
superlinear number of processors for k > 1. This could be achieved if we are
able to filter the redundant line segments to further restrict the blow up in
problem size in successive levels of recursion and to allocate processors such
that, to each sub-problem the number of processors allocated is bounded by its
output size. The technique of Sen [28,34] to filter the redundant line segments
and the processor allocation scheme used by them is not particularly effective
here. According to that scheme, the number of processors which we must
allocate to a segment is the number of vertices contributed by the segment
to the output which we don’t know in advance in this case and moreover the
requirement of a segment as it goes down the levels of recursion may increase.

Appendix A

Since the events of Lemmas 6 and 7 would fail only with constant probability,
the probability that the conditions would fail in O(log n) independent trials
is less than 1/nα for some α > 0. So we select O(log2 n) independent samples.
One of them is “good” with high probability. However, to determine if a sample
is “good” we will have to do step 3(a)i log2 n times each of which will take
O(log r) time (we will show later). We can not afford to do this. Instead,
we try to estimate the number of half-planes intersecting a region using only
a fraction of the input half-planes. Consider a sample Q. Check it against
a randomly chosen sample of size n/ log3 n of the input half-planes for the
condition of Lemmas 6 and 7. We explain below how to check for these
conditions. Our procedure works for r = o(n/ log4 n).

For every region ∆ defined by Q do in parallel.

Let A(∆) be the number of half-planes of the n/ log3 n sampled half-planes
intersecting with ∆ and let X(∆) be the total number of half-planes inter-
secting with ∆. Let X(∆) > c′ log4 n for some constant c′ - the conditions
of Lemmas 6 and 7 hold trivially for the other case (for r < cn/ log4 n
for some constant c, (n log r)/r > n/r > (1/c) log4 n > (1/cc′)X(∆) and
∑

∆ X(∆) ≤ c′r log4 n < c′cn).

By using Chernoff’s bounds for binomial random variables, L = k1(
∑

∆ A(∆) log3 n)
and U = k2(

∑

∆ A(∆) log3 n) are lower and upper bounds respectively for
X =

∑

∆ X(∆) with high probability, for some constants k1 and k2.

For some constant k,

(1) Reject a sample if L > kn (X ≥ L > kn).
(2) Accept a sample if U ≤ kn (X ≤ U ≤ kn).
(3) If L ≤ kn ≤ U then accept a sample.

(X/kn ≤ U/L, which is a constant).

21

With high probability about log n samples will be accepted by the above
procedure. Also clearly,

∑

∆ A(∆) ≤ kn/ log3 n.

For each of the samples accepted by the above proedure consider in parallel:

Again by using Chernoff’s bounds for binomial random variables, L(∆) =
k′

1(A(∆) log3 n) and U(∆) = k′
2(A(∆) log3 n) are lower and upper bounds

respectively for X(∆) with high probability, for some constants k′
1 and k′

2.
Each region reports whether to “accept” or to “reject” a sample as follows.

For some constant k′,

(1) Reject a sample if L(∆) > k′(n/r) log r (X(∆) ≥ L(∆) > k′(n/r) log r).
(2) Accept a sample if U(∆) ≤ k′(n/r) log r (X(∆) ≤ U(∆) ≤ k′(n/r) log r).
(3) If L(∆) ≤ k′(n/r) log r ≤ U(∆) then accept a sample.

(X(∆)/k′(n/r) log r ≤ U(∆)/L(∆), which is a constant)

If any region reports “reject” a sample then reject the sample.

References

[1] A. Agarwal, B. Chazelle, L. Guibas, C. O’Dunlaing and C. K. Yap, Parallel
computational geometry. Proc. 25th Annual Sympos. Found. Comput. Sci.
(1985) 468-477; also: Algorithmica 3 (3) (1988) 293-327.

[2] P. K. Aggarwal and M. Sharir, Davenport-Schinzel Sequences and their
Geometric Applications. (1995).

[3] S. Akl, Optimal algorithms for computing convex hulls and sorting, Computing
33 (1) (1984) 1-11.

[4] H. Bast and T. Hagerup, Fast parallel space allocation, estimation and integer
sorting, Technical Report MPI-I-93-123 (June 1993).

[5] M. Bertolotto, L. Campora, and G. Dodero. A Scalable Parallel Algorithm for
Computing the Upper Envelope of Segments. Proceedings of Euromicro (1995),
503-509.

[6] B. K. Bhattacharya and S. Sen, On simple, practical, optimal, output-sensitive
randomized planar convex hull algorithm, J. Algorithms 25 (1997) 177-193.

