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The amount of experimental data concerning physiology and
anatomy of the nervous system is growing very fast, challenging
our capacity to make comprehensive syntheses of the plethora
of data available. Computer models of neuronal networks pro-
vide useful tools to construct such syntheses. They can be used
to interpret experimental data, generate experimentally testable
predictions, and formulate new hypotheses regarding the function
of the neural systems. Models can also act as a bridge between
different levels of neuronal organization. The ultimate aim of
computational neuroscience is to provide a link between behavior
and underlying neural mechanisms. Depending on the specific aim
of the model, there are different levels of neuronal organization
at which the model can be set. Models are constructed at the
microscopic (molecular and cellular), macroscopic level (local
populations or systems), or dynamical systems level. Apart from
purely computational models, hybrid networks are being developed
in which biological neurons are connected in vitro to computer
simulated neurons. Also, neuromorphic systems are recently being
created using silicon chips that mimic computational operations in
the brain. This paper reviews various computational models of the
brain and insights obtained through their simulations.

Keywords—Brain modeling, computational neuroscience, ner-
vous system, simulation.

I. INTRODUCTION

Computational neuroscience is an interdisciplinary field
connected to neuroscience, biophysics, applied mathematics,
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and computer science. In essence it uses mathematical and
computational techniques such as computer simulation to un-
derstand the function of the nervous system.

The central nervous system—the brain—is considered to
be the most complex system in nature. Therefore, under-
standing its functions offers a great challenge to biological
and physical sciences. Neurobiological research yields new
and detailed knowledge at a very high rate, but it is becoming
clear that to understand how the brain works it is not enough
to accumulate continuously more and more facts. In order to
acquire a coherent view of the mechanisms through which
the nervous system mediates behavior, the experimental
facts have to be related to each other. The interactions
between neural components that underlie a given behavior
can be studied at various levels of neuronal organization,
from genes and molecules to whole systems that mediate
specific functions such as vision or balance. The multilevel
hierarchy of the brain and how, in general terms, the com-
munication between nerve cells takes place is depicted in
Fig. 1. Since behavior depends on the coordinated action
of neural elements both within and across different levels,
understanding how the brain mediates behavior requires
across-scale integration of the knowledge obtained at dif-
ferent levels of neuronal organization. It is being recognized
that due to the complexity of neural interactions a formal-
ized approach is necessary in order to develop a scientific
theory that relates experimentally observable facts within a
consistent framework. In many instances, models of neural
mechanisms based on computer simulations provide an im-
portant step in acquiring such a synthetic view. In general, a
theory can be either phenomenological, accounting for the
relationships between experimentally observed variables,
or mechanistic, aiming at explaining a given phenomenon
in terms of realistic mechanisms. In case of simulations
of brain functions, mechanistic (or realistic) models often
involve also phenomenological descriptions, at least partly,
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Fig. 1. Different levels of neuronal organization. (a) The brain consists of
various systems (e.g., visual, auditory, somatosensory) that mediate a spe-
cific behavior. The scheme shows lateral view of the brain with anatomical
divisions into brain lobes. (b) Each system consists of local populations,
i.e., densely interconnected networks of neurons. (c) A typical nerve cell
(neuron) consists of dendritic tree, cell body (soma), and axon. Neuron re-
ceives a number of synaptic contacts, mainly on the dendritic tree or the
cell soma. Arriving action potential (arrows) initiates generation of either
excitatory or inhibitory synaptic potential that spreads passively to the cell
body. If the summed amplitude of synaptic potentials at the initial segment
of the axon exceeds the threshold, action potential is generated that propa-
gates down the axon and causes a transmitter release that triggers a postsy-
naptic potential in the target (postsynaptic) cell. (d) Synaptic transmission
involves many complex processes like release of neurotransmitter and ac-
tivation of receptors in the postsynaptic cell that enables the flow of ions
through channels in the postsynaptic membrane. (e) Neuron’s membrane
contains voltage- and ligand-gated channels through which charged ions can
flow altering membrane potential what allows a neuron to signal and respond
to other cells. (f) Genes contain the instructions for the production of pro-
teins, which make up the structure of cells and direct their activities. (Figure
modified from [1].)

and therefore the straightforward division of neural models
into two distinct classes is not always possible [2].

Computational brain models may be used to reproduce
a particular observed behavior. This capacity of a model is
what we may call its face value. However, this should not be
the sole purpose of a model. It is equally important, or even
more important, that a model explicitly incorporates features
that can reproduce natural processes likely to play role in the
real system. This is what we may call the constructive value
of the model. Therefore, the validation of the model cannot
be achieved in isolation to real experiments. Furthermore, the
model should be able to generate predictions about features

of the real system that were not originally recognized. This
is the predictive value of the model. These novel features,
in principle, can be tested experimentally. The confirmation
of the model’s predictions increases confidence in its value,
while their refutation implies that a revision of the model
and/or new experiments is necessary. Indeed such a valida-
tion procedure can motivate new experiments that have to
be performed to discern between competing hypotheses. The
acquired experimental knowledge can be used in turn to de-
velop the model further. Therefore, the two-way interaction
between modeler and experimenter is essential for the ad-
vancement of neuroscientific research.

A model is always a simplification of the real system.
Modeling is essentially a reductionistic approach, where
the question “How far can we simplify?” occupies a central
place. There are different approaches to answer this ques-
tion. Some authors believe that only models with a high
degree of realism are likely to give us insight into neural
mechanisms. Other authors, on the contrary, follow a par-
simonious approach which minimizes model’s complexity.
This is usually achieved by starting with a minimal set
of features of the modeled system and adding subsequent
features as necessary to obtain the desired model behavior.
In selecting the degree of biological realism and the level
of neuronal organization at which the model is constructed,
there are also other factors that should be taken into account.
Among these are the level of detail required to account for
a particular phenomenon, the nature of available real obser-
vations necessary to choose reliable parameter values and to
validate modeling results, and the computational efficiency
with respect to available computing power. In general,
modeling may also be used as a way to integrate different
levels of description. To achieve such synthesis, models
must be organized according to different levels of detail and
complexity, from the microscopic to the macroscopic levels.

The intent of this paper is to provide a brief review of the
most relevant modeling studies that explored neural compu-
tations in several brain systems at different scales. We pro-
vide also some specific examples of how models are created,
explored, evaluated, and ultimately used to generate novel
hypotheses. In this context special emphasis is placed on
neural population models that were recently developed to
progress our understanding of mechanisms involved in the
generation of epileptic activity.

II. BRIEF HISTORICAL BACKGROUND

A. McCulloch and Pits’ Neuron

McCulloch and Pits’ approach [3] was inspired by Kant
and Leibnitz, seeking to map logic onto neural function.
Hence, the corresponding phenomenological model is a very
simple and highly formalized model which is based rather
on a coarse structure of biological neurons and on desired
logical functionality, than on physiological properties. A
McCulloch–Pits neuron has multiple inputs and a single
output. Each input is weighted, and the weighted sum of
these inputs is passed through a nonlinearity to obtain the
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Fig. 2. Equivalent electrical circuit corresponding to a piece of membrane of length dx. Quantities r , r , C , r , and r are defined for a unit length.
Resistance r is the total passive (nonvoltage-dependent) resistance across the membrane per unit length. Associated characteristics are R = �dr (where
d is cable diameter) equal to the resistance presented by a membrane unit area and R = �d r =4 equal to the intracellular resistivity. I is the intracellular
longitudinal current. I corresponds to the charge current in membrane capacity. In Rall’s model (a), the membrane behaves as a passive cable. The Hodgkin
and Huxley’s model (b) adds the dependence of the membrane potential on sodium and potassium currents through corresponding voltage-dependent ionic
channels. g = 1=r and g = 1=r are the voltage- and time-dependent membrane conductances.

output of the model. In fact this particular model is a neural
model with synaptic inputs (inhibitory when the weight is
negative, excitatory when the weight is positive), simplified
somatic threshold and saturation effects, and axonal output
“activity” resumed as a static function of input activities.
Although the McCulloch–Pits model can solve pattern clas-
sification problems (and thus emulate an important feature
of natural intelligence), it is no longer considered a useful
model for interpreting real neurophysiological data.

