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Abstract

We introduce a view of unsupervised learn-
ing that integrates probabilistic and non-
probabilistic methods for clustering, dimen-
sionality reduction, and feature extraction in
a unified framework. In this framework, an
energy function associates low energies to in-
put points that are similar to training sam-
ples, and high energies to unobserved points.
Learning consists in minimizing the energies
of training samples while ensuring that the
energies of unobserved ones are higher. Some
traditional methods construct the architec-
ture so that only a small number of points
can have low energy, while other methods
explicitly “pull up” on the energies of unob-
served points. In probabilistic methods the
energy of unobserved points is pulled by min-
imizing the log partition function, an expen-
sive, and sometimes intractable process. We
explore different and more efficient methods
using an energy-based approach. In particu-
lar, we show that a simple solution is to re-
strict the amount of information contained
in codes that represent the data. We demon-
strate such a method by training it on natu-
ral image patches and by applying to image
denoising.

1 Introduction

The main goal of unsupervised learning is to capture
regularities in data for the purpose of extracting use-
ful representations or for restoring corrupted data. For
example, probabilistic density models can be used for
deriving efficient codes (for compression), or for restor-
ing corrupted data (e.g. denoising images). Many un-
supervised methods explicitly produce representations
or codes, or feature vectors, from which the data is

to be reconstructed. For example in clustering meth-
ods such as K-Means, the code is the index of the
prototype in the codebook that is closest to the data
vector. Similarly in Principal Component Analysis,
the code is the projection of the data vector on a lin-
ear subspace. In auto-encoder neural nets, the code
is the state of a hidden layer with a small number of
units, from which a vector on a low-dimensional non-
linear manifold is reconstructed. In Restricted Boltz-
mann Machines [4], the code is a vector of stochastic
binary variables from which the input can be recon-
structed. Finally, in sparse-overcomplete representa-
tions methods such as Non-negative Matrix Factor-
ization [2], Olshausen and Field’s sparse overcomplete
coding method [7], or the Energy-Based Model for
learning sparse over-complete features [11], the code
is a high-dimensional vector with most of the compo-
nents at zero. In general, these models are trained in
such a way that training data can be accurately recon-
structed from the codes, while unobserved data vectors
cannot. By contrast, most density estimation meth-
ods (e.g. Gaussian Mixture Models) or the Product
of Experts methods [3] do not produce explicit codes
from which the data can be reconstructed, but merely
compute a function (the negative log probability) that
produces low values around training data, and high
values everywhere else.

Unsupervised methods appear very diverse, and based
on very different principles. One of the main objec-
tives of this paper is to show that most unsupervised
learning methods are based on a common underlying
principle. At a high level, many unsupervised mod-
els can be viewed as a scalar-valued energy function
E(Y ) that operates on input data vectors Y . The
function E(Y ) is designed to produce low energy val-
ues when Y is similar to some training data vectors,
and high energy values when Y is dissimilar to any
training data vector. The energy function is subject
to learning. Training an unsupervised model consists
in searching for an energy function within a family
{E(Y, W ), W ∈ W} indexed by a parameter W , that



gives low energy values on input points that are similar
to the training samples, and large values on dissimilar
points.

We argue that the various unsupervised methods
merely differ on three points: how E(Y, W ) is pa-
rameterized, how the energy of observed points is
made small, and how the energy of unobserved points
is made large. Common probabilistic and non-
probabilistic methods use particular combinations of
model architecture and loss functions to achieve this.
This paper discusses which combinations of architec-
tures and loss functions are allowed, which combi-
nations are efficient, and which combinations do not
work. One problem is that pulling up on the ener-
gies of unobserved points in high dimensional spaces
is often very difficult and even intractable. In particu-
lar, we show that probabilistic models use a particular
method for pulling up the energy of unobserved points
that turns out to be very inefficient in many cases.
We propose new loss functions for pulling up energies
that have efficiency advantages over probabilistic ap-
proaches. We show that unsupervised methods that
reconstruct the data vectors from internal codes can
alleviate the need for explicitly pulling up the energy
of unobserved points by limiting the information con-
tent of the code. This principle is illustrated by a new
model that can learn low-entropy, sparse and overcom-
plete codes. The model is trained on natural image
patches and applied to image denoising at very high
noise levels with state-of-the-art performance.

