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Abstract

In this paper, we address the issue of efficiently allocating wavelengths to com-
munication requests in Dense Wavelength Division Multiplexing (DWDM) all
optical networks. We study the bidirected binary tree topology for the network.
We assume that the pattern of communication requests is such that all the re-
quests are from leaf-to-leaf and each directed edge of the tree is fully loaded. For
this specific instance of requests, we present a simple deterministic greedy algo-
rithm that guarantees a 3/2— approzimation and improves upon the previously
known bound of 5/3 on the approzimation factor.

1 Introduction

Optical fiber is rapidly becoming the standard transmission medium for back-
bone networks, since it can provide the required data rate, error rate and delay
performance necessary for high speed networks of next generation [1]. Networks
using optical transmission and maintaining optical data paths through the nodes
are called all-optical networks. In an all-optical network, once the data stream
has been transmitted in the form of light, it continues without conversion to
electronic form until it reaches its destination.

Optical Bandwidth is the number of available wavelengths. An important
engineering problem is to establish communication between pairs of nodes so
that the data stream travels on the same wavelength on all the links and the
total number of wavelengths used is minimized; this is known as the wavelength
routing problem [2].
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We model the underlying fiber network as a directed graph, where the ver-
tices are the nodes of the network and the links are optical fiber connecting
nodes. Communication requests are ordered pairs of nodes, which are to be
thought of as transmitter-receiver pairs.

In this paper we consider the bidirected binary tree topology. Since in a
tree topology the path between a pair of nodes is unique a call request r can
be thought of as a directed path between two vertices  and y of the network.
Given a set R of requests, the maximum number of paths (the maximum load)
through any directed link is denoted by L... Two calls 7 and r' are said
to be in conflict if their corresponding paths go through the same fiber link.
Calls using the edge of the tree in different directions do not interfere with each
other. The goal is to assign wavelengths to the set of requests such that no two
calls that are in conflict get the same wavelength and the number of required
wavelengths is minimized. Thus the wavelength routing problem reduces to
wavelength assignment problem. We refer to wavelengths as colors, and we
can view the wavelength assignment problem as a path coloring problem. Let
OPT be the minimum number of needed wavelengths or colors. Then, we have
Lz < OPT.

The path coloring problem in trees has been proved to be NP-hard in [3], thus
the work on the topic mainly focuses on the design and analysis of approxima-
tion algorithms. Known results are expressed in terms of L,,,;, Raghavan and
Upfal [4] studied the undirected version of the problem. The directed version
was first considered in [5]. Mihail et al. presented approximation algorithms for
trees, rings and trees of rings. They give an upper bound of 15/8 L4, Kak-
lamanis and Persiano [6] and independently Kumar and Schwabe [7] improved
the upper bound to 7/4Ly,4,- The best known upper bound is 5/3L,40 [8]-
Erlebach and Jansen [3] have proved that the wavelength routing problem is
NP-complete even for binary directed trees. Simple deterministic algorithms
that achieve the 5/3L,,; upper bound in binary trees are presented in [10]
and [11]. The best known lower bound for the problem is 5/4L,q; [7], i-e.,
there exists a binary tree T' of depth 3 and a set of paths R of load L4, on T
that cannot be colored with less than 5/4L,, 4, colors.

All the above algorithms are deterministic and greedy in the sense that they
visit the tree in a top to bottom manner and at each node v color all paths
that touch v and are still uncolored; moreover, once a path has been colored
it is never colored again. In the contex of WDM routing, greedy algorithms
are important as they are simple and more importantly, they are amenable of
being implemented easily and fast in a distributed environment. Kaklamanis
et al. [8] prove that no greedy algorithm can achieve better performance ratio
than 5/3Lqq-

In an attempt to beat the 5/3L,,, lower bound for deterministic greedy
algorithms, Auletta et. al. [12] define the class of randomized greedy algorithms
for the problem. They obtained the first randomized algorithms that uses at
most 7/5L 4z + 0(Lmaz) colors for binary trees of depth o(Lmawl/ %) with high
probability. They also presented an existential upper bound of 7/5L;q: +
0(Lmaz) that holds on any binary tree.

The online version of the problem has also been studied in which the requests
are processed as and when they come. The performance of an online algorithm
is measured in terms of optimal offline algorithm. An online algorithm is said

to be p - competitive if p = sup&‘ﬁ%. The problem has been studied for



the following topologies: line, rings, trees and meshes. An Q(n¢) lower bound
has been obtained for arbitrary networks by Bartal, Fiat and Leonardi [13].
The lower bound holds even for randomized algorithms. An O(logn) - compet-
itive algorithm for directed tress has been proposed by several authors [14, 15].
An almost matching determinstic Q(logn/loglogn) lower bound has also been
proved by Bartal and Leonardi [14] .

In this paper we present a simple deterministic greedy algorithm for a specific
instance of requests for a binary tree topology that uses no more than 3/2L 4,
colors. The pattern of communication requests is such that all the requests are
from leaf-to-leaf and each directed edge of the tree is fully loaded.