B. Rall’s Theory

Rall’s theory describes the propagation of electrical
stimuli from the site of dendritic synaptic inputs along
passive dendritic trees to the soma. This theory is based on
the “cable theory” developed by W. Thomson (1824–1907),
later Lord Kelvin, to model spatiotemporal evolution of
voltages and currents in the first transatlantic cable around
1855. In analogy with a cylindrical conductor surrounded by
a leaky insulator and immerged in a conductive environment,
a piece of dendritic membrane is viewed as a “leaky” pipe
through which transversal ionic currents are imposed by
potential differences between intra- and extracellullar space.
Inside the membrane, longitudinal currents are established
in the conductive active solution when the cytoplasmic
potential varies along the longitudinal axis. Neglecting
the transversal dimensions, a partial differential equation
reduced to one spatial dimension can be established. Intro-
duced by Hodgkin and Rushton [4] in the study of nerve
fibers, cable theory was applied to neurons in the middle of
the 1950s [5], [6] to interpret experimental data obtained
from individual neurons with intracellular microelectrodes
located in the soma. A series of important papers by Rall
[7]–[9] then followed. They included transient cable prop-
erties that were neglected in the first models and led to the
correction of discrepancies between model and experimental
results [10], [11].

In the absence of voltage-dependent currents and input
(synaptic) currents, the cable equation can be written as

(1)

This equation is obtained from a discrete space decompo-
sition of the cable in elementary units (see caption of Fig. 2
for definition of quantities). It can be analytically solved
for specific boundary conditions and injected current step
at . Assuming equipotential cytoplasmic medium,

is given by and, in the
steady-state limit,
where and where ,

and depend on injected current level and boundary
conditions.

Moreover, a dendritic network has the spatial structure of
a tree. Although each model branch can be simplified to a
homogeneous piece of cable with given global character-
istics (geometrical and electrical), the analytic calculation
of in time and elsewhere in the tree can be quite
difficult. Conditions have been introduced by Rall [8] that
considerably simplify the calculation of , cor-
responding to the soma (the root of the tree): each branch of
the dendritic network tree is considered as a set of equivalent
cylinders, the complete dendritic network is then equivalent
to a single cylinder. The soma is assumed to be isopotential
and to behave like a resistance and a capacitance in parallel
and is connected to one of the two extremities of the single
cylinder. The other extremity corresponds to a lumped input.

C. Hodgkin–Huxley Theory

In the early 1950s, Hodgkin and Huxley developed a
model (referred to as the HH model in the following) to
explain observed patterns of action potentials in the giant
axon of the squid. As for Rall’s model, the HH model
considers a small portion of membrane and its equivalent
electrical circuit. However, in the basic HH model, a null
longitudinal cytoplasmic current is assumed (equipotential
cytoplasm). Experimental conditions satisfying this hypoth-
esis are realized by mean of the space clamp technique to
maintain a uniform spatial distribution of membrane poten-
tial over an extended region of the cell where currents
are recorded. Moreover, in addition to the pair
which represents the total transmembrane ionic current in
the passive cable model, two other pairs
and are introduced to model potassium
and sodium specific ionic currents, respectively [Fig. 2(b)].
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With the new ionic currents, voltage is described by the
equation

(2)

where denotes an injected current (synaptic current or
experimental stimulation). Historically, Hodgkin and Katz
[12] first demonstrated that both sodium and potassium
make significant contributions to the ionic current under-
lying the action potential. Following these works, Hodgkin
and Huxley found that the permeability of the membrane
to specific ions was a function of both time and and
presented their results in their famous paper published in
1952 [13]. The heart of the HH model is a description of
the time- and voltage-dependent conductances for sodium
and potassium as a function of gating variables , , and

: . These variables can be
interpreted as a fraction of gates being in permissive state
(hence, they can vary from zero to one), whereas and

represent maximal values. They can be of activation type
(conductance increases with depolarization) or inactivation
type (the converse). They obey kinetic equations ( is for

, , or ) equiv-
alent to
with (bell shape curve-fitting).
These equations correspond to first order differential equa-
tions with voltage-dependent time constants

and voltage-dependent steady-state
values (when they exist)
(sigmoid shape curve-fitting). As demonstrated by computer
simulations, the HH model generates action potentials of
appropriate shape, threshold, and refractory periods (both
absolute and relative). Further developments also added
other active ion channels or temperature effects to the
model. Some simplified versions of HH model were also
proposed. FitzHugh [14] and Nagumo [15] showed that,
for a purpose of action potential generation, HH model of
order four can be reduced to a model of order two, which
highly simplifies its dynamical study. Interestingly, this
phenomenological model and other simplified neuronal
models [Morris–Lecar [16], integrate-and-fire (a survey can
be found in [17])] gain interest over the past decade due
to their simplicity and efficiency in studying dynamical
properties of single neurons, simplified neuron interactions
in large networks, and brain information coding or decoding
(Section IV-C). Finally, it is important to underline that ad-
vanced single-channel recording techniques were developed
decades after the HH model and that they permitted some
model assumptions (regarding the nature of microscopic
ionic channels) to be verified. Recent biophysical models of
ionic channels are presented in the next section.

III. MOLECULAR AND CELLULAR MODELS

A. Ionic Channels, Membranes, Synapses

Ionic channels play a crucial role in the physiology of
complex biological systems such as the brain. Therefore,

theories and computational models are being developed
to clarify the function of ion channel processes such as
permeation, selectivity, and gating. A microscopic model of
ionic permeation in the selectivity filter of ionic channels
has been developed by Wu [18]. The model is based on
molecular kinetic theory and makes many specific assump-
tions about ion–environment interactions (e.g., ions move
independently, ion movement is near the axis of the channel,
etc.). The model predicts that channel radius and ion–water
interactions are two major channel structural determinants
of ion selectivity. The studies aimed at understanding the
relationship between structure and function of membrane
proteins is currently being carried out using computational
tools by Sansom and coworkers [19], [20]. Research of this
group focuses on potassium channels, both voltage gated
and ligand/protein gated, nicotinic acetylcholine receptors
and glutamate receptors, with special emphasis on gating
mechanisms. This computational approach allows to bridge
several time scales, from subnanosecond protein motions to
millisecond time scale motions involved in channel gating.
Understanding the functions of membrane proteins is also
important from a biomedical perspective, since ionic chan-
nels and receptors are possible targets for novel drugs acting
on the nervous systems [21]. A mathematical analysis and
numerical simulations of the channel dynamics is presented
in [22]. This shows that channel activity can be approxi-
mated by a one-dimensional bistable Langevin equation.
These analytical results, which were in good agreement
with numerical simulations, suggested that spontaneous
action potentials generation can arise from channel fluctua-
tions. Also, the factors determining the threshold for action
potential initiation in neurons were investigated using a
computational model [23]. The simulations did not confirm
the traditional view that a high density of sodium channels
in the initial segment of the axon determines the lowest
threshold. Instead they pointed to biophysical properties
of axonal channels that are critical to action potential ini-
tiation. Initiation of dendritic spikes was investigated in a
computational study by Mainen [24]. Apart from models of
membranes with voltage-dependent conductances, the pas-
sive membrane properties have also been modeled. The spike
initiation and propagation was investigated in the model of
axon [25]. The axon had a slow regenerative conductance
as well as the usual HH type sodium and potassium con-
ductances (Section II-C). This study showed how complex
dynamics can arise in excitable membranes with fast and
slow conductances. Passive neuronal models were also used
to study how synaptic conductance waveforms and intrinsic
membrane properties affect the excitatory postsynaptic
potential (EPSP) and action potential generation [26]. This
study showed that developmental changes in EPSP shape
increase the temporal precision of spike generation, thus
contributing to fidelity of information coding in the brain.
Computational models of axons were used also to investi-
gate nerve stimulation under magnetic resonance imaging
(MRI) magnetic fields [27]. Axons were represented by a
one-dimensional compartmental cable model including the
kinetics of mammalian myelinated fibers. By solving the
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cable equation along the axons in the presence of magnetic
field gradients the authors were able to test several axon and
field parameters in order to determine the threshold values
for axonal stimulation in patients undergoing a MRI scan.

As far as synapses are concerned, a model of transmitter
release is provided in [28] while a comprehensive general
description of synaptic transmission with Markov kinetic
models and practical algorithms is presented in [29]. Models
that made use of this formalism are, e.g., [30] in which
the authors demonstrated that randomly fluctuating inputs
from glutamatergic (i.e, using glutmate as neurotransmitter)
and GABAergic (i.e., using gamma-aminobutyric acid as
neurotransmitter) neurons can account for several proper-
ties (e.g., irregular spontaneous firing activity) of cortical
neurons observed in vivo. However, these models do not
deal with the stochasticity of individual synapses although
synaptic transmission is an inherently stochastic process.
The theoretical formulation of dynamic stochastic synapses
has been carried out in [30].