1.1 Probabilistic Density Models

A probabilistic density model defines a normalized
density P (Y ) over the input space. Most probabil-
ity densities can be written as deriving from an energy
function through the Gibbs distribution:

P (Y, W ) =
e−βE(Y,W )∫
y
e−βE(y,W )

(1)

where β is an arbitrary positive constant, and the de-
nominator is the partition function. If a probabil-
ity density is not explicitly derived from an energy
function in this way, we simply define the energy as
E(Y, W ) = − log P (Y, W ). Training a probabilistic
density model from a training dataset T = {Y i, i ∈
1 . . . p} is generally performed by finding the W that
maximizes the likelihood of the training data under
the model

∏p

i=1 P (Y i, W ). Equivalently, we can min-
imize a loss function L(W, T ) that is proportional to
the negative log probability of the data. Using the
Gibbs expression for P (Y, W ), we obtain:

L(W, T ) =
1

p

p∑
i=1

E(Y i, W ) +
1

β
log

∫
y

e−βE(y,W ) (2)

The gradient of L(W, T ) with respect to W is:

∂L(W, T )

∂W
=

1

p

p∑
i=1

∂E(Y i, W )

∂W
−

∫
y

P (y, W )
∂E(y, W )

∂W

(3)
In other words, minimizing the first term in eq. 2 with
respect to W has the effect of making the energy of
observed data points as small as possible, while min-
imizing the second term (the log partition function)
has the effect of “pulling up” on the energy of un-
observed data points to make it as high as possible,
particularly if their energy is low (their probability
under the model is high). Naturally, evaluating the
derivative of the log partition function (the second
term in equation 3) may be intractable when Y is a
high dimensional variable and E(Y, W ) is a compli-
cated function for which the integral has no analytic
solution. This is known as the partition function prob-

lem. A considerable amount of literature is devoted
to this problem. The intractable integral is often eval-
uated through Monte-Carlo sampling methods, varia-
tional approximations, or dramatic shortcuts, such as
Hinton’s contrastive divergence method [4]. The basic
idea of contrastive divergence is to avoid pulling up
the energy of every possible point Y , and to merely
pull up on the energy of randomly generated points
located near the training samples. This ensures that
training points will become local minima of the energy
surface, which is sufficient in many applications of un-
supervised learning.

1.2 Energy-Based Models

While probabilistic approaches rely on the normaliza-
tion of the density to guarantee that the energies of
unobserved points are larger than that of the training
points, other methods use different strategies. Energy-
based approaches produce suitable energy surfaces by
minimizing other loss functionals than the negative
log likelihood (see [1] for a general introduction to
energy-based learning in the supervised case). Given
a training set T = {Y i, i ∈ 1 . . . p}, we must define
a parameterized family of energy functions E(Y, W )
in the form of an architecture, and a loss functional

L(E(·, W ), T ) whose role is to measure the “quality”
(or badness) of the energy surface E(·, W ) on the train-
ing set T . An energy surface is “good” if it gives low
energy to areas around the training samples, and high
energies to all other areas. The simplest loss functional
that one can devise, called the energy loss, is simply
the average energy of the training samples

Lenergy(W, T ) =
1

p

p∑
i=1

E(Y i, W ) (4)



Figure 1: A general architecture for unsupervised
learning.

In general, minimizing this loss does not produce good
energy surfaces because, unless E(Y, W ) has a special
form, nothing prevents the energy surface from be-
coming flat. No term increases the loss if the energy
of unobserved points is low, hence minimizing this loss
will not ensure that the energies of unobserved points
are higher than the energies of training points. To
prevent this catastrophic collapse, we discuss two solu-
tions. The first one is to add a contrastive term to the
loss functional which has the effect of “pulling up” on
the energies of selected unobserved points. The nega-
tive log probability loss used in probabilistic models is
merely a particular way of doing so. The second solu-
tion, which is implicitly used by many classical unsu-
pervised methods, is to construct the architecture in
such a way that only a suitably small subset of the
points can have low energies. The region of low en-
ergy can be designed to be a manifold with a given
dimension, or a discrete set of regions around which
the energy is low. With such architectures, there is
no need to explicitly pull up on the energies of unob-
served points, since placing low energy areas near the
training samples will automatically cause other areas
to have high energies.

