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Abstract. The k -core of a graph is the largest subgraph with minimum degree at
least k . For the Erd}os-R�enyi random graph G(n;m) on n vertices, with m edges,
it is known that a giant 2-core grows simultaneously with a giant component, that
is when m is close to n=2 . We show that for k � 3 , with high probability, a giant
k -core appears suddenly when m reaches ckn=2 ; here ck = min�>0 �=�k(�) and
�k(�) = PfPoisson(�) � k � 1g . In particular, c3 � 3:35 . We also demonstrate
that, unlike the 2-core, when a k -core appears for the �rst time it is very likely
to be giant, of size � pk(�k)n . Here �k is the minimum point of �=�k(�) and
pk(�k) = PfPoisson(�k) � kg . For k = 3, for instance, the newborn 3-core contains
about 0:27n vertices. Our proofs are based on the probabilistic analysis of an edge
deletion algorithm that always �nds a k -core if the graph has one.
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1. Introduction. The random graph process on n vertices is the probability
space of all the nested sequences of graphs

G(n; 0) � G(n; 1) � � � � � G(n;N);

N =
�
n
2

�
, with vertex set V = f1; : : : ; ng , such that G(n;m) has m edges and

each sample sequence has the same probability, 1=N ! . In particular, the random

\snapshot" G(n;m) is uniformly distributed on the set of all
�
N
m

�
graphs with m

edges. An event Hn occurs in fG(n;m)g with high probability (whp) if PHn ! 1
as n ! 1 . (It is understood that fHn; n = 1; 2; : : : g is a sequence of events.)
According to a classic result by Erd�os and R�enyi [10] (see also Bollob�as [4],  Luczak
[19], Janson et al. [14], and  Luczak et al. [22]), for large n the likely structure of
G(n;m) undergoes an abrupt change (phase transition) when m passes through
n=2. Namely, whp this is a birth time of a giant component, that is a component
of size of the order of n . More precisely, if m � cn=2 and c > 1 then the giant
component whp contains about �(c)n vertices, where �(c) = 1� t(c)=c and t(c) 2
(0; 1) is the smaller root of te�t = ce�c . Notice that �(1) = 0, so the percentage
of vertices in the giant component is low if c is close to 1 (from above).

Why is 1 the threshold value of c? A semiformal reasoning goes like this (cf.
Karp [17]). Fix a vertex v and consider a subgraph of G(n;m = cn=2) formed by
the vertices whose distance from v is at most � logn . It can be proved that, for �
su�ciently small and �xed, whp this subgraph can be looked at as a genealogical
tree of the �rst b� lognc generations in the Poisson(c) branching process. Such
a process either almost surely su�ers extinction, or with positive probability (=
1 � t(c)=c) survives inde�nitely, dependent upon whether c � 1 or c > 1. So one
should expect that for c > 1|with probability �(c)|a generic vertex v belongs
to a giant component, and the average size of the component is about �(c)n .

For k � 2, does a newborn giant component already contain a k -connected
subgraph? If not, how many additional edges later can one expect appearance of
such a subgraph? These questions are intimately related to the appearance of the
k -core, which was de�ned in [3] as the unique maximal subgraph with minimum
degree at least k . Even the question of the size of the �rst 2-core was not trivial.
This is just the length of the �rst cycle. Janson [14] derived the limiting distribution
of the �rst cycle size, thus showing that this size is bounded in probability as n
tends to in�nity. Later Bollob�as [6] (see also Bollob�as and Rasmussen [7]) rederived
this distribution using the martingale techniques. Still later, Flajolet et al. [12]
showed the expected length of the �rst cycle to be asymptotic to n1=6 . (There
is no contradiction here: the tail of the limiting distribution F is such that the
corresponding expected value|

R1
0

xdF (x)|is in�nite.)