Finally, changes of the amplitude of postsynaptic response
to an incoming action potential of constant amplitude can be
manifestations of synaptic plasticity. A persistent increase of
synaptic transmission efficacy is called long-term potentia-
tion of synapses, or LTP for short, while a persistent decrease
of synaptic efficacy, is called long-term depression (LTD).
A phenomenological model of both long-term potentiation
and long-term depression is presented in [32]. In that model
the change of synaptic strength is introduced using two vari-
ables: the first one dependent on presynaptic voltages, the
second one dependent on postsynaptic actions. The resultant
LTP or LTD from the joint action of these two processes de-
pends on the relative timing between them. The dynamical
model reproduces the spike time-dependent plasticity of ex-
citatory synapses as a function of relative timing between
pre- and postsynaptic events. Apart from accounting for ex-
perimental observations the model gives also predictions for
changes in synaptic strength when periodic spike trains of
varying frequency, and Poisson distributed spike trains with
varying average frequency are presented pre- and postsynap-
tically. An analytical study and very large scale integrated
(VLSI) implementation of the plastic synapse is presented
in [33]. More detailed, biophysical models of synaptic plas-
ticity have also been developed [34]–[38]. These models con-
tain two essential components, a description of intracellular
calcium dynamics, in particular a model of calcium entry
through N-methyl D-aspartate (NMDA) synapses, and a hy-
pothesis of how the concentration of intracellular calcium in-
fluences the change of synaptic efficacy. Modeling studies
that included changes of synaptic efficiencies are reviewed
in [39] and [40].

B. Models With Glia and Extracellular Space

It has been known for many years that glia, the most abun-
dant cell type in the brain, play more than a kind of “glue”
role for the surrounding neurons. Similarly, it is widely
accepted that the composition of extracellular space (e.g.,
external calcium concentration) sets the conditions for neural

activity and neurotransmission. However, most computa-
tional studies take only the neurons and their connections,
under stationary external conditions, in consideration, and
only a minority of models considers the role of glia and
extracellular space in functioning of the brain.

The computational work of Wiest [41] has been motivated
by experimental observations that normal neural activity is
associated with local changes in extracellular calcium con-
centration. Using realistic calcium channel models, experi-
mentally measured back-propagating action potentials, and
a model of the extracellular space, the fluctuations in ex-
ternal calcium during neural activity were computed. A sig-
nificant extracellular calcium drop was shown to result from
coincident spikes arriving at dendrites that shared the same
tissue volume. These results pointed to an alternative way of
how information processing may take place in the brain. An-
other computational study of the same group [42] showed
that decrements in external calcium levels may mediate a
form of short-term synaptic depression.

The effect of spreading depression in relation to epilepti-
form neuronal activity was investigated in models by Kager
[43], [44]. A realistic model of hippocampal pyramidal
cell included an extracellular compartment and a buffering
process provided by glial cells. The simulations showed that
the spreading depression phenomenon is dependent on glial
reuptake of extracellular potassium and can be generated by
the feedback of ionic currents that change extracellular ion
concentrations, which, in turn, influence ionic currents and
membrane potentials. These results pointed to the essential
role of glial cells in the maintenance of normal activity of the
brain. Other studies confirmed a pivotal role of glial cells in
preventing spreading depression and additionally pointed to
potassium movement through gap junctions as a necessary
component of this process [45].

A computational model of extracellular local field poten-
tials has been elaborated by Bedard [46]. In that model the
ion concentrations in the extracellular space were not homo-
geneous, what led to the attenuation of the local field poten-
tials with distance from the source, in a frequency dependent
manner. The low pass filtering properties of the extracellular
space predicted by the model were in good agreement with
experimental observations.

IV. NEURAL NETWORKS MODELS

A. Single Cell Models

Single cell models use compartments to represent some
characteristics of the 3-D anatomy and the function of the
neuron. Model parameters are related to morphology, passive
(membrane capacitance, axial resistivity, leak conductance,
membrane time constant, leak reversal potential) and active
electrical properties (i.e., ion channels that are specific to the
cell type and that obey current balance equations, see Sec-
tion II-C). In more detailed versions (that may contain several
thousands compartments), some refinements were proposed
in the representation of the initial segment and axon, the latter
having been shown, in some cases, not to stem from the soma

788 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 4, APRIL 2006



body but rather from a dendrite slightly away from the soma
[47].

Neuron models provide a way to explore some parameters
that still remain difficult to identify based on experimental
observations, such as the relative densities of specific ionic
channels in particular regions of a neuron or to investigate
the role of voltage-dependent ion channels in shaping cellular
activity. The first models were developed by Rall and Shep-
herd [48] to represent passive electrical properties. Then, in
order to add active properties and to test some hypotheses
about differences in impulse responses at the soma and at the
axon, Dodge and colleagues [49], [50] proposed a computer
simulation of a motoneuron in which thresholds in these re-
gions could be altered by using different sets of values for
the voltage sensitive rate constants (in the HH equations) for
the soma and axon.

Whole cell models were proposed by Traub and colleagues
for neocortical and hippocampal pyramidal cells [51]–[53].
In such models, the ionic channels in each compartment
are represented by differential equations describing their
properties (whether voltage-gated, ligand-gated, or second
messenger-activated properties). These early simulations
identified processes at the membrane level that may be re-
sponsible for the generation of intrinsic epileptiform bursts
in single cells. It allowed to perform subsequent simulations
of abnormal synchronization of large networks that are
reviewed in the next Section IV-B. In a more recent study
of cortical cells [54] the authors have shown that changes
in the level of membrane potential may make the cell
switch between different firing patterns (rhythmic spiking,
rhythmic bursting and fast spiking). This study, confirmed
by experimental observations, pointed against the traditional
division of neocortical cells into fixed categories based on
their firing properties.

A number of computational studies were carried out to
elucidate the influence of various ionic conductances on the
activity of thalamic neurons. These neurons exhibit a va-
riety of activity modes depending on membrane potential
level and external stimulation pattern. The currents impli-
cated in the activity of thalamic relay neurons were simu-
lated in [55] while rhythmic firing patterns of these cells were
simulated in an accompanying study [56]. Wang [57] thor-
oughly studied a thalamic relay neuron model and showed
that this cell may generate a whole spectrum of activities
from intrinsic oscillations at various frequencies to chaotic
behavior. Properties of thalamic reticular cells were investi-
gated e.g., in a compartmental model by Destexhe [58]. In
order to reproduce experimental observations, it was neces-
sary to include a high density of dendritic calcium currents
in the model neuron. This study provides an excellent ex-
ample of how a computational model may be used to predict
the spatial distribution of specific ionic channels densities. A
single cell model recently developed by the Destexhe’s group
[59] focused on the effect of background synaptic noise on
input/output properties of neocortical cells.

Single cell models have also been developed to study mor-
phological and functional properties of interneurons. In the
hippocampus, for instance, models including about 200 com-

partments were used to investigate the diversity of interneu-
ronal cells and to relate differences of axonal and dendritic
arbors, electrophysiological responses, ion channel distribu-
tion and kinetics to distinct functional roles [60].

A recent review was also presented by Segev and London
[61] about the use of quantitative single cell models for
studying the function of dendrites, specifically. In this paper,
the authors recall some key biophysical insights gained from
reduced models. More generally, they emphasize that the
construction of an intense interaction between experimental
work and modeling has now became a necessity to under-
stand the complex dendritic machinery. The importance of
this interaction was also pointed out in the computational
study of De Schutter [62], in which a realistic model of a
Purkinje cell was constructed to replicate results obtained in
vitro. This model made a number of testable predictions that
were subsequently tested experimentally, providing insight
into synaptic integration and leading to the development of
a new theory about the function of long-term depression in
the cerebellum.

Another modeling study with direct experimental applica-
tion was carried out in [63]. Using a modeled neuron the au-
thors evaluated the accuracy of the voltage clamp technique
used to determine the properties of voltage-gated conduc-
tances. Parameters of current-voltage curves obtained by fit-
ting the HH equations to the clamp currents were compared
with the values originally set in the model. Good fits were
obtained for moderate channel densities while the parameter
errors increased with conductance density. Significant errors
arose in poorly space-clamped cells. Using another set of
simulations the authors calculated the corrections for param-
eters of ionic currents measured with not sufficient spatial
control [64].