We will now introduce the general form of architecture
for unsupervised learning. We will then discuss how
several classical unsupervised learning models can be
interpreted in terms of the energy-based framework.

1.3 Common Architectures

For applications such as data restoration (e.g. image
denoising), one merely requires a good energy surface
over the input space. Since a properly trained model
assigns low energies to areas of the input space that
correspond to clean data, restoring a corrupted input

vector may be performed by finding an area of low
energy near that input vector [3, 10, 9]. If the energy
surface is smooth, this can be performed using gradient
descent. However, many applications require that the
model extract codes (or representations) from which
the training samples can be reconstructed. The code
is often designed to have certain desirable properties,
such as compactness, independence of the components,
or sparseness. Such applications include dimensional-
ity reduction, feature extraction, and clustering. The
code vector, denoted by Z can be seen as a deter-
ministic latent variable in the energy function. Most
common models of unsupervised learning can be seen
as using an energy function of the following form

E(Y ) = min
Z∈Z

E(Y, Z) (5)

In other word, the optimal code Z∗
Y for an input vector

Y is obtained by minimizing the energy function with
respect to Z:

Z∗
Y = argminZ∈ZE(Y, Z) (6)

The minimum is searched within a set Z. In prob-
abilistic terms, this corresponds to finding the maxi-
mum likelihood estimate for the latent variable Z.

The vast majority of unsupervised learning methods
that extract a code are a special case of the architec-
ture depicted in figure 1. The system is composed of
an encoder and a decoder. The encoder takes the input
Y and computes a prediction of the best value of the
latent code Z. The decoder computes a reconstruction
of Y from the latent code vector Z. The energy of the
system is the sum of two terms: the decoding energy
Ed(Y, Z) which measures the discrepancy between the
input vector and its reconstruction, and the encoding
energy Ee(Y, Z) which measures the discrepancy be-
tween the code and its prediction by the encoder:

E(Y, Z) = γEe(Y, Z) + Ed(Y, Z) (7)

The positive coefficient γ sets the tradeoff between
minimizing the reconstruction energy and minimizing
the code prediction error when searching for the opti-
mal code Z∗

Y = argminZE(Y, Z).

Specializations of this architecture include cases where
either the encoder or the decoder is missing, as well as
cases in which the encoding energy is constrained to
be zero: the optimal code is constrained to be equal to
the value predicted by the encoder (this can be inter-
preted as equivalent to setting γ to a very large value).
Section 2 re-interprets several classical unsupervised
methods in this framework.



1.4 Avoiding Flat Energy Surfaces by

Limiting the Information Content of the

Code

One of the main issues when training unsupervised
models is finding ways to prevent the system from
producing flat energy surfaces. Probabilistic models
explicitly pull up on the energies of unobserved points
by using the partition function as a contrastive term
in the loss. However, if the parameterization of the
energy function makes the energy surface highly mal-
leable or flexible, it may be necessary to pull up on a
very large number of unobserved points to make the
energy surface take a suitable shape. This problem is
particularly difficult in high dimensional spaces where
the volume of unobserved points is huge.

One solution to this problem is to make the energy
surface a little “stiff”, so that pulling on a small num-
ber of well-chosen points will automatically pull up the
energies of many points [1]. This can be achieved by
limiting the number of parameters in the energy pa-
rameterization, or by favoring smooth energy surfaces
through a regularization term in the loss.

Another solution is to design the energy-surface in such
a way that only a small subset of points can have low
energies. This method is used (albeit implicitly) by
prenormalized probabilistic models such as Gaussian
models or Gaussian mixture models. In such mod-
els, only the points around the modes of the Gaus-
sians can have low energy (or high probability). Ev-
ery other point has high energy by construction. It is
important to note that this property is not exclusive
to normalized density models. For example, a sim-
ple vector quantization model in which the energy is
E(Y ) = mini∈[1,N ] ||Y −Wi||

2, can only produce low
energy values (good reconstructions) around one of the
N prototypes Wi, and high energies everywhere else.