For general k , the results have not been nearly this precise. Bollob�as [3] es-
tablished whp the existence of a k -connected subgraph for m = cn=2 with 8 �
k + 3 � c=2; c � 67, indicating that no attempt was made to get the best bounds
his approach might deliver. The proof consisted of showing that (a) whp the k -
core exists, and (b) whp the k -core is k -connected. Pittel [27] proved that|for
every c > 1|the giant component contains a 2-connected subgraph of the likely
size � �(c)n , with �(c) = (1 � t(c))�(c) . This 2-connected subgraph cannot,
however, be expected to contain a 3-connected subgraph for each c > 1! Indeed,
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 Luczak [18] proved that for c < 1:24 whp G(n;m = cn=2) does not contain a
subgraph of average degree at least 3. De�ne ck as the in�mum of c0s such that
G(n;m) (m � cn=2) whp has a k -core. Then  Luczak's result means that c3 � 1:24.
Chv�atal [8]|who introduced the notion of ck| was able to show that c3 � 2:88,
and claimed that the same method yielded, for instance, c4 � 4:52 and c5 � 6:06.

More recently,  Luczak [20], [21] proved for every �xed k � 3 that in the graph
process fG(n;m)g , whp the k -core, if present, is k -connected and contains at least
0:0002n vertices. (Being content apparently with establishing any linear bound,
 Luczak did not try to get the best bound his method could deliver.)

Using  Luczak bound, Molloy and Reed [25] were able to improve signi�cantly
the existing bounds for c3; c4 and c5 , showing that c3 2 (3:35; 3:59), for instance.
The proof involved a computer-aided analysis of the recurrence equations which
described the mean{values behavior of a few thousand steps of an algorithm that
strips away vertices of degree < k .

Despite the progress, the question of exact values of ck and the likely sizes of k -
cores (k � 3) for various values of c has so far remained open. In the present paper
we answer these questions, and in addition show that, unlike the 2-core, for k � 3
the �rst k -core to appear is whp very large|with approximately pkn vertices, for
some constant pk which we determine. Our approach is based on probabilistic
analysis of a simple algorithm which, for a given graph, either �nds a k -core, or
correctly diagnoses the absence of a k -core.

Here are our principal results. In the rest of the paper, k � 3 is a �xed integer.

Given � > 0, let Z(�) denote a Poisson distributed random variable with mean
� . Introduce pk(�) = PfZ(�) � kg and �k(�) = PfZ(�) � k � 1g . De�ne

(1.1) 
k = inff �

�k(�)
: � > 0g:

Since for k � 3 the function �=�k(�) approaches 1 as �! 0 or 1 , the in�mum
in (1.1) is attained at a point �k > 0. Clearly, the equation

(1.2) c =
�

�k(�)

has no root for � if c < 
k . If c > 
k there are two roots. Let �k(c) denote
the larger root; �k(c) is a continuous, strictly increasing function of c > 
k and
�k := limc#
k �k(c) satis�es

(1.3) 
k =
�k

�(�k)
:

Theorem 1. Suppose c � 
k � n��; � 2 (0; 1=2) being �xed. Let � 2 (0; 1) be
chosen arbitrarily small. Then the probability that G(n;m = cn=2) has a k -core
with at least �n vertices is O(exp(�n�)); 8� < (0:5� �)^ 1=6 . The probability that
there is a k -core of any size (� k + 1 , of course) is O(n�(k�2)(k+1)=2) .

Theorem 2. Suppose c � 
k + n��; � 2 (0; 1=2) being �xed. Fix � 2 (3=4; 1 �
�=2) and de�ne � = minf2��3=2; 1=6g . Then with probability � 1�O(exp(�n�))
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(8� < �) , the random graph G(n;m = cn=2) contains a giant k -core of size
npk(�k(c)) + O(n�) .

Theorem 3. Denote pk = pk(�k) . Let � 2 (3=4; 1) be �xed. For every � 2
(0; pk) , the probability that a k -core of the random graph G(n;m) at any \time"
m 2 (0;N) has size from [�n; pk(n � n�)] is O(exp(�n�)); 8� < � .