B. Distributed Neuronal Networks

For studies of network phenomena such as those implied
in epileptic discharges, models have been proposed based
on the interconnections of neuron models via synaptic pro-
cesses. The key idea is to describe subthreshold potential
fluctuations and firing properties of networks of neurons
based on an accurate description of membrane processes
(ionic currents) of the different parts of each cell, and on
physiologically relevant strategies to account for the pattern
of interconnections of a large number of cells. The first
attempts in this context were presented by Traub and collab-
orators [65]–[67] who simulated the activity of small parts
of the CA3 (CA: Cornu Amonis) of the hippocampus using
networks of interconnected neurons (about 10 000 cells di-
vided into 9000 excitatory neurons and 900 inhibitory cells),
each one represented by a reduced number of compartments
(equal to 19). With individual cells and synapses having
properties based on experimental data, these authors studied
the influence of various parameters related to synaptic
strength and connectivity. In particular, they studied the
relationship between spike propagation velocity throughout
the neuronal array and the spatial extent of excitatory
connectivity. They also determined conditions relevant for
the genesis of physiological and pathological (epileptic)
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rhythmic activities. Investigations by Pinsky and Rinzel
[68] then followed. Based on Traub’s model, these authors
proposed a reduced representation (two compartments, eight
variables) of a CA3 pyramidal cell and studied its dynamics
at both cellular and network level. One interesting result is
that they reproduced some results obtained by Traub in [66]
with a model of reduced complexity (in terms of number of
compartments per cell). The next series of modeling studies
carried out by Traub and coworkers [69], [70] addressed
the question of the generation and long-range synchroniza-
tion of gamma rhythms ( 40 Hz) in a neuronal network.
These modeling studies showed that inhibitory interneuronal
networks interacting with excitatory pyramidal cells could
account for this phenomenon. Propagation of activity in
purely inhibitory neural networks was investigated in [71].
Recent Traub’s models [72], [73] concerned the role of gap
junctions in the generation of very fast oscillations ( 70 Hz)
and seizure initiation. Seizure generation in hippocampal
networks is also addressed in several computational models
[74], [75].

A variety of purely cortical models have been developed
recently. These models provided insight into cortically gen-
erated activity such as the slow rhythm [76], the alpha rhythm
[77], [78], or processes related to vision [79], [80], olfaction
[81]–[83], attention [84], [85], memory [86]–[91], and higher
brain functions [92], [93].

A number of network models have also been developed to
study various functional features (sleep, attention, epilepsy)
mediated by thalamocortical circuitry. Early models consid-
ered a single pair of coupled thalamic relay cell and reticular
thalamic cell [94], isolated thalamic reticular nucleus cells
[95]–[98], or a whole thalamic network [99]–[103]. These
models provided insight into thalamic pacemaker mecha-
nisms of the generation of sleep spindles and of abnormal
3-Hz oscillations. Using full thalamocortical models, the
synchronization of sleep spindles mediated by cortical
feedback was investigated further [104], as well as the
transition between spindles and delta rhythm [105] and
thalamic gating by the cortex [106]. Computer simulations
of thalamocortical networks were also used to investigate
network mechanisms responsible for the generation of ac-
tivity associated with pathological behavior such as epileptic
seizures [106]–[110].

Recently, Hill and Tononi [111] developed a large-scale
model of the thalamocortical system with the objective of
accounting for the transition from wakefulness to sleep
and the generation of the slow oscillation at several dif-
ferent levels—from ion channel kinetics to global EEG
phenomena. The model incorporates detailed features of
the neuroanatomical organization of the thalamocortical
system, and a large number of neurons ( 65 000) inter-
connected by millions of intra- and interareal connections.
An essential aspect of the model is that at the cellular
level it incorporates several types of intrinsic conductances
(mediating the hyperpolarization-activated cation current

, low-threshold calcium current , persistent sodium
current , potassium leak current , depolariza-
tion-dependent potassium current —representing Ca

and Na -dependent K currents) and synaptic currents
[ -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA), -methyl-D-aspartate (NMDA), -aminobutyric
acid-A GABA , -aminobutyric acid-B GABA ]. The
model is capable of generating signals that are compatible
with experimental data ranging from intracellular traces to
field potentials as recoded in the EEG. Most interesting is
that the model can switch from a waking to a sleep mode
of activity, the latter being characterized by spontaneous
patterns typical of wakefulness including low-voltage fast
activity in the EEG, and the latter by slow oscillations
that closely resemble those observed experimentally during
sleep. The slow oscillation displays a bimodal membrane po-
tential distribution, i.e., a disfacilitated and silent down-state
and a depolarized, high-conductance up-state that exhibits
gamma frequency synchronization. The synchronization of
the slow oscillation in the model depends on corticocortical
connections, consistent with experimental observations.

In this model the transitions from the awake state to slow-
wave sleep primarily arise from an increase in the potassium
leak conductance g , which is present in all model neurons.
This may be induced by the reduced actions during sleep of
neuromodulators such as acetylcholine. In short, the same
model is capable, by changing a few parameters that sim-
ulate the effects of the reduced release of neuromodulators
(mainly acetylcholine) on certain potassium currents, to dis-
play a transition between a waking and a sleep mode of ac-
tivity. The influence of other ioinic currents was also studied
in detail. Nevertheless a dynamical analysis of the model’s
behavior in mathematical terms is not yet available.

C. Spike Trains

Both spike rate and spike timing of action potentials are
important determinants of information coding in the brain.
However, it is still not clear what are the exact rules under-
lying neural coding. A large number of studies addressed
questions related to elucidating this fundamental issue in
neuroscience using theoretical analyses, artificial neural
networks, and biologically realistic models. Comprehensive
treatments of research on information coding in the brain
are provided, e.g., in [112]–[114].

V. NEURONAL POPULATION MODELS

Many brain functions such as sensory information
processing or pattern recognition result from large-scale
spatiotemporal activity in masses of neurons in which the
number of cells is so high that any approach starting at the
single cell level would rapidly become intractable. This
consideration was the starting point of another modeling
approach which developed since the 1960s and which con-
ceptually differed from approaches detailed in the previous
sections in the sense that they emphasize the properties of
populations of cells instead of those of individual neurons.
In considered populations, cells are assumed to be spatially
close and their interconnections are assumed to be random
but dense enough so that the probability for any two cells
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in the population to be connected (either directly or via in-
terneurons) is high. Based on these assumptions, population
models represent the temporal dynamics of the aggregates
while the spatial interactions between cells are neglected.
This implies that the relevant variable of these models is not
the single spike but rather the spike frequency, or firing-rate,
computed from the total current delivered by synaptic inputs
(which sum linearly according to the mean-field approxima-
tion) into the soma. Neuronal population models have been
advanced in numerous forms during the past decades by
physiologists, psychologists and theorists. In the following,
we only refer to pioneer works (performed in the early
1970s) of Wilson and Cowan (Section V-A) who put the
theoretical bases of these models and works of Freeman et
al. (Section V-B) and Lopes da Silva et al. (Section V-C)
who first applied this modeling approach to answer specific
questions raised by neurophysiological observations.

A. Wilson and Cowan’s Model

In the early 1970s, Wilson and Cowan [115] proposed
a set of nonlinear differential equations to account for the
dynamics of a localized population of neurons. Briefly,
they started from physiological evidence regarding the ex-
istence of such populations and from a crucial assumption,
considered, at that time, as an axiom: all neural processes
depend upon the interaction of excitatory and inhibitory
cells. Therefore, they considered a population as being
composed of two subpopulations, one excitatory and the
other one inhibitory and proposed an approach based on
two variables, representing the proportion of excitatory
and inhibitory cells firing per unit time, respectively. This
two-variable approach was fundamentally different from
those used in other studies of neural populations until then.
Using a sigmoid shape for each subpopulation response,
they were able to derive general equations governing the
temporal dynamics of a population of neurons containing
excitatory and inhibitory subpopulations. Using phase-plane
analysis, they also studied simple and multiple hysteresis
phenomena and limit cycle activities represented in the
model and they managed to relate their results to a number
of experimental findings like those of Freeman [116] that
were obtained using electrophysiological recordings in the
prepyriform cortex of cats.