Building on this idea, the encoder/decoder architec-
ture has an interesting property that can be exploited
to avoid flat energy surfaces. The architecture should
be designed so that each training sample can be prop-
erly represented by a unique code, and therefore can be
reconstructed from the code with a small reconstruc-
tion error (low energy). The architecture should also
be designed so that unobserved points are assigned
codes similar to those associated with training sam-
ples, so that their reconstruction is close to a training
sample. In other words: only training samples (and
similar points) can possess codes from which they can
be correctly reconstructed. Satisfying this property
can be done in a number of ways, but the simplest
way is to limit the information content of the code.
This can be done by making the code a discrete vari-
able with a small number of different values (as with

the example of the previous paragraph), or by making
the code have a lower dimension than the input, or by
forcing the code to be a “sparse” vector in which most
components are zero. Classical unsupervised learning
methods use these methods implicitly as described in
the next section. From the probabilistic point of view,
bounding the log partition function also bounds the
entropy of the code.

2 Classical Methods in the Light of
the Energy-Based Framework

In this section, we review a number of classical unsu-
pervised learning models in the light of the energy-
based framework. Most of them use special cases
of the encoder/decoder architecture described above.
They differ in the specifics of the architecture, the con-
straints on the code, and the loss function used for
training. To illustrate how each method works, we
will use a toy problem, designed to facilitate the visu-
alization of the energy surface.

2.1 A Toy Problem: the spiral

We consider a training dataset consisting of 10,000
points in the 2D plane (y1, y2). The training points
are generated along a spiral that fits in the square with
opposite corners (-1,1), (1,-1). The goal of learning is
to learn an energy surface with low energies along the
spiral and higher energies everywhere else. The spiral
is designed so that there is no function that can predict
a single value of y2 from y1 or vice versa. It is impor-
tant to remain cautious about over-interpreting results
obtained with this low-dimensional toy problem: the
real problems in unsupervised learning occur in high
dimensional tasks. Nevertheless, this toy example is a
useful didactic tool.

2.2 Principal Component Analysis

PCA is an encoder-decoder architecture that mini-
mizes the energy loss (mean square reconstruction er-
ror), without requiring an explicit contrastive term
to pull up the energies of unobserved patterns. In
PCA the optimal code is constrained to be equal to
the value predicted by the encoder. PCA avoids flat
energy surface by using a code with a lower dimen-
sion than the input. With reference to the general
architecture in figure 1, we have Enc(Y ) = WY ,
Dec(Z) = WT Z, with W ∈ RN×M where N ≤ M

and the rows of the matrix W are orthonormal. The
cost modules are Ce(Y, Z) = ‖WY − Z‖2, Cd(Y, Z) =
‖WT Z − Y ‖2, with a very large value for γ so that
Z∗ = WY . Hence the energy can be reduced to
E(Y, W ) = ‖WT WY − Y |2. Only those Y vectors
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Figure 2: Energy surface for: A) PCA with one code
unit, B) K-Means with 20 prototypes, C) autoencoder
with 1 code unit and trained by energy loss minimiza-
tion, D) autoencoder with 20 code units and trained
by minimizing the negative log probability of the data.
E) 2-20-2 autoencoder trained with the linear-linear
contrastive loss. F) energy-based model for learning
sparse overcomplete representations with 20 code units
(average entropy 0.14 bits per code unit). The brigther
the area, the higher is the energy (i.e. the reconstruc-
tion error).

that are in the space spanned by the lines of W will
be exactly reconstructed (with zero energy). Hence
only a linear subspace of the input can have low en-
ergy. Therefore, learning can be carried out by simply
minimizing the average energy of the training samples,
without having to worry about pulling up the energies
of unobserved points: their energies will automatically
become high (except if they happen to be on the linear
subspace).

PCA performs very poorly on the toy spiral example.
With one code unit, the region of low energy is a hori-
zontal straight line covering the main dimension of the
spiral. With two code units, the entire input space has
low energy, see figure 2-A. Every point in the plane gets
reconstructed perfectly (the system simply computes
the identity function), but the model is essentially use-
less as it does not discriminate between training point
areas and unobserved point areas.

2.3 K-Means Clustering

The architecture for K-means clustering has no en-
coder, only a decoder and a reconstruction cost mod-
ule. The code variable Z is an integer variable between
1 and N , where N is the number of prototypes. The
energy is simply E(Y, Z) = ||Y −WZ ||

2, where WZ is
the Z-th prototype. The inference process finds the
value of Z that minimizes the energy:

E(Y ) = min
Z∈[1,N ]

E(Y, Z) = min
Z∈[1,N ]

||Y −WZ ||
2. (8)

An alternative view of K-means is to consider Z as a
binary vector with N components in which only one
component is 1, and the others 0 (one-of-N sparse
binary code), and the energy is simply: E(Y, Z) =∑

i Zi||Y −Wi||
2. The entropy of this code as we sam-

ple from the training distribution (or from any high-
entropy distribution over the input domain) is at most
log2N bits. The only points that are reconstructed
with zero energy are the prototypes. Every other point
has higher energy.