Theorems 1 and 2 taken together imply that ck = 
k . We see also that the ran-
dom birth time, mk , of a giant k -core is sharply concentrated (for large n) around
ckn=2: with subexponentially high probability mk is in [ckn=2 � n1��; ckn=2 +
n1��]; 8� < 1=2. Combining Theorems 1, 2 and 3, we obtain that with subexpo-
nentially high probability the size of a newborn k -core is close to pkn . So, at a
random moment m � ckn=2, we observe a sudden appearance (\explosion") of a
giant k -core that already contains a positive fraction of all vertices, asymptotic to
pk . For c safely above ck , the fraction of vertices in the k -core is a continuous
function of c .

Numerically, c3 � 3:35; p3 � 0:27; c4 � 5:14; p4 � 0:43; c5 � 6:81; p5 �
0:55. It can be easily shown that for large k

(1.4) ck = k +
p
k log k +O(log k):

It has been known,  Luczak [20], that

ck = k + O(k1=2+�); 8� > 0:

Note. A recently discovered algorithm for generating minimal perfect hash func-
tions uses random r -uniform hypergraphs, in which the threshold of the appearance
of the r -analogue of a cycle is crucial (see Havas et al. [13], where rough estimates
on the threshold are derived). The problem of determining this threshold is very
similar to that for the k -core of a random graph. A more thorough analysis is
made by Majewski et al. [24], where it is shown that a constant analogous to 
k
�ts the experimental data very well. No attempt was made there to give a rigorous
argument, but the methods of the present paper could possibly be extended to do
the job.

The rest of the paper is organized as follows. In Section 2 we discuss a heuristic
connection between the deletion processes for the random graph and the genealog-
ical tree of the Poisson branching process. In Section 3 we describe the deletion
process for the random graph in full detail and prove that the resulting sequence
of states fw(� )g��0 is a Markov chain. (A state w is a (k + 1)-tuple whose com-
ponents are the numbers of vertices of various degrees and the number of edges
in the current graph.) Next (Section 4) we obtain the asymptotic approximations
for the one-step transition probabilities of the Markov chain, including the states
with the arbitrarily low number of light vertices. We then use these approxima-
tions (Section 5) to derive the asymptotic equations for the conditional expectations
E[w(� + 1)jw(� )] . These equations make it plausible that a corresponding system
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of (k+1) di�erential equations has a solution which is whp followed approximately
by the sequence fw(� )g , at least as long as the components of w(� ) remain large,
of order n that is. This is of course a rather general principle, but a formal jus-
ti�cation is not easy in many important cases. Wormald [29] rigorously proved
this approximation property for the graph-related random processes, such as ours,
under quite general conditions, and his results can be used in our case to get a clear
idea as to when the birth of a giant k -core should be expected. (The solution of
the di�erential equations is a particularly sharp approximation when the parameter
c is bounded away from the critical value ck .) However, the deletion process we
study is intrinsically di�cult in that we need to analyze its almost sure behavior
also at the nearterminal moments � when some of the components of w(� ) become
small, just of order O(1). (There is a certain analogy here with epidemic processes
in a large population triggered by just a few infected individuals, cf. Pittel [26].)
Fortunately, however, the di�erential equations for the deletion process have a pair
of remarkable integrals that involve the principal characteristics of w(� ) . Using
this property, and the asymptotics for the transition probabilities, we construct in
Section 6 some auxiliary supermartingales of the exponential type, and the desired
probabilistic bounds follow then eventually from the Optional Sampling Theorem
for supermartingales.

2. Branching Poisson Process Connection. Let a graph G(V;E) be given.
Here is a simple algorithm that either �nds the k -core in G or establishes its
absence. At the �rst round we delete all the light vertices, that is the vertices with
degree at most k�1; none of them may belong to a k -core. At the next round, we
delete all the light vertices in the remaining graph. And so on. The process stops
when either the remaining vertices are all heavy, that is each with degree at least
k , or no vertices are left after the last round. In the �rst case the remaining graph
is the k -core of the graph G ; in the second case a k -core does not exist.