B. Olfactory System—Freeman’s model

Since the early 1960s, Freeman and colleagues have
developed a comprehensive model describing the global
organization of the olfactory system [116]–[118]. Besides
the need to better understand the olfaction function, one
of their goals was also to relate some physiological data
recorded in animals to mechanisms involved in sensory
or perception processing. Briefly, the model input is rep-
resented by the activity of receptors located in the nasal
mucosa and connected to the primary olfactory nerve which
terminates on the anterior olfactory nucleus (AON) and
on the olfactory bulb (OB). The output of the bulb is fed
into the prepyriform cortex (PC). Pyramidal cells of the
PC are the output neurons for more distant cortical areas

(entorhinal cortex). Each part (AON, OB, and PC) contains
four subsets of cells (two excitatory and two inhibitory). The
first key feature of Freeman’s model is that these subsets
are “lumped” representations of aggregates of strongly
interconnected neurons (i.e., neural masses) which have,
on average, similar properties such as a common sign of
output (i.e., they are either all excitatory or all inhibitory).
The second key feature is that the dynamics of each subset
are simply described by a second order nonlinear ordinary
differential equation (ODE) representing conversion opera-
tions between the population average postsynaptic potential
(“wave”) and the density of action potentials (“pulse”) fired
by local neurons. This ODE comes from the linear transfer
function (of order 2) used to transform the average pulse
density of afferent action potentials into an average postsy-
naptic membrane potential (“pulse-wave”) and from a static
(i.e., not time-varying) nonlinear function used to model the
relationship between the average postsynaptic potential of a
given subset and the average pulse density of potentials fired
by the neurons (“wave-pulse”). Linearity of the pulse-wave
function is related to the spatial and temporal integration
performed by the dendrites (superposition). Nonlinearity of
the wave-pulse function (asymmetric sigmoid curve [119])
was demonstrated experimentally based on simultaneous
measurements of pulse and wave activity from the same
population.

The authors also justify that it is a static relationship in
view of two arguments: 1) individual neurons in the popu-
lation fire unpredictably (Poisson distribution of occurrence
times) and 2) they also fire in an uncorrelated manner with re-
spect to each other. Through this macroscopic level of mod-
eling, Freeman and colleagues managed to establish some
relationships between EEG dynamics and behavioral func-
tions (such as sensory reception and perception) related to
state variables of the model. Indeed, assuming time constants
fixed at physiologically determined values in the pulse-wave
conversion, gain constants fixed at a common value in the
wave-pulse sigmoidal relationship and appropriate setting of
connection strengths between nodes within the AON, OB,
and PC, they showed that the model produces realistic EEG
signals that approximate those experimentally recorded in
these brain structures [120].

C. Models of Rhythmic Activity in the Thalamus and
Cortex–Lopes da Silva’s Models

The alpha rhythm model was originally developed as a
possible explanation of the origin of the alpha rhythm in dogs
by Lopes da Silva and collaborators about 30 years ago. This
model, as described in the original publication [121], con-
sisted of two parts. The first part described the distributed
network model where each neuron was modeled individu-
ally. Subsequently the distributed model was converted to the
lumped populations form what allowed to follow a system
analysis approach to analytically evaluate the influence of
different neurophysiological parameters upon the statistical
properties of the output rhythmic activity.

The population alpha rhythm model was based on two
interacting populations of neurons. They represented the
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populations of excitatory thalamocortical relay cells (TCR)
and of inhibitory interneurons (IN) that were interconnected
in the negative feedback fashion. Each population was de-
scribed by the time courses of postsynaptic potentials and
sigmoid transfer functions, which were used to simulate the
conversion between the mean membrane potential of a neu-
ronal population and the density of firing of the population.
The interaction between the two populations was controlled
by the coupling constants representing the average number
of synaptic contacts between the two cell types. White
Gaussian noise was fed into the network by means of an
excitatory input to the TCR population. The output of the
model was the average of the postsynaptic potentials of the
TCR cells and it simulated what is generally measured by
recording local field potentials or EEG signals. For a physio-
logical range of model parameters the output signal exhibited
oscillations of frequency 8–11 Hz closely resembling cor-
tical alpha rhythm. The linear system analysis revealed that
the power spectra obtained for increasing values of coupling
strength between the populations displayed a progressive
change from predominantly low pass characteristic to a
clear bandpass spectrum. The family of spectra closely
approximated the development of the EEG as a function of
age. In this way system analysis of the alpha rhythm model
provided a hypothesis that the evolution of the posterior
EEG rhythm from the low dominant frequency to the alpha
rhythm signal having a clear peak at around 11 Hz would
depend upon an increase in number of interconnections and
efficiency of synaptic contacts. The results of the linear
analysis led to a general conclusion that neural networks act
as bandpass linear filters and the resulting output signals,
such as alpha rhythmic activity observed in EEG, may be
described, in a first approximation, as linearly filtered noise.
Due to its simplicity and generality, this alpha rhythm model
became a model for the generation of rhythmic activities and
it has been adapted by many successive studies [122]–[129].

VI. SYSTEM LEVEL/GLOBAL MODELS

A. Nunez’s Cortical Model

Nunez’s mathematical approach of neocortical dynamics
led to the development of global theories [130], [131] and
combinations of global and local theories [132], [133].
Local circuits include positive and negative feedback loops
at millimeter scales, where signal delays are determined
mostly by postsynaptic potential rise and decay times. The
global approach neglects local delays but takes into account
propagation delays along cortico–cortical fibers that provide
positive feedback between multiple cortical regions. In this
way the model can predict dominant oscillation frequen-
cies in the general range of observed EEG phenomena
in humans. The global oscillations are influenced by the
boundary conditions that are determined by the size and
geometry of neocortex and cortico–cortical connections.
Global theory predicts, among others, a correlation between
alpha frequency and head size. Local circuits generate higher
frequency oscillations that propagate between neocortical

columns. Some principal results of Nunez’s theory have
been confirmed experimentally [134], [135].

B. Wright’s Cortical and Thalamocortical Models

The models of the Wright’s group are large scale models
of electrical activity of the brain that provide a unified
description of the main EEG rhythms using realistic neu-
rophysiological parameters. In the spatially discrete model
[136] the cortex was approximated by a matrix of unit
volumes. Each unit volume consisted of two masses, ex-
citatory and inhibitory ones, connected to each other and
recurrently to themselves. Connections within a unit volume
included dendritic delays related to rise and decay times
of postsynaptic potentials. The connections between the
units accounted for cortico–cortical couplings: their strength
diminished with distance while the delay was proportional
to the separation between the units. In each mass, the local
field potential and the pulse density were related by a sig-
moidal function. The major features of these models include
peaks in the power spectrum of the output signals at the
frequencies corresponding to main EEG rhythms (theta,
alpha, beta, and gamma), a general “1/f” decrease of spectral
power as a function of frequency and an increase of output
peak frequency as a function of nonspecific activation (a
constant excitatory input applied to all matrix elements).
The frequency–wavenumber estimates together with phase
velocities and spatial attenuation of traveling waves present
at the steady state were in good agreement with physio-
logical measurements. Additionally, the simulations of the
responses of visual stimulation with moving bars (simulated
as a set of cross-correlated inputs) gave good agreement
with experimental observations of spatially synchronous
oscillations in the gamma frequency range [137]. The
continuous form of the Wright’s model was introduced
by Robinson [138]. Using the set of continuous nonlinear
equations describing the waves of cortical electrical activity,
a steady-state and stability analysis was performed and dis-
persion relation for linear waves were obtained analytically.
This continuous formulation was also more tractable to
study the effects of boundary conditions exerted on global
frequencies for different cortical geometries. The feedback
cortex–thalamus has been subsequently added to the model
[139], [140]. System impulse responses were used to model
the brain’s transient responses to discrete stimuli allowing
for investigation of the neurophysical basis of evoked poten-
tials. The extended corticothalamic (i.e., involving both the
cortex and thalamus) model also allowed to simulate a wide
range of spectral peaks observed experimentally under non
pathological conditions (slow wave, delta, theta, alpha, and
sleep spindles) as well as nonlinear behavior (limit cycle)
corresponding to epilpetiform EEG during epileptic seizures
[141].

An interesting attempt to bridge the microscopic cellular
and macroscopic EEG models of neocortical dynamics was
undertaken by Wright and Liley [142]. At the scale of single
cells the dynamics is characterized by nonlinear equations,
whereas processes at the EEG level exhibit linear and near-
equilibrium dynamics. One of the authors’ conclusion is that
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the microscopic complex, possibly chaotic, behavior is com-
patible with almost linear behavior describing neural mass
dynamics due to spatially and temporally noisy input from
the reticular formation. Although this paper does not fully ex-
plore the multiscale modeling of the brain, it brings up some
fundamental questions in computational neuroscience and it
became a subject of open peer commentary contributed by
many experts in the field.