K-Means learning can be seen as a simple iterative
minimization of the energy loss (the average energy of
the training samples). Figure 2-B shows the energy
surface obtained by training K-means with 20 proto-
types on the toy spiral dataset. The energy is suitably
low on the spiral and high everywhere else, but some-
what “bumpy”. The limitation of K-means is that it
has trouble giving low energies to vast areas of the
space in high dimensions, a consequence of the local
nature of its energy minima.

2.4 Narrow Autoencoder

Similarly to PCA, an autoencoder neural net with a
small hidden layer learns low-dimensional representa-
tions. Unlike with PCA, that manifold may be non-
linear if the encoder and decoder have multiple layers.
Still, the limitation in the entropy of the code allows us
to simply pull down on the energy of the training sam-
ples, without having to pull up on unobserved points.
The energy is simply E(Y ) = |Dec(Enc(Y )) − Y |2,
in which both Enc and Dec are neural nets, possibly
with multiple layers. Again, because of the restricted
dimension of the code, minimizing the energy loss is
sufficient. In the toy experiment we have used a multi-
layer autoencoder. The encoder has a first hidden layer
with 100 units, and a second hidden layer with only 1
code unit. The decoder is symmetric to the encoder.
The energy surface is shown in figure 2-C. The result is
slightly better than PCA’s result with one code unit.
As with PCA, using two code units simply results in a
flat energy surface. This example only confirms what
several authors have reported: gradient-descent learn-
ing in deep auto-encoders has a very hard time finding
appropriate low-dimensional representations [5].

3 Loss Functions for Wide
Autoencoders

PCA, K-Means, and narrow autoencoders do not re-
quire contrastive terms in the loss to pull up the ener-
gies of unobserved points. We now consider architec-
tures that can, in principle, produce flat energy sur-
faces, and explore various strategies to prevent them
from doing so. An example of such model is the



encoder-decoder architecture in which the code may
have a larger dimension than the input. The simplest
such architecture is the so-called wide autoencoder. It
is a multilayer neural net with input and output lay-
ers of identical sizes, but with a larger hidden layer.
In the following experiments, we use a 2-20-2 autoen-
coder with sigmoid units and apply it to the spiral toy
problem. The energy is defined as the square euclidean
distance between the input and the output (the recon-
struction). Training a wide autoencoder with the en-
ergy loss (minimizing the average energy of the train-
ing samples), leads to a catastrophic collapse and sim-
ply results in a flat or quasi-flat energy surface.

3.1 Negative Log Probability Loss

The most natural choice for the energy of the system is
the square euclidean distance between input and out-
put of the network (i.e. the square reconstruction er-
ror). To prevent the energy surface from collapsing,
we can use a probabilistic approach and minimize the
negative log likelihood loss. This will pull up on the
energy of unobserved points. Naturally, there is no an-
alytic expression for the log partition function, since it
involves a non-linear neural net function in the expo-
nential. Hence we must resort to approximate methods
to evaluate the derivative of the log partition function
as shown in equation 3. Since the toy problem is two-
dimensional, we can get away with replacing the inte-
gral by a discrete sum at regularly-spaced gridpoints
in a square with opposite corners at (-1,1) and (1,-1).
We use a grid size of 0.2 × 0.2, resulting in 101× 101
samples. The resulting energy surface is shown in fig-
ure 2-D. Since the number of parameters of the system
is not very large (the energy surface is a bit “stiff”), the
energy surface is not perfect. Hence, the reconstruc-
tion is poor compared to the other methods. More im-
portantly, the learning is quite slow and inefficient be-
cause the procedure pulls on every single point on the
grid, including the ones whose energy is already high
as a result of pulling up other points. While this prob-
lem is merely an annoyance in this low-dimensional
toy problem, it becomes an insurmountable obstacle
in high dimensional problems.