Consider the fate of a vertex v 2 V . If v is heavy it is not deleted in the �rst
round; it will stay after the second round as well provided that it has remained
heavy in the graph left after the �rst round. It is clear intuitively that even if v
is very heavy initially, it may be eliminated after several rounds if|in the original
graph G|there are too many light vertices dangerously close to v .

Let G be a sample point for the random graph G(n;m) . Let p(n;m) denote the
probability that a �xed vertex v will survive the deletion process. Clearly, np(n;m)
is the expected size of the k -core. It is di�cult to estimate p(n;m) rigorously via
analyzing the above algorithm. (Later we will achieve this goal by studying a less
radical algorithm that deletes at each step only the edges incident to one of the light
vertices.) Here is an admittedly loose attempt of such an analysis that suggests|
some serious gaps and leaps of faith notwithstanding| an intuitive explanation of
why the k -core appears when the number of edges passes through 
kn=2. In the
light of the algorithm, and by analogy with the giant component phenomenon, we
should expect p(n;m) to be close to �(c) := limj!1 �j(c); c := 2m=n . Here �j(c)
is the probability that the progenitor of the genealogical tree for the Poisson(c)
branching process survives a deletion process applied to the �rst j generations
of that tree. In the �rst round of the process we delete all the members of the
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j -th generation (if there are any) who have less than k � 1 children, i.e. the
descendants in the (j + 1)-th generation. (The degree of every such member is at
most k�1.) Next we delete the members of the (j�1)-th generation who have less
than k � 1 children that survived the �rst round. And so on, until we get to the
progenitor himself, who survives if at least k of his children survived the previous
rounds. To compute �j(c) , introduce also 'j(c) which is the probability that the
progenitor has at least k� 1 surviving children. Since each of the children survives
with probability 'j�1(c) , independently of the other siblings, the total number of
surviving children is Poisson(c'j�1(c)) distributed. Therefore, for j � 1

(2.1)
'j(c) = PfZ(c'j�1(c)) � k � 1g;
�j(c) = PfZ(c'j�1(c)) � kg;

where '0(c) := 1. There exists '(c) = limj!1 'j(c) since ('j(c))j�1 is clearly
decreasing, and

(2.2)
'(c) = PfZ(c'(c)) � k � 1g;
�(c) = PfZ(c'(c)) � kg:

If '(c) > 0, with a notation � = c'(c) the second equation in (2.2) becomes (1.2),
which is solvable i� c � 
k . (!) Thus, we are led to believe that limn!1 p(n;m) = 0
if c < 
k , and for c > 
k

lim
n!1

p(n;m) = �(c)

= PfZ(�) � kg = pk(�) > 0:

So any given vertex from V belongs to a k -core with probability close to pk(�) ,
whence whp the core size has to be close to npk(�) . Leaving aside the probabilistic
bounds, that is what is claimed in Theorems 1 and 2! (This heuristic derivation
is inspired by Karp{Sipser's probabilistic analysis of a greedy matching algorithm,
[16].)

We emphasize though that while the reasoning for the subcritical case c < ck
can be made rigorous, we do not see any way to do the same for the supercritical
case c > ck . Especially daunting would be to use the connection with the branching
process for a proof of the explosion phenomenon (Theorem 3).

3. The edge deletion process and its Markovian structure. Here is a
slowed down version of the deletion process that lies in the heart of our proofs. At
each step we form a list of all nonisolated light vertices of the current graph, select
a vertex i from this list at random uniformly, and delete all the edges incident to
i , thus making it isolated. The step is repeated so long as there are edges to be
deleted and the current set, H , of heavy vertices is nonempty. At the end, either
H 6= ; and so H is the vertex set of the k -core in the initial graph, or H = ; and
so there is no k -core.

