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Abstract

Dimensionality reduction involves mapping a set of high
dimensional input points onto a low dimensional mani-
fold so that “similar” points in input space are mapped to
nearby points on the manifold. Most existing techniques for
solving the problem suffer from two drawbacks. First, most
of them depend on a meaningful and computable distance
metric in input space. Second, they do not compute a “func-
tion” that can accurately map new input samples whose re-
lationship to the training data is unknown. We present a
method - called Dimensionality Reduction by Learning an
Invariant Mapping (DrLIM) - for learning a globally co-
herent non-linear function that maps the data evenly to the
output manifold. The learning relies solely on neighbor-
hood relationships and does not require any distance mea-
sure in the input space. The method can learn mappings that
are invariant to certain transformations of the inputs, as is
demonstrated with a number of experiments. Comparisons
are made to other techniques, in particular LLE.

1. Introduction

Modern applications have steadily expanded their use of
complex, high dimensional data. The massive, high dimen-
sional image datasets generated by biology, earth science,
astronomy, robotics, modern manufacturing, and other do-
mains of science and industry demand new techniques for
analysis, feature extraction, dimensionality reduction,and
visualization.

Dimensionality reduction aims to translate high dimen-
sional data to a low dimensional representation such that
similar input objects are mapped to nearby points on a man-
ifold. Most existing dimensionality reduction techniques
have two shortcomings. First, they do not produce afunc-
tion (or a mapping) from input to manifold that can be ap-
plied to new points whose relationship to the training points
is unknown. Second, many methods presuppose the exis-
tence of a meaningful (and computable) distance metric in

the input space.
For example, Locally Linear Embedding (LLE) [15] lin-

early combines input vectors that are identified as neigh-
bors. The applicability of LLE and similar methods to im-
age data is limited because linearly combining images only
makes sense for images that are perfectly registered and
very similar. Laplacian Eigenmap [2] and Hessian LLE [8]
do not require a meaningful metric in input space (they
merely require a list of neighbors for every sample), but
as with LLE, new points whose relationships with training
samples are unknown cannot be processed. Out-of-sample
extensions to several dimensionality reduction techniques
have been proposed that allow for consistent embedding of
new data samples without recomputation of all samples [3].
These extensions, however, assume the existence of a com-
putable kernel function that is used to generate the neigh-
borhood matrix. This dependence is reducible to the depen-
dence on a computable distance metric in input space.

Another limitation of current methods is that they tend to
cluster points in output space, sometimes densely enough to
be considered degenerate solutions. Rather, it is sometimes
desirable to find manifolds that are uniformly covered by
samples.

The method proposed in the present paper, called Di-
mensionality Reduction by Learning an Invariant Mapping
(DrLIM), provides a solution to the above problems. Dr-
LIM is a method for learning a globally coherent non-linear
function that maps the data to a low dimensional manifold.
The method presents four essential characteristics:

• It only needs neighborhood relationships between
training samples. These relationships could come from
prior knowledge, or manual labeling, and be indepen-
dent of any distance metric.

• It may learn functions that are invariant to complicated
non-linear trnasformations of the inputs such as light-
ing changes and geometric distortions.

• The learned function can be used to map new samples
not seen during training, with no prior knowledge.
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• The mapping generated by the function is in some
sense “smooth” and coherent in the output space.

A contrastive loss function is employed to learn the param-
etersW of a parameterized functionGW , in such a way that
neighbors are pulled together and non-neighbors are pushed
apart. Prior knowledge can be used to identify the neighbors
for each training data point.

The method uses an energy based model that uses the
given neighborhood relationships to learn the mapping
function. For a family of functionsG, parameterized byW ,
the objective is to find a value ofW that maps a set of high
dimensional inputs to the manifold such that the euclidean
distance between points on the manifold,DW ( ~X1, ~X2) =

||GW ( ~X1) − GW ( ~X2)||2 approximates the “semantic sim-
ilarity”of the inputs in input space, as provided by a set of
neighborhood relationships. No assumption is made about
the functionGW except that it is differentiable with respect
to W .

1.1. Previous Work

The problem of mapping a set of high dimensional points
onto a low dimensional manifold has a long history. The
two classical methods for the problem are Principal Com-
ponent Analysis (PCA) [7] and Multi-Dimensional Scal-
ing (MDS) [6]. PCA involves the projection of inputs to a
low dimensional subspace that maximizes the variance. In
MDS, one computes the projection that best preserves the
pairwise distances between input points. However both the
methods - PCA in general and MDS in the classical scaling
case (when the distances are euclidean distances) - generate
a linear embedding.

