
The second moment method is an effective tool in number theory. Let
ν(n) denote the number of primes p dividing n. (We do not count multi-
plicity though it would make little difference.) The folllowing result says,
roughly, that “almost all” n have “very close to” ln ln n prime factors. This
was first shown by Hardy and Ramanujan in 1920 by a quite complicated
argument. We give a remarkably simple proof of Paul Turan [1934], a proof
that played a key role in the development of probabilistic methods in num-
ber theory.
Theorem 2.1 Let ω(n) → ∞ arbitrarily slowly. Then number of x in
{1, . . . , n} such that

|ν(x)− ln ln n| > ω(n)
√

ln ln n

is o(n).
Proof. Let x be randomly chosen from {1, . . . , n}. For p prime set

Xp =

{
1 if p|x
0 otherwise

Set M = n1/10 and set X =
∑

Xp, the summation over all primes p ≤ M .
As no x ≤ n can have more than ten prime factors larger than M we
have ν(x) − 10 ≤ X(x) ≤ ν(x) so that large deviation bounds on X will
translate into asymptotically similar bounds for ν. (Here 10 could be any
large constant.) Now

E[Xp] =
bn/pc

n

As y − 1 < byc ≤ y
E[Xp] = 1/p + O(1/n)

By linearity of expectation

E[X] =
∑

p≤M

1
p

+ O(
1
n

) = ln ln n + O(1)

Now we find an asymptotic expression for V ar[X] =
∑

p≤M V ar[Xp] +∑
p 6=q Cov[Xp,Xq]. As V ar[Xp] = 1

p(1− 1
p) + O( 1

n),

∑
p≤M

V ar[Xp] =
∑
p≤M

1
p

+ O(1) = ln ln n + O(1)
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With p, q distinct primes, XpXq = 1 if and only if p|x and q|x which occurs
if and only if pq|x. Hence

Cov[Xp,Xq] = E[Xp]E[Xq]− E[XpXq]
= bn/pqc

n − bn/pc
n

bn/qc
n

≤ 1
pq − (1

p − 1
n)(1

q − 1
n)

≤ 1
n(1

p + 1
q )

Thus ∑
p 6=q

Cov[Xp,Xq] ≤ 1
n

∑
p 6=q

1
p

+
1
q
≤ 2M

n

∑ 1
p

Thus ∑
p 6=q

Cov[Xp,Xq] = O(n−9/10 ln ln n) = o(1)

That is, the covariances do not affect the variance, V ar[X] = ln lnn + O(1)
and Chebyschev’s Inequality actually gives

Pr[|X − ln ln n| > λ
√

ln ln n] < λ−2 + o(1)

for any constant λ. As |X − ν| ≤ 10 the same holds for ν. 2

In a classic paper Paul Erdős and Marc Kac [1940] showed, essentially,
that ν does behave like a normal distribution with mean and variance ln ln n.
Here is their precise result.
Theorem 2.2. Let λ be fixed, positive, negative or zero. Then

lim
n→∞

1
n
|{x : 1 ≤ x ≤ n, ν(x) ≥ ln ln n + λ

√
ln ln n}| =

∫ ∞

λ

1√
2π

e−t2/2dt

We outline the argument, emphasizing the similarities to Turan’s proof. Fix
a function s(n) with s(n) → ∞ and s(n) = o((ln ln n)1/2) - e. g. s(n) =
ln ln ln n. Set M = n1/s(n). Set X =

∑
Xp, the summation over all primes

p ≤ M . As no x ≤ n can have more than s(n) prime factors greater than
M we have ν(x)− s(n) ≤ X(x) ≤ ν(x) so that it suffices to show Theorem
2.2 with ν replaced by X. Let Yp be independent random variables with
Pr[Yp = 1] = p−1, Pr[Yp = 0] = 1 − p−1 and set Y =

∑
Yp, the summation

over all primes p ≤ M . This Y represents an idealized version of X. Set

µ = E[Y ] =
∑
p≤M

p−1 = ln ln n + o((ln lnn)1/2)
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and
σ2 = V ar[Y ] =

∑
p≤M

p−1(1− p−1) ∼ ln ln n

and define the normalized Ỹ = (Y −µ)/σ. From the Central Limit Theorem
(well, an appropriately powerful form of it!) Ỹ approaches the standard
normal N and E[Ỹ k] → E[Nk] for every positive integer k. Set X̃ = (X −
µ)/σ. We compare X̃, Ỹ .

For any distinct primes p1, . . . , ps ≤ M

E[Xp1 · · ·Xps ]− E[Yp1 · · ·Yps ] =
b n

p1···ps
c

n
− 1

p1 · · · ps
= O(n−1)

We let k be an arbitrary fixed positive integer and compare E[X̃k] and
E[Ỹ k]. Expanding, X̃k is a polynomial in X with coefficients no(1). Further
expanding each Xj = (

∑
Xp)j - always reducing Xa

p to Xp when a ≥ 2 -
gives the sum of O(Mk) = no(1) terms of the form Xp1 · · ·Xps . The same ex-
pansion applies to Ỹ . As the corresponding terms have expectations within
O(n−1) the total difference

E[X̃k]− E[Ỹ k] = n−1+o(1) = o(1)

Hence each moment of X̃ approach that of the standard normal N . A
standard, though nontrivial, theorem in probability theorem gives that X̃
must therefore approach N in distribution. 2

We recall the famous quotation of G. H. Hardy:

317 is a prime, not because we think so, or because our minds
are shaped in one way rather than another, but because it is so,
because mathematical reality is built that way.

How ironic - though not contradictory - that the methods of probability
theory can lead to a greater understanding of the prime factorization of
integers.
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