VII. MODELS OF EPILEPTIC ACTIVITY

Epilepsy is a complex dynamical disease characterized
by recurrent seizures. About 0.5%–1% of the population
is affected by epilepsy which is, next to stroke, the most
common neurological disease. Although there is currently
strong evidence that seizures are related to abnormal exces-
sive firing and synchronization of neurons in a part of the
brain, little is known about the precise basic mechanisms
underlying human epileptic seizures and mechanisms of
transitions from normal to epileptic activity. The review
paper by Lopes da Silva [143] presents three different routes
of transitions between normal, seizure-free state and the
state characterized by epileptic seizures. The first route,
called “attractor deformation,” consists of gradual changes
of network parameters leading to smooth and continuous
changes of system behavior from interictal (before seizure)
to ictal (seizure) activity. In an alternative, “bifurcation”
route, the system features two operational states, normal and
paroxysmal, that may coexist for the same sets of parameters.
Whether one or the other are present depends on external
inputs or internal random perturbations of the system; the
latter may lead to a sharp transition from normal to parox-
ysmal behavior. The third, “mixed” scenario is a mixture
of the two basic scenarios in which gradual deformation of
the operational normal state facilitates the sharp transition
to the ictal state. As discussed in [143], the identification
of dynamical processes leading to seizure generation may
have a fundamental impact on the ability to predict seizure
occurrence and on the development of new therapeutic
interventions (e.g., deep brain stimulation). Here, we present
two computational models at the population level that cover
the two main scenarios of seizure generation and correspond
to two different epileptic phenomena: 1) partial seizures
occurring in temporal lobe epilepsy and 2) generalized
absence seizures.

A. Human Partial Epilepsy

In this section, we present a modeling attempt to relate
electrophysiological patterns of epileptic activity to patho-
physiological mechanisms involved during the transition to
seizure in a specific form of human partial epilepsy called
temporal lobe epilepsy (TLE). In TLE, seizures originate
in one or several anatomic areas of the temporal lobe and
propagate through interconnected neuronal networks within
or beyond its boundaries. Mesial temporal lobe epilepsy
(MTLE) is the first and most common subtype of TLE. It has
been extensively studied over the last decade resulting in the
description of the so-called MTLE syndrome [144], [145]
characterized by a significant volume reduction of certain

mesial (limbic) structures, particularly the hippocampus.
Drug treatment is often inefficient in patients with TLE and
surgical excision of the epileptogenic region and/or seizure
propagation pathways remain the only way to stop or signif-
icantly reduce the frequency of seizures. However, the rate
of surgical failure in this population is far from negligible
[146], suggesting that the understanding of seizure-trig-
gering mechanisms still constitutes an essential step for
improving the surgical outcome or for developing new
therapeutic strategies like electrical stimulations. During
presurgical evaluation of patients with intractable TLE,
intracerebral recordings (depth-EEG) can be performed. In
this context, the general objective of this work was to make
use of physiologically relevant models of neuronal popu-
lations to interpret depth-EEG signals recorded during the
transition from interictal (before seizure) to ictal (seizure)
activity.

Modeling at the neuronal population level was chosen for
two main reasons. First, it appeared well suited to the nature
of our real observations. Indeed, macroelectrodes which are
used for depth-EEG recording provide signals arising from
large assemblies of cells (field activity). Second, excitation-
or inhibition-related parameters are considered as essential in
the study of epileptic processes. Neuronal population models
include parameters directly related to excitation, inhibition
or couplings between neuronal subpopulations present in ex-
plored brain structures.

Starting from aforementioned works (part V), a canonical
form of this class of models [Fig. 3(a)] representing a cluster
of neurons containing three interacting subsets was studied
[125]. The first subset is composed of the main cells (i.e.,
pyramidal cells in the hippocampus or neocortex). It receives
feedback from the two other subsets composed of local in-
hibitory interneurons and other excitatory cells. Taking into
account some hypotheses about epileptic mechanisms re-
lated to imbalance between excitation and inhibition, model
parameters (related to the amplitude of average excitatory or
inhibitory postsynaptic potentials) were altered; accordingly
epileptiform signals could be simulated, the dynamics of
which strongly resemble those of signals recorded from
different brain structures for both interictal and ictal ac-
tivities. However, it was also observed that the model was
not able to represent fast EEG activities such as rapid dis-
charges often observed in intracerebral recordings at seizure
onset. This inconsistency pointed toward necessary model
improvement.

A new design for the model of hippocampal activity was
then proposed, starting from basic neuroscientific studies
about: 1) the role of inhibitory interneurons in hippocampal
or neocortical networks in the generation of gamma fre-
quency oscillations [69], [147]; 2) the nonuniform alteration
of GABAergic inhibition in experimental models of tem-
poral epilepsy (reduced dendritic inhibition and increased
somatic inhibition) [148]; and 3) the possible depression of
GABA circuit activity by GABA inhibitory post-
synaptic currents in the hippocampus [149]. These studies
highlighted the necessity to consider not only one but two
inhibitory subpopulations in the model in order to take
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Fig. 3. Neuronal population model. (a) The model canonical form reproduces interactions between main cells (pyramidal) and local excitatory neurons or
inhibitory interneurons. In each subpopulation, a static nonlinear function (asymmetric sigmoid curve S(v) = 2e =[1+e ]) is used to model threshold
and saturation effects in the relationship between the average postsynaptic potential of a given subset and the average pulse density of potentials fired by the
neurons. In turn, a linear transfer function is used to transform the average presynaptic pulse density of afferent action potentials (the input) into an average
postsynaptic membrane potential (the output). This transfer function is of order 2, as described in Section V-B. Interneurons receive an excitatory input (AMPA
and NMDA receptor-mediated) from pyramidal cells. The associated impulse response h (t) = EXC � a � t � e determines the excitatory average
postsynaptic membrane potential, where EXC represent the synaptic gain. Similarly, interneurons project to pyramidal cells (GABA receptors) and the
impulse response h (t) = SDI � b � t � e determines the inhibitory average postsynaptic membrane potential (lower feedback loop). Recurrent excita-
tion (excitatory-excitatory connections between pyramidal cells) is also represented in the model (upper feedback loop). The influence from neighboring or
more distant populations is represented by an excitatory input n(t) (modeled by a positive mean Gaussian white noise) that globally describes the average
density of afferent action potentials. The average number of synaptic contacts between subsets of cells is represented by connectivity constants C1 to C4.
Model output corresponds to the postsynaptic activity of the subset of pyramidal cells that mainly contributes to the EEG signal (field potential). (b) Modified
model designed to represent the cellular organization in the hippocampus (CA1). A subset of somatic-projecting interneurons (gray rectangle) was added to
the previous model. Consistently with [148], this subpopulation receives input from both subsets of pyramidal and dendritic-projecting interneurons. Similarly
to other subpopulations, a linear transfer function is used to convert the presynaptic pulse density into a postsynaptic membrane potential. Its impulse response
h (t) = FSI � g � t � e determines fast somatic inhibitory average postsynaptic membrane potentials.

into account two separate classes of interneurons (called,
for simplicity, GABA interneurons and GABA
interneurons) that were demonstrated to give rise to slow
and fast inhibitory postsynaptic currents (IPSCs). The
new model was designed to represent this cellular organ-
ization of interacting subsets of principal neurons and
interneurons, as summarized in Fig. 3(b). It consists of three
subsets of neurons: namely, the main cells (i.e., pyramidal
cells), the slow dendritic-projecting inhibitory interneurons
(GABA receptors), and the fast somatic-projecting
inhibitory interneurons (GABA receptors). Three key
model parameters are directly related to excitatory, slow
inhibitory, and fast inhibitory synaptic interactions between
subsets of cells. These three parameters are referred to as
EXC, SDI, and FSI, respectively.

In a first step, the model was shown to produce strikingly
realistic activities when compared to real depth-EEG signals
[Fig. 3(c)]. In a second step, it was used to study and inter-
pret the transition from background to seizure activity [see
example in Fig. 4(a)], in term of the evolution of EXC, SDI,
and FSI parameters. Thus, a parameter sensitivity analysis
was carried out [126] using an exhaustive procedure aimed
at uncovering, from simulations, disjoint regions in the space
of free parameters, each region being associated to a partic-

ular type of model activity. Then, activities reflected in real
signals as well as transitions between activities were inter-
preted as possible paths connecting corresponding regions in
the space of free parameters. As this space is of dimension 3,
paths were displayed in the (SDI, FSI) plane, for different
values of EXC. [Fig. 4(b)]. Results demonstrated that the
transition from interictal to ictal activity can be explained by
time-varying synaptic interactions between pyramidal cells
and interneurons with slow and fast GABAa kinetics. In par-
ticular, the model explained the appearance of the rapid dis-
charge at seizure onset by a drop of dendritic inhibition. It
also permitted to relate the observed fast oscillations to the
crucial role of interneurons projecting to the somatic region
of pyramidal cells.