In recent years there has been a lot of activity in design-
ing non-linearspectral methodsfor the problem. These
methods involve solving the eigenvalue problem for a
particular matrix. Recently proposed algorithms include
ISOMAP (2000) by Tenenbaumet al. [1], Local Linear Em-
bedding - LLE (2000) by Roweis and Saul [15], Laplacian
Eigenmaps (2003) due to Belkin and Niyogi [2] and Hes-
sian LLE (2003) by Donoho and Grimes [8]. All the above
methods have three main steps. The first is to identify a list
of neighbors of each point. Second, a gram matrix is com-
puted using this information. Third, the eigenvalue prob-
lem is solved for this matrix. The methods differ in how the
gram matrix is computed. None of these methods attempt
to compute afunctionthat could map a new, unknown data
point without recomputing the entire embedding and with-
out knowing its relationships to the training points. Out-
of-sample extensions to the above methods have been pro-
posed by Bengioet al. in [3], but they too rely on a prede-
termined computable distance metric.

Along a somewhat different line Schöelkopfet al. in
1998 [13] proposed a non-linear extension of PCA, called
Kernel PCA. The idea is to non-linearly map the inputs to

a high dimensional feature space and then extract the prin-
cipal components. The algorithm first expresses the PCA
computation solely in terms of dot products and then ex-
ploits the kernel trick to implicitly compute the high dimen-
sional mapping. The choice of kernels is crucial: differ-
ent kernels yield dramatically different embeddings. In re-
cent work, Weinbergeret al. in [11, 12] attempt to learn
the kernel matrix when the high dimensional input lies on a
low dimensional manifold by formulating the problem as a
semidefinite program. There are also related algorithms for
clustering due to Shi and Malik [14] and Nget al. [17].

The proposed approach is different from these methods;
it learns a function that is capable of consistently mapping
new points unseen during training. In addition, this function
is not constrained by simple distance measures in the input
space. The learning architecture is somewhat similar to the
one discussed in [4, 5].

Section2 describes the general framework, the loss func-
tion, and draws an analogy with a mechanical spring sys-
tem. The ideas in this section are made concrete in sec-
tion3. Here various experimental results are given and com-
parisons to LLE are made.

2. Learning the Low Dimensional Mapping

The problem is to find a function that maps high dimen-
sional input patterns to lower dimensional outputs, given
neighborhood relationships between samples in input space.
The graph of neighborhood relationships may come from
information source that may not be available for test points,
such as prior knowledge, manual labeling, etc. More pre-
cisely, given a set of input vectorsI = { ~X1, . . . , ~XP },
where ~Xi ∈ ℜD, ∀i = 1, . . . , n, find a parametric func-
tion GW : ℜD −→ ℜd with d ≪ D, such that it has the
following properties:

1. Simple distance measures in the output space (such as
euclidean distance) should approximate theneighbor-
hood relationshipsin the input space.

2. The mapping should not be constrained to implement-
ing simple distance measures in the input space and
should be able to learn invariances to complex trans-
formations.

3. It should befaithful even for samples whose neighbor-
hood relationships are unknown.

2.1. The Contrastive Loss Function

Consider the setI of high dimensional training vectors
~Xi. Assume that for each~Xi ∈ I there is a setS ~Xi

of train-

ing vectors that are deemed similar to~Xi. This set can be
computed by some prior knowledge - invariance to distor-
tions or temporal proximity, for instance - which does not



depend on a simple distance. A meaningful mapping from
high to low dimensional space maps similar input vectors to
nearby points on the output manifold and dissimilar vectors
to distant points. A new loss function whose minimization
can produce such a function is now introduced. Unlike con-
ventional learning systems where the loss function is a sum
over samples, the loss function here runs overpairs of sam-
ples. Let ~X1, ~X2 ∈ I be a pair of input vectors shown to the
system. LetY be a binary label assigned to this pair.Y = 0
if ~X1 and ~X2 are deemd similar, andY = 1 if they are
deemed dissimilar. Define the parameterized distance func-
tion to be learnedDW between ~X1, ~X2 as the euclidean
distance between the outputs ofGW . That is,