The idea behind our choice of this particular deletion process is that hopefully its
work on the sample point of G(n;m) can be described by a Markov chain amenable
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to asymptotic study. For this to happen, the state space of such a chain must be
su�ciently simple, far simpler than, say, the set of all graphs on V . Here is a
natural candidate for such a space: it consists of all (k + 1)-tuples of nonnegative
integers w = (v; �); v = (v0; v1; : : : ; vk�1) , where vj is the number of light vertices
with degree j; (0 � j � k � 1), and � is the total number of edges. De�ne

v := n� v0 � v where v :=

k�1X
j=1

vj :

The number of heavy vertices is then v . So we want to describe the deletion process
by the sequence fw(� )g where w(� ) is the state after � steps. Let us denote the
corresponding sequence of graphs by fG(� )g . Now, G(0) = G(n;m) , that is G(0)
is distributed uniformly on the set of all graphs with m edges. Consequently, given
the value of the whole tuple w(0), the conditional distribution of G(0) remains
uniform. For us to be able to get back to the sequence fG(� )g , it would be decisively
important to have the same property for all � , namely that G(� ) is uniform if
conditioned on w(� ) . As we shall see shortly, the process fG(� )g does have the
desired properties.

Note. As an alternative algorithm, at each step one can pick a nonisolated light
vertex at random uniformly and delete an edge chosen at random uniformly among
all the edges incident to the vertex. In yet another algorithm, each step consists
of deletion of an edge chosen at random uniformly among all the edges incident
to the light vertices of the current graph. Interestingly, neither of these appealing
schemes produces a sequence fw(� )g that is Markov!

For a given graph G , introduce w(G) = (v(G); �(G)) where v(G) = (v0(G); : : : ;
vk�1(G)); vj (G) is the total number of vertices with degree j , and �(G) is the total

number of edges. Similarly de�ne v(G) =
Pk�1

j=1 vj(G) (the number of non-isolated

light vertices) and v(G) = n � v0(G) � v(G) . Given a (k + 1)-tuple w , de�ne
G(w) = fG : w(G) = wg , and set h(w) = jG(w)j . Let us choose the initial graph
G from G(w) at random uniformly and start the deletion process. We obtain
a random graph sequence fG(� )g de�ned for 0 � � � T , where T is the total
number of the deletion steps (stopping time): either there are no heavy vertices in
G(T ) , or, besides the isolated vertices, there are left only some heavy vertices. Let
fw(� )g = fw(G(� ))g ; clearly, denoting w(T ) = w , we have either

v = 0;

or
v > 0 but v = 0:

We shall call such w terminal . For convenience we can extend both sequences,
setting G(� ) � G(T ); w(� ) � w(T ) for all � > T .

The sequence fG(� )g is obviously Markov. Given two graphs, G and G0 , and
� such that PfG(� ) = Gg > 0 and w(G) is not terminal,

(3.1) PfG(� + 1) = G0jG(� ) = Gg =
1

v(G)
;
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v(G) being the total number of nonisolated light vertices of G , if G0 can be obtained
from G by deletion of the edges incident to one of the light vertices of G ; otherwise
the conditional probability is zero.

Proposition 1.(a) The sequence fw(� )g is also Markov: for every nonterminal
w such that Pfw(� ) = wg > 0

p(w0jw) := Pfw(� + 1) = w0jw(� ) = wg

=
1

v

h(w0)

h(w)
� v00

kY
j=0

�
v0j � �j0
uj+1

�
; (v0k := v0);(3.2)

where u = fujg1�j�k+1 is the solution of the system

(3.3)

vj =vj 0 � uj+1 + uj + �ij ; 0 � j � k � 1; (u0 := �1);

v =v0 + uk;

k+1X
j=1

uj =i := �� �0;

provided that u � 0 . If u � 0 then p(w0jw) = 0 . (In a transition G ! G0 ,
the parameters uj (1 � j � k ) and uk+1 stand for the number of edges in G
connecting the chosen light vertex with the vertices of degree j , and of degree > k ,
respectively.)