2 The Algorithm

In this section we present a simple deterministic algorithm for the problem.
The topology of the network which we consider is a bidirected binary tree. The
set R of requests (source-destination pair) possesses two properties. First, all
requests start and terminate at the leaves of the tree. Second, through each
directed edge exactly L., requests pass i.e., each directed edge of the tree is
fully loaded. This network can be thought of as L., independent networks,
each of which is capable of supporting only one wavelength (color). Note that
the topology of each of these networks is identical to the orignal network. We
call these networks as bins. The idea is to pack the requests in these bins so
that no two requests sharing an edge in the same direction are packed in the
same bin. Notice that running a simple algorithm to compute maximum edge
disjoint paths(MEDP) on a bin and repeating the process with the remaining set
of requests will not work here. See for instance Figure 1. An MEDP algorithm
will first put 8 paths in each of the first Ly,4,/2 bins, then 4 paths in each of
next L, /2 bins and then 2 paths in each of the next Ly, bins thereby using
a total of 2L,,,, bins whereas we are looking for an algorithm that uses no more
than 3/2Ly,4, bins.

Each arrow represents
L max /2 requests.
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Figure 1:

Our algorithm is greedy and proceeds in phases in a BFS manner. In each



phase we process the nodes at a particular level of the tree one by one.

Let v be any node of the tree. Let its parent, the left child and the right
child be denoted by p(v), I(v) and r(v) respectively. The paths that touch the
node v and its two children are called the medium paths with respect to v. The
paths that touch v and its parent node are called the long paths with respect to
v. See Figure 2.
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Figure 2:

When we process a node v all the long paths through v have already been
assigned a bin i.e., they have already been colored. The aim is to pack the
medium paths through v. Here, we classify our bins in three categories : One,
that does not have a path through (v,p(v)) - we call such bins as free with
respect to v. Second, that has a pair of paths, in opposite directions, through
(v,p(v)) and the pair parts at v (i.e. one path traverses the edge (v,l(v)) and the
other traverses (v, 7(v))). Third, that has a pair of paths, in opposite directions,
through (v, p(v)) and they do not part at v (i.e. either both traverse (v,l(v)) or
both traverse (v,r(v)) . A bin cannot have a single path through any edge.

Procedure process_v is repeated for every node in the tree in a BFS manner
starting from the root.

Procedure process_v(v)

1. For every bin of type two do
Pack it with an edge disjoint medium path through v.

2. do

Pick a pair of medium paths through v in opposite directions and assign
them to a bin of first type.

until no more medium paths are left.
Notice that when we process the root, there are no long paths so the as-

sumption that long paths have already been colored holds vacuosly, also all the
bins are of type one i.e. all the bins are free.



Once all the medium paths corresponding to a node v at level i have been
exhausted, the algorithm repeats the same procedure for all the other nodes at
the same level and then proceeds to the next level.

3 Analysis

For the specific instance of leaf-to-leaf requests with each directed link being
fully loaded, the picture at any node v of the tree is as shown in the Figure 3.
Clearly, at least one of z and Ly,qp — 2 i8 < Lypes /2. Without loss of generality
we may assume < Lypq,/2 (for otherwise we shall call Ly, o, — 2 as y,  becomes
Loz —y and we work with y).

P(v)

r(v)

Figure 3:

Claim 3.1 Paths through an edge occur in pairs in bins.

Proof: The proof is by induction.

Consider paths through an edge (v,p(v)). Let v' = p(v). Assume that all
the paths through (v',p(v')) occur in pairs in the bins. This is vacuosly true
when v’ is the root. See Figure 4.

Consider a bin B at v'. If B is of type two, then B has a single path through
(v,p(v)), now at v’ the algorithm assigns a single medium path (of course edge
disjoint) to B and hence B gets a pair of paths through (v, p(v)). If B is of type
one then we assign a pair of medium paths through v’ (or assign no medium
paths if we have exhausted all the pairs) and hence either a pair of paths or no
paths through (v, p(v)). If B is of type three, then by classification either it has
no path through (v, p(v)) or it has a pair of paths through (v, p(v)).

Claim 3.2 We have sufficient number of medium paths to pack all bins of type
two.

Proof: Consider a node v as shown in Figure 3. The bins of type two are of
two types. See Figure 5.
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The set B! of bins that have downward paths through (v,l(v)) and upward
paths through (v,r(v)) and the set B2 of bins that have upward paths through
(v,1(v)) and downward paths through (v,r(v)). Let B! has x; bins and B2 has
x9 bins. Then z; < z and 2 < L4, — « (from Figure 3). Since we have x
medium paths from [(v) to r(v) and L4, — ¢ medium paths from r(v) to I(v)
the claim follows.

Claim 3.3 Assume that we have X = 3/2Lpq, number of bins. After packing
bins of type two we are left with equal number of medium paths in opposite
directions and the number of such pairs is no more than the number of bins of
type one.

Proof: The picture at node v after packing bins of type two is as shown in
Figure 6.

Since all the long paths left are non-parting we must have z — x1 = Lpqq —
x — x2. Hence the first part follows.