DW ( ~X1, ~X2) = ‖GW ( ~X1) − GW ( ~X2)‖2 (1)

To shorten notation,DW ( ~X1, ~X2) is writtenDW . Then the
loss function in its most general form is

L(W ) =

P
∑

i=1

L(W, (Y, ~X1, ~X2)
i) (2)

L(W, (Y, ~X1, ~X2)
i) = (1 − Y )LS

(

Di
W

)

+ Y LD

(

Di
W

)

(3)

where(Y, ~X1, ~X2)
i is the i-th labeled sample pair,LS is

the partial loss function for a pair of similar points,LD the
partial loss function for a pair of dissimilar points, andP

the number of training pairs (which may be as large as the
square of the number of samples).

LS andLD must be designed such that minimizingL

with respect toW would result in low values ofDW for
similar pairs and high values ofDW for dissimilar pairs.
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Figure 1. Graph of the loss functionL against the energyDW .
The dashed (red) line is the loss function for the similar pairs and
the solid (blue) line is for the dissimilar pairs.

The exact loss function is

L(W, Y, ~X1, ~X2) =

(1 − Y )
1

2
(DW )2 + (Y )

1

2
{max(0, m − DW )}2 (4)

wherem > 0 is a margin. The margin defines a radius
aroundGW ( ~X). Dissimilar pairs contribute to the loss
function only if their distance is within this radius (See fig-
ure1). The contrastive term involving dissimilar pairs,LD,
is crucial. Simply minimizingDW ( ~X1, ~X2) over the set of
all similar pairs will usually lead to a collapsed solution,
sinceDW and the lossL could then be made zero by set-
ting GW to a constant. Most energy-based models require
the use of an explicit contrastive term in the loss function.

2.2. Spring Model Analogy

An analogy to a particular mechanical spring system is
given to provide an intuition of what is happening when
the loss function is minimized. The outputs ofGW can be
thought of as masses attracting and repelling each other with
springs. Consider the equation of a spring

F = −KX (5)

whereF is the force,K is the spring constant andX is the
displacement of the spring from its rest length. A spring
is attract-only if its rest length is equal to zero. Thus any
positive displacementX will result in an attractive force
between its ends. A spring is said to bem-repulse-onlyif its
rest length is equal tom. Thus two points that are connected
with a m-repulse-onlyspring will be pushed apart ifX is
less thanm. However this spring has a special property
that if the spring is stretched by a lengthX > m, then no
attractive force brings it back to rest length. Each point is
connected to other points using these two kinds of springs.
Seen in the light of the loss function, each point is connected
by attract-onlysprings tosimilar points, and is connected
by m-repulse-onlyspring todissimilarpoints. See figure2.

Consider the loss functionLS(W, ~X1, ~X2) associated
with similar pairs.

LS(W, ~X1, ~X2) =
1

2
(DW )2 (6)

The loss functionL is minimized using the stochastic gra-
dient descent algorithm. The gradient ofLS is

∂LS

∂W
= DW

∂DW

∂W
(7)

Comparing equations5 and7, it is clear that the gradient
∂LS

∂W
of LS gives the attractive force between the two points.

∂DW

∂W
defines the spring constantK of the spring andDW ,

which is the distance between the two points, gives the per-
turbationX of the spring from its rest length. Clearly, even
a small value ofDW will generate a gradient (force) to de-
creaseDW . Thus the similar loss function corresponds to
theattract-onlyspring (figure2).

Now consider the partial loss functionLD.

LD(W, ~X1, ~X2) =
1

2
(max{0, m − DW })2 (8)



Figure 2. Figure showing the spring system. The solid circles rep-
resent points that are similar to the point in the center. Thehol-
low circles represent dissimilar points. The springs are shown as
red zigzag lines. The forces acting on the points are shown in
blue arrows. The length of the arrows approximately gives the
strength of the force. In the two plots on the right side, the x-axis
is the distanceDW and the y-axis is the value of the loss function.
(a). Shows the points connected to similar points withattract-
only springs. (b). The loss function and its gradient associated
with similar pairs. (c) The point connected only with dissimilar
points inside the circle of radiusm with m-repulse-onlysprings.
(d) Shows the loss function and its gradient associated withdis-
similar pairs. (e) Shows the situation where a point is pulled by
other points in different directions, creating equilibrium.

