The second moment method is an effective tool in number theory. Let
v(n) denote the number of primes p dividing n. (We do not count multi-
plicity though it would make little difference.) The folllowing result says,
roughly, that “almost all” n have “very close to” Inlnn prime factors. This
was first shown by Hardy and Ramanujan in 1920 by a quite complicated
argument. We give a remarkably simple proof of Paul Turan [1934], a proof
that played a key role in the development of probabilistic methods in num-
ber theory.

Theorem 2.1 Let w(n) — oo arbitrarily slowly. Then number of z in
{1,...,n} such that

|v(z) —Inlnn| > w(n)Vinlnn
is o(n).

Proof. Let « be randomly chosen from {1,...,n}. For p prime set

1 ifplx
Xp = { 0 otherwise

Set M = n'/10 and set X = > X, the summation over all primes p < M.
As no x < n can have more than ten prime factors larger than M we
have v(z) — 10 < X(z) < v(x) so that large deviation bounds on X will
translate into asymptotically similar bounds for v. (Here 10 could be any
large constant.) Now

E [Xp] = M

Asy—1<|y] <y
E[Xp] =1/p+0(1/n)

By linearity of expectation

EX]=>" %JFO(%) =Inlnn + O(1)

p<M
Now we find an asymptotic expression for Var[X] = >,y Var[X,] +
> optqg Cov[ Xy, Xyl As Var[X,| = %(1 - %) +0(2),

1
Z Var[ Xy = Z -+0(1)=Inlnn+0(1)
p<M p<m P



With p, ¢ distinct primes, X, X, = 1 if and only if p|x and ¢|z which occurs
if and only if pg|z. Hence

COU[Xanq] = E[Xp]E[Xq] - E[Xqu]
In/pq] _ |[n/p] [n/q]

n n__n
i i—lq(l—ﬁ )— DG W)
—n\p ' ¢
Thus
ZCOU[XP,XQ] < %Zz—lj—i—ég %Z%
p#q P#q
Thus

Z Cov[ Xy, X4| = O(n=""Inlnn) = o(1)
P#q

That is, the covariances do not affect the variance, Var[X] = Inlnn + O(1)
and Chebyschev’s Inequality actually gives

Pr[|X —Inlnn| > AVInlnn] < A72 4 o(1)

for any constant A. As |X — v| < 10 the same holds for v. O

In a classic paper Paul Erdés and Marc Kac [1940] showed, essentially,
that v does behave like a normal distribution with mean and variance In In n.
Here is their precise result.
Theorem 2.2. Let X\ be fixed, positive, negative or zero. Then

1
lim —{z:1<z<nv(r)>Inlnn+ A\inlnn} = e 2t

>~ 1

We outline the argument, emphasizing the similarities to Turan’s proof. Fix
a function s(n) with s(n) — oo and s(n) = o((Inlnn)%/?) - e. g. s(n) =
Inlnlnn. Set M = n'/5(") Set X = > X, the summation over all primes
p < M. As no z < n can have more than s(n) prime factors greater than
M we have v(z) — s(n) < X(x) < v(x) so that it suffices to show Theorem
2.2 with v replaced by X. Let Y}, be independent random variables with
PrlY, =1 =p 1 Pr[Y, =0/ =1 —p ! and set Y = 3, the summation
over all primes p < M. This Y represents an idealized version of X. Set

p=EY]=> p ' =Inlnn + o((Inlnn)/?)
p<M



and
o2 =Var[Y] = Z p'1—pH~Inlnn
p<M
and define the normalized Y = (Y — )/o. From the Central Limit Theorem
(well, an appropriately powerful form of it!) Y approaches the standard
normal N and E[Y/kl — E[N¥] for every positive integer k. Set X = (X —

w)/o. We compare X,Y.
For any distinct primes pq,...,ps < M

|‘Pl'T'l'PsJ o 1
n P1--Ds

BlXp, - Xp] = E[Yp, - Yp.] = =0(n™)

We let k be an arbitrary fixed positive integer and compare E[X*] and
E[Y*]. Expanding, X* is a polynomial in X with coefficients n®"). Further
expanding each X7 = (3 X,,)? - always reducing X, to X, when a > 2 -
gives the sum of O(M*) = n°() terms of the form X,, - - - X,,,. The same ex-

pansion applies to Y. As the corresponding terms have expectations within
O(n~1) the total difference

E[X*] — E[YF] = n= 1100 = (1)

Hence each moment of X approach that of the standard normal N. A
standard, though nontrivial, theorem in probability theorem gives that X
must therefore approach N in distribution. O

We recall the famous quotation of G. H. Hardy:

317 is a prime, not because we think so, or because our minds
are shaped in one way rather than another, but because it is so,
because mathematical reality is built that way.

How ironic - though not contradictory - that the methods of probability
theory can lead to a greater understanding of the prime factorization of
integers.