An important characteristics of the negative log prob-
ability loss is that its value only depends on the dif-

ference of energies between training points and un-
observed points. Shifting the entire surface upwards
does not change the value of the loss. This means that
there is no pressure for training points to produce low
energy values. Since the energy is equal to the square
reconstruction error, an important consequence of this
fact is that minimizing the negative log probability loss

does not lead to good reconstruction of training sam-

ples. This is a crucially important deficiency of the

negative log probability loss (and probabilistic meth-
ods that use it) for training unsupervised methods that
reconstruct inputs from codes.

3.2 Contrastive Divergence: RBM

In a Restricted Boltzmann Machine [4], Z is binary.
When Y is binary, we have: Ee(Y, Z) = − 1

2ZT WT Y ,
Ed(Y, Z) = − 1

2Y T WZ = Ee(Y, Z), γ = 1. The num-
ber of hidden units is unconstrained. The code is not
picked by minimizing energy, but sampled according
to the distribution defined by the energy. Once Z has
been picked, Dec(Z) is chosen by sampling as well.
When Y is continuous, Enc(Y ) is still chosen by sam-
pling, but Dec(Z) = σ(WZ), where σ(.) is logistic,
which corresponds to taking the average over the dis-
tribution of binary vectors Y corresponding to the en-
ergy−ZT WT Y . Weights are updated according to the
contrastive divergence rule [4], which approximates the
gradient of the log-likelihood of the data, and leads to
the same problems as the negative log probability loss
on this dataset.

3.3 Linear-Linear Contrastive Loss

In this experiment also, the energy is defined as the
square euclidean distance between input and output
of the network. In order to reduce the cost associ-
ated with minimizing the negative log probability loss,
we propose an idea that has a similar flavor to con-
trastive divergence. As with contrastive divergence,
we concentrate our effort on pulling up the energies of
unobserved points that are in the vicinity of training
samples. To generate one of those points (let’s call it
Ȳ ), we start from the training sample and run a few
steps of a Langevin dynamics on the energy surface.
The Langevin dynamics updates the current estimate
of Ȳ in the following way:

Ȳ ← Ȳ − η
∂E(Y )

∂Y
(Ȳ ) + ǫ (9)

where ǫ is a random sample from a zero-mean
multivariate Gaussian distribution with a predefined
isotropic variance. The process is biased towards pick-
ing unobserved points with low energy. Unlike con-
trastive divergence, we use a contrastive loss function
that does not attempt to approximate the negative log
probability loss, but merely attempts to pull up on Ȳ

samples up to a given energy level m, called the mar-

gin:

L(Y, W ) = αE(Y, W ) + max(0, m− E(Ȳ , W )) (10)

For the experiment, we set m = 0.5, and α = 2. Set-
ting the constant α to a value larger than 1 ensures
that energies of training samples are pushed down a



bit harder than the energies of unobserved points are
pulled up. This is appropriate for energies that are
bounded below by zero, as is the case here. The
resulting energy surface is shown in figure 2-E. The
contrastive term prevents the energy from being flat
everywhere. The margin prevents unobserved points
whose energy is already high from being pushed even
further.

3.4 Sparse codes

We already pointed out that a good way to prevent flat
energy surfaces is to limit the information content of
the code. The Restricted Boltzmann Machine can be
seen as using this method by making the code “noisy”,
hence limiting its information content, a technique also
used implicitly in [6]. This idea can be applied to the
wide auto-encoder in another way. The idea is to con-
strain the code to be sparse by forcing each variable
in the code to be zero most of the time. This idea
was used by [7] and [2] in a linear architecture that
did not include an encoder (just a decoder). A sim-
ple way to apply this to the wide autoencoder is to
use logistic non-linearities in the hidden layer with a
very high threshold [11]. The threshold is dynami-
cally adjusted so that the unit turns on only a small
portion of the time (or rather, for a small portion of
the training samples). This creates particular difficul-
ties for back-propagation learning because the gradient
all but vanishes when back-propagated through those
high-threshold logistics. The solution to this problem
is to use a latent variable for the code with an encod-
ing energy. The method is described in detail in the
next section. In this section, we merely describe the
results on the toy dataset. Using an architecture with
20 code units, the energy landscape shown in figure 2-
F presents a nice groove along the training samples.
Each code unit has a measured empirical entropy of
0.14 bits.