In summary, results showed that neuronal population
models can be adapted to specific cerebral structures like
the hippocampus by integration of available neuronal histo-
logical data and can produce realistic epileptiform activities
and transitions between activities [Fig. 4(d) and Fig. 4(e)].
This computational modeling study offered the unique
opportunity to relate electrophysiological patterns typically
recorded with intracerebral electrodes during the transition
from interictal to ictal activity in the human hippocampus to
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Fig. 3. (Continued) Neuronal population model. (c) The different types of activity produced by the model and comparison with (b) real depth-EEG signals
recorded in human hippocampus (during stereoelectroencephalographic exploration and using intracerebral multiple lead depth-electrodes). Type 1 and type
2, respectively, refer to normal background activity and sporadic spikes as observed in real signals during interictal periods. Type 3 and type 4, respectively,
refer to sustained spiking activity and slow rhythmic activity. Both may be observed in the hippocampus just before seizure onset. Type 5 refers to fast activity
that appears at seizure onset. Finally, type 6 refers to slower narrow-band activity.

ictogenesis mechanisms and to generate hypotheses about
these mechanisms.

B. Nonconvulsive Epilepsy

In this section a computational model of absence seizures
that are assumed to involve thalamocortical circuits is pre-
sented. Such seizures are paroxysmal losses of consciousness
that start and end abruptly and are accompanied by bilaterally
synchronous rhythmic spike and wave (SW) discharges that
can be recorded on the EEG. Experimental findings and com-
putational models [107], [108], [150] have given insight into
some basic neuronal mechanisms of SW discharges. How-
ever, the mechanisms that are responsible for the sponta-
neous transition between the normal and paroxysmal SW
activity are not well understood. Similarly, the questions of
thalamocortical versus cortical mechanisms of SW genera-
tion are not fully resolved.

These questions were approached using a thalamocortical
computational model [128]. The model was constructed
at the intermediate level between the distributed neuronal
network and lumped circuit levels. That is, the explicit
behavior of individual neurons was not simulated but rather
the network of interacting populations was considered. In
neuronal populations, specific mechanisms at the neurons’
membrane level were included. Such approach involves a

number of simplifications of the real system but exhibits a
number of advantages. First, using a relatively simple model
which is able to replicate specific experimental results, one
can define a basic set of mechanisms/rules that are necessary
and sufficient to account for the particular observed phe-
nomena. Second, this approach enables to investigate system
dynamics at the macroscopic level, that is at the level where
electric brain signals such as local field potentials, or EEG,
are recorded. Overall system dynamics is usually hardly
accessible in distributed neuronal models. Third, such model
is computationally efficient and allows to simulate long time
range ( hours or days) behavior.

The model is based on physiology of the thalamocortical
network shown schematically in Fig. 5(a). It represents an
extension of the lumped model alpha rhythm model [121] de-
scribed in Section V-C. The schematic diagram of the model
is shown in Fig. 5(b). The model consists of two loops, cor-
tical and thalamic ones, that are mutually interconnected.
The thalamic loop is formed by a population of thalamocor-
tical (TC) cells that projects to a population of reticular tha-
lamic (RE) cells. The latter inhibits TC population by way
of GABA and GABA types of inhibition. The TC cells
receive external excitatory input that represents sensory in-
puts from the ascending afferents while the RE population
receives external inhibitory input. The latter represents the
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Fig. 4. Model-based interpretation of EEG signals during the transition to seizure in TLE. (a) Intracerebral recording in human hippocampus. Five phases
(1 to 5) are distinguished according to the pseudostationary nature of the activities reflected by the signal: interictal activity (1), high-amplitude spikes during
preonset period (2, 3), rapid discharge (4) at seizure onset, and quasi-sinusoidal ictal activity (5). (b) (SDI, FSI) plane for given constant parameter EXC
obtained from model parameter sensitivity study and a candidate path in the parameter space that explains the transitions of activity observed in the real signal.
(c) Evolution of slow and fast inhibition parameters (SDI, FSI) defined from the candidate path and used in the model to simulate a time-series signal (d).
Transitions in dynamics match those observed. (e) Normalized power spectral densities of real (solid line) and simulated (dotted line) signals.

input from the neighboring RE cells, since the latter are inter-
connected by mutual inhibitory synapses. The cortical circuit
consists of a negative feedback loop formed by interacting
populations of pyramidal cells (PY) and inhibitory interneu-
rons (IN). Pyramidal cells, in addition to projecting to in-
terneurons, send also excitatory connections to the thalamus
both to the TC and RE populations. In turn, the TC cells ex-
cite both the pyramidal cells and interneurons. The PY popu-

lation receives also external cortical input that stands for the
excitatory input from other pyramidal cells, not included in
the lump. All excitatory synaptic interactions are mediated
by glutamatergic AMPA receptors. Thalamic populations re-
ceive also modulating inputs corresponding, among others,
to cholinergic activation from the brain stem. The output of
the model, is the mean membrane potential of the pyramidal
cell population.
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Fig. 5. Thalamocortical population model. (a) Schematic diagram of connections between thalamocortical relay (TC) cells, cells of reticular nucleus (RE),
cortical pyramidal (PY) cells, and cortical interneurons (IN). The thalamocortical cells receive input from ascending specific afferents and project to a localized
region of the cortex and to the reticular nucleus neurons. The RE cells are connected to each other by means of dendrodendritic synapses and send back
GABAergic inhibitory fibers to the TC cells. PY cells send feedback connection to both types of thalamic cells and to the interneurons. The relay nucleus
receives cholinergic modulatory input from the brain stem while the reticular nucleus receives also cholinergic input, both from the brain stem as well as from
the basal forebrain. Open triangles mark excitatory connections and closed circles, inhibitory ones. (b) The general block diagram of the thalamocortical model
based on the structure of thalamocortical network. (c) Example of the model output. Upper panel: 20 s of a simulation with the occurrence of a spontaneous
paroxysmal episode. Lower panels: power spectra of simulated normal and paroxysmal activity in the model and in the epileptic rat. Dominant frequency of
normal activity is around 11 Hz while that of paroxysmal activity is around 9 Hz. (d) Durations distributions of the ictal (upper graph) and interictal (lower
graph) epochs generated during 24 simulation of the model. Exponential fit is shown in both pictures indicating that both seizure termination (upper graph)
and initiation (lower graph) occur randomly over time.

The main results obtained through model simulations and
system analysis were the following.

1) Paroxysmal discharges characterized by 9 Hz large
amplitude oscillations arose and ceased spontaneously
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during model operation, without any changes of model
parameters [Fig. 5(c)].

2) Bifurcation analysis of the model showed that the net-
work exhibits bistable dynamics, i.e., the normal and
paroxysmal state coexist for the same set of parameters.
Noise present in the network may switch the system be-
tween these two types of behavior.

3) The distributions of lengths of ictal and seizure free
epochs were exponential [Fig. 5(d)], indicating that
transitions between the two stable states occurred ran-
domly over time. This model prediction was validated
using experimental data from animal models of absence
epilepsy, that display SW at about 9 Hz, and human
subjects [151].

4) Variation of model’s parameters has shown that de-
pending on the parameter setting, the paroxysmal
oscillation may be generated purely thalamically,
purely cortically or in interacting thalamocortical net-
work. This result could partly reconcile the seemingly
contradictory experimental observations of SW origi-
nating primarily in the cortex or in the thalamus [152].

5) Since the sudden onset of large amplitude paroxysmal
activity is triggered by a stochastic process, this implies
that the occurrence of this type of seizures is unpre-
dictable per definition.

6) Model simulations confirmed theoretical predictions
that in bistable systems the large amplitude oscillation
may be annihilated by a single well-timed pulse. This
pointed to the possibility of arresting seizures having
certain dynamical properties.

In summary, a simple computational model constructed with
relatively low complexity provided interpretation of exper-
imental findings, novel testable hypotheses, suggestions for
new experiments and new insights of clinical importance.