Next, since the paths are occuring in pairs, the number of bins having pairs
of paths through (v, p(v)) is at most Ly,q,. That is, the number of bins of type
one is at least Lpqz/2. (This is the most important observation here which
does not hold for the general instances.) Since there are exactly x — x; pairs
of medium paths left through v and z < L4, /2, it follows that the number of
pairs of medium paths is no more than the number of bins of type one.

4 The General Instance

In the previous section we obtained a greedy algorithm that gives an approxima-
tion factor of 3/2 for a fully loaded leaf-to-leaf instance. However this algorithm,
as it is, cannot be used to color a general instance (not necessarily a leaf-to-
leaf) or even to color a general leaf-to-leaf instance. And a general leaf-to-leaf
instance cannot be converted to a fully loaded leaf-to-leaf instance. In fact it
has been shown that for a general leaf-to-leaf instance as well as for a gen-
eral instance, no local greedy can obtain an approximation factor better than
5/3Lmaz- Hence an approach that is non-local in nature is required.

In this section we present our algorithm for the general instance in binary
trees. Our algorithm has a non-local structure, in the sense that while coloring
the paths touching a node, we simultaneously look at two consecutive levels.



We divide our algorithm in two steps, the Preprocessing step and the Coloring
step.

4.1 The Preprocessing Step

This step is similar to the Preprocessing Procedure given in [12]. First, the
general instance is transformed into a fully loaded instance by adding single-
hop paths at the directed arcs that are not fully loaded. Next, the non-leaf
nodes of the tree are traversed in a BFS manner. During this traversal, let
us be at a node v. Consider the set of paths that touch node v. They are
of two types, those that either terminate or orignate at v and those that pass
through. Combine the pairs of paths of the form (v;,v) and (v,vs2) to create
one path (v,v,) that passes through v. After doing this, the instance satisfies
the following three properties [12]

1. Each directed link is fully loaded.

2. For every node v, paths that orignate or terminate at a node v appear on
only one of the three arcs adjacent to v.

3. For every node v, the number of paths that orignate from v is equal to
the number of paths that terminate at v.

Assumption: For simplicity we assume that the terminating-orignating paths
appear only on the parent arcs of all the nodes. The case that they appear on
the other two arcs will be handeled later.

4.2 The Coloring Step

The coloring step is based on the idea similar to the one used to color the
fully loaded leaf-to-leaf instance. Note that the leaf-to-leaf coloring guarantees
that at every edge, there are exactly two paths (in opposite direction) that are
colored with the same color. However this same idea cannot be directly applied
to the general instance. The problem is that if paths are allowed to terminate in
between, then this pairing of paths through the edges is not guaranteed. When
at a node v, if one tried to pair the paths in the same way as in leaf-to-leaf
(pairing the long paths together and the terminating paths together), then it
may happen that at one of the child we get a complete pairing (each color is
used to color a pair of paths in opposite direction) and on the other child we
have paths, each of which is colored with different color (i.e. no pairing at all).
Thus it may happen that at a node a large number of colors show up and we
may not have any control over the number of colors. See fig @@1. Thus what
is needed is some form of balance on both the children.

When at a node v, we keep in mind the nature of paths that are going
down the two children and those that are terminating at the children. We
color the paths in such a way so that at each of the child node, roughly half of
the terminating paths are paired (colored with the same color) with the long
paths on that node. The remaining half of the long paths are paired amongst
themselves and the terminating paths are paired amongst themselves. This way
a sort of balance is maintained amongst the two children.

But note that, even with such a pairing we still may not be able to guarantee
even a single pairing amongst the long paths of one of the child nodes i.e. all the



long paths are colored differently. However in such a case we strongly conjecture
(and also prove for number of cases) that the number of such paths, hence the
total number of colors used at that node is bounded and that if such a scene
happens, then at the next level, at the subtree rooted at that node, such a
pairing is guaranteed to happen.

Clearly this type of coloring strategy is non-local. Since at a node v, we
are using the information associated with the paths passing through the edges
below the child nodes. Indeed we shall show that the adversay argument given
in [11] fails in this case. Let us be at a node v. Let one of its child (say the right
child) be denoted by v' and its two children by I(v') and 7(v"). At v', two types
of paths appear, those that are terminating and orignating at v' and those that
are going down (the long ones) to its two children. It may happen that all these
paths are of different color. What the adversary does, is it tries to split these
paths in such a way that any greedy algorithm is forced to to use new colors to
color the medium paths at successive levels. However, we show that if number
of such paths is bounded then we use no more than 3w/2 colors at this level and
that our strategy guarantees pairing of paths at the next level. Let the number
of such paths be 2p (p paths in either direction). Let 2p < w (our conjecture).
Then at worst what could happen, is that the adversary splits the paths in the
way shown in fig @@2. All the down coming p paths go to one child of v' (say
I(v")) and the p upgoing paths go to the other child (r(v')). And there will be
w — p paths that need to be colored with a new set of colors. But since 2p < w,
we have (w — p) < w/2. Thus the number of colors which we have used at this
level is no more that w + w/2 = 3w/2. Once such a thing happens at this level,
our strategy guarantees that some pairing will occur at the next level, hence the
adversary argument will fail.
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