4 Learning Sparse Features with the
Encoder/Decoder Architecture

In this section we describe the energy-based model for
learning sparse and overcomplete representations re-
cently introduced in [11], and give new results on image
denoising. The architecture of the system is identical
to the one in figure 1. In the experiments described
here, the encoder and the decoder are a set of linear
filters, contained in the rows of matrix We and the
columns of matrix Wd respectively. Between them,
there is a non-linearity dubbed Sparsifying Logistic.
Conceptually, this non-linearity is part of the decoder
and transforms the code vector Z into a sparse code
vector Z̄ with components in the interval [0, 1]. Let us

Figure 3: Results of feature extraction from 12x12
patches taken from the Berkeley dataset, showing the
200 filters learned by the decoder.

consider the i-th component of the code for the k-th
training sample zi(k). After the sparsifying logistic,
the sparse code component is:

z̄i(k) =
ηeβzi(k)

ζi(k)
, i ∈ [1..m] with

ζi(k) = ηeβzi(k) + (1− η)ζi(k − 1) (11)

where η ∈ [0, 1] and β > 0 are predefined parame-
ters, and ζi(k) is a moving average of eβzi(n) over past
training samples. This non-linearity can be easily un-
derstood as a weighted softmax function applied to
consecutive samples of the same code unit. This non-
linearity outputs a sequence of positive values in the
range [0, 1] which, for large values of β and small val-
ues of η, is characterized by brief and punctuate ac-
tivities across samples. Parameters η and β allow us
to control the representational capacity of the code.
In particular, large values of β and small values of η

yield a quasi-binary and sparse representations. The
energy of the system is the sum of the prediction en-
ergy (or encoding energy) and reconstruction energy
(or decoding energy):

E(Y, Z, We, Wd) = Ee(Y, Z, We) + Ed(Y, Z, Wd) (12)

with Ee(Y, Z, We) = 1
2 ||Z − WeY ||

2 and
Ed(Y, Z, Wd) = 1

2 ||Y −WdZ̄||
2, where Z̄ is computed

by applying the sparsifying logistic non-linearity to Z.

Learning is accomplished by minimizing the average
energy in eq. (12) over the training set. The on-line
learning algorithm for one training sample can be sum-
marized as follows: (1) propagate the input Y through
the encoder to get a codeword prediction Zinit; (2)
minimize the loss in eq. (12), sum of reconstruction
and code prediction energy, with respect to Z by gra-
dient descent using Zinit as the initial value; (3) com-
pute the gradient of the loss with respect to We and
Wd, and perform a gradient step. Since the energy
is the sum of encoder and decoder energies, the sys-
tem converges to a state where minimum-energy code



Figure 4: Example of denoising (details of the “pep-
pers” image). Left panel: original image. Central
panel: noisy image (σ = 50); PSNR equal to 14.15dB.
Right panel: reconstructed image using a machine
trained to reconstruct clean patches from noisy ones
(with σ = 50); PSNR equal to 26.35dB.

vectors not only reconstruct the image patch but can
also be easily predicted by the encoder filters. This
algorithm is very efficient because the sparsity con-
straints enforced on the code free us from the pull-up
phase which is necessary to avoid trivial solutions, in
general. Since we limit the code representational ca-
pacity and, at the same time, force it to reconstruct
the training samples, low energy cannot possibly be
assigned to other points in input space. Hence, there
is no need to spend resources pulling up energies of un-
observed points. Moreover, during testing, computing
the code of the input is achieved by a forward propaga-
tion through the encoder which was trained to produce
prediction of optimal codes. Unlike other methods [7],
no minimization in code space is required at this stage.
The decoder provides a direct way to reconstruct code
vectors and we never need to resort to computation-
ally expensive sampling techniques [3]. Finally, the
method is robust to noise in the input. Pre-processing
consists in simple mean removal and scaling. Other
methods [7, 3] need to whiten the input images in or-
der to get a better convergence of their learning algo-
rithms.