When DW > m, ∂LD

∂W
= 0. Thus there is no gradient

(force) on the two points that are dissimilar and are at a
distanceDW > m. If DW < m then

∂LD

∂W
= −(m − DW )

∂DW

∂W
(9)

Again, comparing equations5 and9 it is clear that the dis-
similar loss functionLD corresponds to them-repulse-only
spring; its gradient gives the force of the spring,∂DW

∂W
gives

the spring constantK and(m−DW ) gives the perturbation
X . The negative sign denotes the fact that the force is re-
pulsive only. Clearly the force is maximum whenDW = 0
and absent whenDW = m. See figure2.

Here, especially in the case ofLS, one might think that
simply makingDW = 0 for all attract-onlysprings would
put the system in equilibrium. Consider, however, figure2e.
Supposeb1 is connected tob2 and b3 with attract-only
springs. Then decreasingDW betweenb1 andb2 will in-
creaseDW betweenb1 and b3. Thus by minimizing the

global loss functionL over all springs, one would ultimately
drive the system to its equilibrium state.

2.3. The Algorithm

The algorithm first generates the training set, then trains
the machine.

Step 1: For each input sample~Xi, do the following:

(a) Using prior knowledge find the set of samples
S ~Xi

= { ~Xj}
p
j=1

, such that ~Xj is deemed sim-

ilar to ~Xi.

(b) Pair the sample~Xi with all the other training
samples and label the pairs so that:
Yij = 0 if ~Xj ∈ S ~Xi

, andYij = 1 otherwise.

Combine all the pairs to form the labeled training set.

Step 2: Repeat until convergence:

(a) For each pair( ~Xi, ~Xj) in the training set, do

i. If Yij = 0, then updateW to decrease
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

ii. If Yij = 1, then updateW to increase
DW = ‖GW ( ~Xi) − GW ( ~Xj)‖2

This increase and decrease of euclidean distances in the out-
put space is done by minimizing the above loss function.

3. Experiments

The experiments presented in this section demonstrate
the invariances afforded by our approach and also clarify the
limitations of techniques such as LLE. First we give details
of the parameterized machineGW that learns the mapping
function.

3.1. Training Architecture

The learning architecture is similar to the one used in [4]
and [5]. Called asiamesearchitecture, it consists of two
copies of the functionGW which share the same set of pa-
rametersW , and a cost module. A loss module whose input
is the output of this architecture is placed on top of it. The
input to the entire system is a pair of images( ~X1, ~X2) and
a labelY . The images are passed through the functions,
yielding two outputsG( ~X1) andG( ~X2). The cost module
then generates the distanceDW (GW ( ~X1), GW ( ~X2)). The
loss function combinesDW with label Y to produce the
scalar lossLS or LD, depending on the labelY . The pa-
rameterW is updated using stochastic gradient. The gradi-
ents can be computed by back-propagation through the loss,
the cost, and the two instances ofGW . The total gradient is
the sum of the contributions from the two instances.

The experiments involving airplane images from the
NORB dataset [10] use a 2-layer fully connected neural
network asGW . The number of hidden and output units



used was 20 and 3 respectively. Experiments on the MNIST
dataset [9] used a convolutional network asGW (figure3).
Convolutional networks are trainable, non-linear learning
machines that operate at pixel level and learn low-level fea-
tures and high-level representations in an integrated manner.
They are trainedend-to-endto map images to outputs. Be-
cause of a structure of shared weights and multiple layers,
they can learn optimal shift-invariant local feature detectors
while maintaining invariance to geometric distortions of the
input image.

Figure 3. Architecture of the functionGW (a convolutional net-
work) which was learned to map the MNIST data to a low dimen-
sional manifold with invariance to shifts.

The layers of the convolutional network comprise a con-
volutional layerC1 with 15 feature maps, a subsampling
layerS2, a second convolutional layerC3 with 30 feature
maps, and fully connected layerF3 with 2 units. The sizes
of the kernels for theC1 andC3 were 6x6 and 9x9 respec-
tively.

3.2. Learned Mapping of MNIST samples

The first experiment is designed to establish the basic
functionality of the DrLIM approach. The neighborhood
graph is generated with euclidean distances and no prior
knowledge.