[7] R. Brent, Parallel evaluation of general arithmetic expressions, Journal of the
ACM, (1974), 21, 201–206.

[8] B. Chazelle and J. Friedman, A deterministic view of random sampling and its
use in geometry, Combinatorica 10 (3) (1990) 229-249.

22

[9] W. Chen and K. Wada, On Computing the Upper Envelope of Segments in
Parallel, Proceeding of 27th International Conference on Parallel Processing
(1998), 253-260.

[10] D. Z. Chen, W. Chen, K. Wada, K. Kawaguchi Parallel Algorithms for
Partitioning Sorted Sets and Related Problems, Algorithmica 28, (2000), 217-
241.

[11] K. L. Clarkson, A randomized algorithm for computing a face in an arrangement
of line segments.

[12] K. L. Clarkson and P. W. Shor, Applications of random sampling in
computational geometry, II, Discrete Comput. Geom. 4 (1989) 387-421.

[13] R. Cole, An optimal efficient selection algorithm, Inform. Process. Lett. 26
(1987/1988) 295-299.

[14] F. Dehne, A. Fabri and A. Rau-Chaplin, Scalable Parallel Geometric Algorithms
for Computing the Upper Envelope of Segments. Proceedings of 9th Annual
ACM Symposium on Computational Geometry, (1993), 298 - 307.

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, New York,
1987).

[16] P. B. Gibbons, Y. Matias, and V. Ramachandran, Efficient Low-Contention
Parallel Algorithm. Proceedings of the 6th Annual ACM Symposium on Parallel
Algorithms and Architectures, (1994), 236 - 247.

[17] M. Goodrich, Geometric partitioning made easier, even in parallel, Proc. 9th

ACM Sympos. Comput. Geom. (1993) 73-82.

[18] L. J. Guibas, M. Sharir, and S. Sifrony, On the general motion planning problem
with two degrees of freedom, Discrete Comput. Geom. , 4 (1989), 491-521

[19] N. Gupta, Efficient Parallel Output-Size Sensitive Algorithms, Ph.D. Thesis,
Department of Computer Science and Engineering, Indian Institute of
Technology, Delhi (1998).

[20] N. Gupta, S. Chopra and S. Sen, Optimal, Output-Sensitive Algorithms
for Constructing Upper Envelope of Line Segments in Parallel, Foundations
of Software Technology and Theoretical Computer Science (Foundations of
Software Technology and Theoretical Computer Science) , (2001) 183-194.

[21] N. Gupta and S. Sen, Optimal, output-sensitive algorithms for constructing
planar hulls in parallel, Comput. Geom. Theory and App. 8 (1997) 151-166.

[22] N. Gupta and S. Sen, Faster output-sensitive parallel convex hull for d ≤ 3:
optimal sub-logarithmic algorithms for small outputs, Proc. ACM Sympos.
Comput. Geom. (1996) 176-185.

[23] J. Hershberger, Finding the upper envelope of n line segments in O(n log n)
time, Inform. Process. Lett. 33 (1989) 169-174.

23

[24] Fast and Scalable Paralle Matric Computations on Distributed Memory
Systems. Proceedings of IPDPS 2005, IEEE (2005).

[25] K. Mulmuley, Computational Geometry: An Introduction through Randomized
Algorithms.(Prentice Hall, Englewood Cliffs, NJ, 1994).

[26] F. Nielsen and M. Yvinec, An output-sensitive convex hull algorithm for convex
objects. (1995).

[27] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction
(Springer, New York, 1985).

[28] S. Rajasekaran and S. Sen, in: J. H. Reif, Ed., Random Sampling Techniques
and Parallel Algorithm Design (Morgan Kaufmann Publishers, San Mateo, CA,
1993).

[29] E. A. Ramos, Construction of 1-d lower envelopes and applications, Proceedings
of the thirteenth annual symposium on Computational geometry , (1997), 57-66.

[30] T. Hagerup and R. Raman, Waste makes haste : tight bounds for loose parallel
sorting, FOCS, 33, 1992, 628 – 637.

[31] M. J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, INC.

[32] J. H. Reif and S. Sen, Randomized algorithms for binary search and Load
Balancing on fixed connection networks with geometric applications, SIAM J.
Comput. 23 (3) (1994) 633-651.

[33] J. H. Reif and S. Sen, Optimal Parallel Randomized Algorithms for 3-D Convex
Hull, and Related Problems, SIAM J. Comput. 21 (1992) 466-485.

[34] S. Sen, Lower bounds for parallel algebraic decision trees, parallel complexity of
convex hulls and related problems, Theoretical Computer Science. 188 (1997)
59-78.

24