4.1 Experiments

In the first experiment, the system was trained on
100,000 gray-level patches of size 12x12 extracted from
the Berkeley segmentation data set [8]. Pre-processing
of images consists of subtracting the local mean, and
dividing the result by 100. The sparsifying logistic
parameters η and β were equal to 0.02 and 1, respec-
tively. Learning proceeds as described in the previ-
ous section with the addition of a lasso regularizer to
the energy loss function minimized during training in
order to encourage spatial localization and suppress
noise: L(We, Wd, T ) = Ee(Y, Z, We) + Ed(Y, Z, Wd) +
λ‖We‖1 + λ‖Wd‖1, with λ equal to 0.001. Finally,
during training the running averages ζi of eq. (11) are
saturated to allow the units corresponding to the low
pass filters to be more often active. Training by one

pass over the training samples takes less than half an
hour on a 2GHz processor. After few thousand sam-
ples the parameters are very close to their final value;
the decoding filters that were learned are shown in
figure 3. They are spatially localized, and have dif-
ferent orientations, frequencies and scales. They are
somewhat similar to, but more localized than, Gabor
wavelets and are reminiscent of the receptive fields of
V1 neurons. Interestingly, the encoder and decoder
filter values are nearly identical up to a scale factor.

This method can be easily modified by using hierar-
chical architectures in the encoder and decoder, and
it can find many different applications [11]. For in-
stance, it can be applied to denoise images. Suppose
we know the statistics of the noise, e.g. additive Gaus-
sian, Poisson, etc. Then, we can build a dataset of
patches corrupted by the same kind of noise and train
the machine by feeding the encoder with these noisy
patches and assigning as target value for the decoder
the corresponding original clean image patches. The
system will learn the mapping from noisy to clean im-
age patches, and it can be used to denoise images. In
order to reconstruct an image, we consider all possi-
ble overlapping patches that can be taken from it and
we average their reconstructions. Experiments were
performed using additive Gaussian noise with a stan-
dard deviation equal to 50, 75 and 100, training on
the Berkeley dataset, and applying the system to stan-
dard test images. The system has been trained on 8x8
patches by using 256 filters in both encoder and de-
coder. An example of denoising is shown in figure 4.
Table 1 summarizes the results in terms of PSNR by
comparing with three state-of-the-art denoising meth-
ods. The performance achieved by this simple method
is comparable to these other methods that were ex-
plicitly designed for denoising. Note that in order to
compute each image patch reconstruction we need to
compute two matrix vector multiplication and a rec-
tification since no minimization in code space is nec-
essary after training. In order to denoise a 256x256
image about 2 billion operations are required with this
choice of number and size of filters.

5 Conclusion

This paper focuses on six main ideas. First, many un-
supervised learning methods can be described in the
framework of energy-based models as carving an en-
ergy surface so as to minimize the energies of train-
ing points, and maximizing the energies of unob-
served points. Second, the inference process in sev-
eral unsupervised learning methods can be seen as
minimizing an energy function of the form E(Y ) =
minZ∈Z E(Y, Z), where Z is a latent code. Third,
many unsupervised methods use an architecture for



Image std. 50/PSNR 14.15 std. 75/PSNR 10.63 std. 100/PSNR 8.13

Lena 27.86 28.61 27.79 26.49 25.97 26.84 25.80 24.13 24.49 25.64 24.46 21.87
Barb. 23.46 25.48 25.47 23.15 22.46 23.65 23.01 21.36 21.77 22.61 21.89 19.77
Boat 26.02 26.38 25.95 24.53 24.31 24.79 23.98 22.48 23.09 23.75 22.81 20.80
House 27.85 28.26 27.95 26.74 25.77 26.41 25.22 24.13 24.20 25.11 23.71 21.66

Peppers 26.35 25.90 26.13 24.52 24.56 24.00 23.69 21.68 23.04 22.66 21.75 19.60

Table 1: Summary of denoising results in PSNR [dB] for different noise levels. Starting from the left column of each
section: the energy-based model, Portilla (2003) [10], Elad (2006) [9] and Roth (2005) [12] (in bold font the best perfor-
mance).

E(Y, Z) that contain a encoder that predicts the code
Z, and a decoder that reconstructs Y from the code.
Fourth, probabilistic methods ensure that the energy
surface is not flat by pulling up on the energies of unob-
served points through the log partition function. Fifth,
we proposed more efficient methods to pick the unob-
served points whose energy must be pulled up, as well
as other loss function that do not excessively pull up
on energies. Sixth, we proposed methods that guaran-
tee that the energies of unobserved points is high by
restricting the information content in the code. Appli-
cation of this idea to image denoising yields state-of-
the-art performance at high noise levels.
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