The training set is built from 3000 images of the hand-
written digit 4 and 3000 images of the handwritten digit 9
chosen randomly from the MNIST dataset [9]. Approxi-
mately 1000 images of each digit comprised the test set.
These images were shuffled, paired, and labeled according
to a simple euclidean distance measure: each sample~Xi

was paired with its 5 nearest neighbors, producing the set
SXi

. All other possible pairs were labeled dissimilar, pro-
ducing 30,000 similar pairs and on the order of 18 million
dissimilar pairs.

The mapping of the test set to a 2D manifold is shown
in figure 4. The lighter-colored blue dots are 9’s and the
darker-colored red dots are 4’s. Several input test samples
are shown next to their manifold positions. The 4’s and 9’s
are in two somewhat overlapping regions, with an overall
organization that is primarily determined by the slant angle
of the samples. The samples are spread rather uniformly in
the populated region.

Figure 4. Experiment demonstrating the effectiveness of the Dr-
LIM in a trivial situation with MNIST digits. A Euclidean near-
est neighbor metric is used to create the local neighborhoodrela-
tionships among the training samples, and a mapping function is
learned with a convolutional network. Figure shows the placement
of thetestsamples in output space. Even though the neighborhood
relationships among these samples are unknown, they are well or-
ganized and evenly distributed on the 2D manifold.

3.3. Learning a Shift-Invariant Mapping of MNIST
samples

In this experiment, the DrLIM approach is evaluated us-
ing 2 categories of MNIST, distorted by adding samples that
have been horizontally translated. The objective is to learn
a 2D mapping that is invariant to horizontal translations.

In the distorted set, 3000 images of 4’s and 3000 im-
ages of 9’s are horizontally translated by -6, -3, 3, and 6
pixels and combined with the originals, producing a total
of 30,000 samples. The 2000 samples in the test set were
distorted in the same way.

First the system was trained using pairs from a euclidean
distance neighborhood graph (5 nearest neighbors per sam-
ple), as in experiment 1. The large distances between trans-
lated samples creates a disjoint neighborhood relationship
graph and the resulting mapping is disjoint as well. The out-
put points are clustered according to the translated position
of the input sample (figure5). Within each cluster, however,
the samples are well organized and evenly distributed.

For comparison, the LLE algorithm was used to map the
distorted MNIST using the same euclidean distance neigh-
borhood graph. The result was a degenerate embedding in
which differently registered samples were completely sepa-
rated (figure6). Although there is sporadic local organiza-



Figure 5. This experiment shows the effect of a simple distance-
based mapping on MNIST data with horizontal translations added
(-6, -3, +3, and +6 pixels). Since translated samples are farapart,
the manifold has 5 distinct clusters of samples corresponding to
the 5 translations. Note that the clusters are individuallywell-
organized, however. Results are on test samples, unseen during
training.

tion, there is no global coherence in the embedding.

Figure 6. LLE’s embedding of the distorted MNIST set with hor-
izontal translations added. Most of the untranslated samples are
tightly clustered at the top right corner, and the translated samples
are grouped at the sides of the output.

In order to make the mapping function invariant to trans-
lation, the euclidean nearest neighbors were supplemented
with pairs created usingprior knowledge. Each sample was

paired with(a) its 5 nearest neighbors,(b) its 4 translations,
and(c) the 4 translations of each of its 5 nearest neighbors.
Additionally, each of the sample’s 4 translations was paired
with (d) all the above nearest neighbors and translated sam-
ples. All other possible pairs are labeled as dissimilar.

The mapping of the test set samples is shown in figure7.
The lighter-colored blue dots are 4’s and the darker-colored
red dots are 9’s. As desired, there is no organization on the
basis of translation; in fact, translated versions of a given
character are all tighlty packed in small regions on the man-
ifold.

Figure 7. This experiment measured DrLIM’s success at learning
a mapping from high-dimensional, shifted digit images to a 2D
manifold. The mapping is invariant to translations of the input
images. The mapping is well-organized and globally coherent.
Results shown are the test samples, whose neighborhood relations
are unknown. Similar characters are mapped to nearby areas,re-
gardless of their shift.

3.4. Mapping Learned with Temporal Neighbor-
hoods and Lighting Invariance

The final experiment demonstrates dimensionality re-
duction on a set of images of a single object. The object is
an airplane from the NORB [10] dataset with uniform back-
grounds. There are a total of 972 images of the airplane un-
der various poses around the viewing half-sphere, and under
various illuminations. The views have 18 azimuths (every
20 degrees around the circle), 9 elevations (from 30 to 70
degrees every 5 degrees), and 6 lighting conditions (4 lights
in various on-off combinations). The objective is to learn a
globally coherent mapping to a 3D manifold that is invariant
to lighting conditions. A pattern based on temporal conti-
nuity of the camera was used to construct a neighborhood



graph; images are similar if they were taken from contigu-
ous elevation or azimuth regardless of lighting. Images may
be neighbors even if they are very distant in terms of Eucli-
den distance in pixel space, due to different lighting.