C. Implications for Understanding of Epileptic
Brain Activity

The studies presented in Section VII were motivated by
clinical questions and dealt with pathological brain behavior
observed during epileptic seizures. Both models were con-
structed at the same (population) scale and were based on
physiological and clinically relevant data (depth-EEG and
scalp-EEG). They provided novel insights concerning the
mechanisms of transistions from normal to seizure activity
in two different types epileptic phenomena (in terms of
clinical manifestations and networks involved). The model
of the hippocampal network activity described in Sec-
tion VII-A predicted a sequence of changes in parameters
determining synaptic interactions between subpopulations
of (inter)neurons that can lead to seizure generation. The
computational model of absence epileptic process described
in Section VII-B showed that some classes of epileptic
behavior could be characterized by bistability properties. In
this case, seizure generation does not require any parameter
change and can be induced by unpredictable stochastic
fluctuations, which are inherent to any biological system.
These studies were described in more detail here, since they
provide examples of how interaction between computer

modelers, experimentalists and clinicians may contribute
to significant advances in understanding of complex brain
pathology. These two models also illustrate that one cannot
develop a general computational model of epilepsy. The
diversity of epilepsies requires construction of specialized
models carefully adapted to particular epilepsy type.

VIII. TECHNOLOGY OF BRAIN MODELING

A. Modeling Software

Numerous software packages are available to build accu-
rate models of single neurons and networks of neurons and
perform simulations. Most of them are based on compart-
mental modeling which introduces a spatial discretization of
neurons to simplify the equations describing, in time and
space, the dynamics of ion-specific channels, the synaptic
interactions between cells and propagation aspects of mem-
brane potentials. These packages can be used to accurately
represent the various neuronal morphologies encountered in
a given real neuronal tissue. They mainly differ in the or-
ganization of the user interface (presenting the modeler with
an intuitive environment in which details of the numerical
methods are hidden), in the level of physiological detail that
can be added to model neurons and in the way integration
methods are implemented.

Detailed neuron models may now have more than 1000
compartments with multiple ionic conductances. At the
cell level, some packages can handle this complexity.
However, for network simulations, supercomputers and
parallel processing are still required, the alternative being
the use of simplified neuron models in large networks. In
most packages, standard numerical methods are available
to solve the set of differential equations that govern a given
neuron model (like forward, backward, or exponential Euler
methods). In some packages, e.g., Neuron [153] and Genesis
[154], a method due to Hines [155] is available. It provides
an efficient way to solve these equations and may be used
to speed up simulations in the case where the coupled equa-
tions describe a branching tree-like structure (such as the
dendrites of a neuron) without closed loops. This brief para-
graph only gives a short account of the available neuronal
modeling software. Although written more than ten years
ago, the comparative review by de Schutter [156] stays very
informative for readers who wish more details about the
functionalities of these software packages. Recently, new
computer languages are being developed for description and
simulation of neural systems, e.g., NSL—Neural Simulation
Language [157]. Storage and exchange of computer-based
mathematical models is facilitated by the CellML language
[158]. It allows scientists to share models even if they are
using different model-building software.

B. Neuron–Silicon Interface

Apart from simulation environments dedicated to
modeling neural systems various techniques have been
developed that integrate real biological neurons with
computer-simulated or electronic chips environment. The
dynamic clamp uses computer simulation to introduce
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Fig. 6. Number of publications per year in neuroscience and computational neuroscience fields, showing different dynamics (linear increase versus exponen-
tial growth) of these two disciplines. Rough estimation of a number of publications was made using PubMed database (http://www.ncbi.nlm.nih.gov/). Papers
that contained the word “brain” (i.e, matched “brain AND year[edat]” query) were considered as neuroscience papers published in the respective year. Papers
that contained the words “brain” and “computer model” (i.e., matched “brain AND computer model AND year[edat]” query) were considered as computational
neuroscience papers published in the respective year.

artificial membrane or synaptic conductances into bio-
logical neurons and to create networks from previously
unconnected neurons or hybrid circuits of real and model
neurons. In this approach, it is essential that models can run
in real time, which has become possible with the current
generation of computers. The review paper [159] describes
recent high-tech implementations of this technique and
summarizes insights gained through its use. The integration
of individual nerve cells, small neuronal networks or even
brain slices with microelectronic circuits is a new way to ex-
plore complex neural processes [160]. Possible applications
of this approach in brain research, biosensorics, information
technology and medical prosthetics are reviewed in [161].

C. Neuromorphic Engineering

Designing electronic devices mimicking real neuronal op-
erations in the brain is a new branch of engineering. Douglas
et al. [162] designed an analog VLSI chip that matches the
properties of real biological neurons including continuous
dendritic and synaptic computations. A single-chip model
system of signal processing in the auditory brainstem was
presented in [163]. A multichip VLSI neuronal system ap-
proximating a cortical microcircuit has been subsequently
developed to model visual processing performed by orien-
tation-tuned neurons [164]. Such an analog hardware system
has advantages over computer neuronal models in that it is
very efficient computationally and the computational time
does not scale with the size of the neuronal network. An ex-
tended model of the visual system based on the same tech-
nology was presented in [165]. The realistic behavior of the
silicon system suggested the possibility of implementation of
similar circuits for visual prosthetics. The largest neuromor-
phic system built to date was an artificial organism “Ada”

that integrated a variety of sensory and behavioral modali-
ties [166].

IX. DISCUSSION

Computational neuroscience is a relatively young branch
of science and it is at present in a fast growing phase as com-
pared to general neuroscience, which grows also strongly
but more steadily, as quantified by a number of publica-
tions per year (Fig. 6). The proliferation of brain models
can be explained on the one hand simply by the growing
availability of fast digital computers, and on the other, it
may indicate increasing awareness of, and confidence in,
theoretical approaches based on computational models. An
increasing demand for the integration of experimental and
theoretical approaches in the neurosciences is becoming
more common. Indeed, a number of studies presented in
this review were developed as an attempt to provide insight
and to put into a common framework a vast amount of
experimental, sometimes apparently contradictory, findings.
Some concepts relevant to understand brain functions could
not have been even reached based only on experimental ob-
servations alone, e.g., Prinz [167], by simulating 20 million
versions of the model using different connection strengths
and neuron properties showed that a wide heterogeneity in
parameters may still lead to the same network activity. This
may be central to understand biological systems that always
exhibit some degree of variability. Other models provided
insight into how the modification of system parameters,
or intrinsic fluctuations, may lead to abnormal behavior,
such as the transition between normal activity and epileptic
seizures. These results obtained using a modeling approach
corroborate experimental results and make some predictions
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concerning clinically relevant questions like seizures pre-
dictability or seizure abortion. These studies are significant
examples of how modeler–experimentalist dialogues may
lead to progress in this field. Ways to improve this interdis-
ciplinary interaction have been also suggested in [168].

Another important issue concerns the question of scale,
i.e., the level of neuronal organization at which the model
should be set. All models presented in this review integrate
and “organize” some knowledge at a given scale. Most of
them are intimately linked to experiments. They are used to
test hypotheses on available data or to relate observed phe-
nomena to the underlying mechanisms. New experimental
data should lead to model adjustments or to the development
of new models. In turn, models may be helpful in the de-
sign of new experiments. However, too detailed models may
be too complex to analyze and interpret, while too general
models may not capture the essence of some experimental
phenomenon. The modeling level should be appropriately
chosen to match the neurophysiological level of the exper-
imental observations that are to be explained. E.g., the com-
partmental modeling level was appropriate to gain insight
into the burst generation occurring at the soma as well as
in the dendrites of the CA3 cells [52] but turned out to be
not necessary to explain the generation of intrinsic bursts in
thalamic relay cells [56]. Similarly, evoked potentials can be
easily simulated using population models [124], [140] while
this approach would probably fail to capture memory pro-
cesses, which depend on modifications in the strengths of
synaptic connections between individual cells [37].

Apart from physiologically based models, abstract models
are also being developed that consider the brain as a physical
dynamical system without detailed assumptions about the el-
ements that constitute it [169]–[172]. Such models although
not providing direct insight into neurophysiological mech-
anisms can provide a common conceptual framework and
may reveal unifying principles, by showing, e.g., that var-
ious seemingly different complex phenomena are governed
by the same simple rules.

Although progress in understanding brain functions is
significant, we are still far from achieving this goal. Many
neuroscientists are becoming aware that understanding
neural processes requires the development of brain models
at the global and local scales. Indeed, an essential feature
at one level might be an insignificant detail at another level
and no single model can be expected to span all the levels
of organization briefly described in this review. Although
first attempts to build a unified theory that integrate different
levels of neuronal organization have already been made
[132], [133], [142], a challenge to develop computational
brain models that bridge microscopic and macroscopic
levels is still facing modelers.
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