The dataset was split into 660 training images and a 312
test images. The result of training on all 10989 similar pairs
and 206481 dissimilar pairs is a 3-dimensional manifold in
the shape of a cylinder (see figure8). The circumference
of the cylinder corresponds to change in azimuth in input
space, while the height of the cylinder corresponds to ele-
vation in input space. The mapping is completely invariant
to lighting. This outcome is quite remarkable. Using only
local neighborhood relationships, the learned manifold cor-
responds globally to the positions of the camera as it pro-
duced the dataset.

Viewing the weights of the network helps explain how
the mapping learned illumination invariance (see figure9).
The concentric rings match edges on the airplanes to a par-
ticular azimuth and elevation, and the rest of the weights
are close to 0. The dark edges and shadow of the wings, for
example, are relatively consistent regardless of lighting.

Figure 9. The weights of the 20 hidden units of a fully-connected
neural network trained with DrLIM on airplane images from the
NORB dataset. Since the camera rotates360

o around the airplane
and the mapping must be invariant to lighting, the weights are zero
except to detect edges at each azimuth and elevation; thus the con-
centric patterns.

For comparison, the same neighborhood relationships
defined by the prior knowledge in this experiment were
used to create an embedding using LLE. Although arbitrary
neighborhoods can be used in the LLE algorithm, the al-
gorithm computes linear reconstruction weights to embed
the samples, which severely limits the desired effect of us-
ing distant neighbors. The embedding produced by LLE is
shown (see figure10). Clearly, the 3D embedding is not

invariant to lighting, and the organization of azimuth and
elevation does not reflect the real topology neighborhood
graph.

Figure 10. 3d embedding of NORB images by LLE algorithm. The
neighborhood graph was constructed to create invariance tolight-
ing, but the linear reconstruction weights of LLE force it organize
the embedding by lighting. The shape of the embedding resembles
a folded paper. The top image shows the ’v’ shape of the fold and
the lower image looks into the valley of the fold.

4. Discussion and Future Work

The experiments presented here demonstrate that, unless
prior knowledge is used to create invariance, variabilities
such as lighting and registration can dominate and distort
the outcome of dimensionality reduction. The proposed ap-
proach, DrLIM, offers a solution: it is able to learn an in-
variant mapping to a low dimensional manifold using prior
knowledge. The complexity of the invariances that can be
learned are only limited by the power of the parameterized
functionGW . The function maps inputs that evenly cover
a manifold, as can be seen by the experimental results. It
also faithfully maps new, unseen samples to meaningful lo-
cations on the manifold.

The strength of DrLIM lies in the contrastive loss func-
tion. By using a separate loss function for similar and dis-



Figure 8. Test set results: the DrLIM approach learned a mapping to 3d space for images of a single airplane (extracted from NORB dataset).
The output manifold is shown under five different viewing angles. The manifold is roughly cylindrical with a systematic organization: along
the circumference varies azimuth of camera in the viewing half-sphere. Along the height varies the camera elevation in the viewing sphere.
The mapping is invariant to the lighting condition, thanks to the prior knowledge built into the neighborhood relationships.

similar pairs, the system avoids collapse to a constant func-
tion and maintains an equilibrium in output space, much as
a mechanical system of interconnected springs does.

The experiments with LLE show that LLE is most useful
where the input samples are locally very similar and well-
registered. If this is not the case, then LLE may give degen-
erate results. Although it is possible to run LLE with arbi-
trary neighborhood relationships, the linear reconstruction
of the samples negates the effect of very distant neighbors.
Other dimensionality reduction methods have avoided this
limitation, but none produces a function that can accept new
samples without recomputation or prior knowledge.

Creating a dimensionality reduction mapping using prior
knowledge has other uses. Given the success of the NORB
experiment, in which the positions of the camera were
learned from prior knowledge of the temporal connections
between images, it may be feasible to learn a robot’s posi-
tion and heading from image sequences.
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