(b) For every � , conditioned on fw(�)g0���� , the random graph G(� ) is dis-
tributed uniformly, that is for every fw0(�)g0���� such that Pfw(�) = w0(�);
0 � � � �g > 0,

(3.4) PfG(� ) = Gjw(�) = w0(�); 0 � � � �g =
1

h(w0(� ))
; 8G 2 G(w):

Consequently, if a stopping time T adapted to fw(�)g��0 and w are such that
Pfw(T ) = wg > 0, then

(3.5) PfG(T ) = Gjw(T ) = wg =
1

h(w)
; 8G 2 G(w):

Proof of Proposition. Suppose that for some � � 0 the sequence fw(�)g0����
is Markov, with one-step transition probabilities de�ned by (3.2), and the relation
(3.4) holds. (This is de�nitely so for � = 0: basis of induction.)

Then for every sequence of nonterminal w0(�) = (v0(�); �0(�)) (0 � � � � + 1)
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such that Pfw(�) = w0(�); 0 � � � �g > 0 and every G0 2 G(w0(� + 1)) we have

PfG(� + 1) = G0jw(�) = w0(�); 0 � � � � )

=
X

G2G(w0(�))

PfG(� + 1) = G0; G(� ) = Gjw(�) = w0(�); 0 � � � �g

=
X

G2G(w0(�))

�
PfG(� + 1) = G0jG(� ) = G)

�PfG(� ) = Gjw(�) = w0(�); 0 � � � �g
�

=
1

h(w0(� ))

X
G2G(w0(�))

PfG(� + 1) = G0jG(� ) = Gg

=
1

h(w0(� ))v0(� )
N(G0;w0(� ));

(3.6)

where N(G0;w0(� )) is the total number of graphs G from G(w0(� )) , with one
nonisolated vertex being marked, such that G0 is obtained from G by deleting
all the edges incident to this light vertex in G . (In the derivation we have used
consecutively the Markov property of fG(�)g , the induction hypothesis, and (3.1).)

It turns out that N(G0;w0(� )) is the same for all G0 2 G(w0(� + 1)). Here is
why. Set for simplicity of notations w = w0(� ); w0 = w0(� + 1). To get from
G0 2 G(w0) back to G 2 G(w) we (1) pick one of the isolated vertices of G0 , and
(2) insert some uj+1 edges between the chosen vertex and the set of the remaining
v0j � �j0 light vertices of degree 0 � j � k � 1 , and uk+1 edges joining the vertex

to the set of v0 heavy vertices of G0 . So uj+1 vertices now have their degrees
increased from j to j + 1; (1 � j � k) .

P
1�j�k+1 uj , the degree of the chosen

vertex in G , equals ���0 , the increase of the total number of edges in the backward
transition G0 ! G . For the given (k + 1)-tuple fujg , the number of possibilities

for the second step is v00
Qk

j=0

�
v0j��j0
uj+1

�
, with v0k := v0 . As for the tuple fujg ,

it must satisfy (3.3) since the resulting graph G must be such that w(G) = w ,
and the selected vertex has to be one of its nonisolated light vertices. (Consider
1 � j � k � 1 for instance. Insertion of the new edges results in appearance of uj
vertices with new degree j , and some uj+1 vertices with old degree j have now

degree j + 1. Also, if
Pk+1

s=1 us = i then the chosen vertex now has degree i .)
Therefore

N(G0;w0(� )) = f(w0(� );w0(� + 1));

f(w;w0) := v00

kY
j=0

�
v0j � �j0
uj+1

�
; (v0k := v0):

Thus the conditional probability on the left hand side of (3.6) depends only on
w0(� ) and w0(� + 1), and consequently

Pfw(� + 1) = w0jw(�) = w0(�); 0 � � � �g = Pfw(� + 1) = w0jw(� ) = wg

=
1

v

h(w0)

h(w)
� f(w;w0):(3.7)
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So, using the induction hypothesis, fw(�)g0����+1 is Markov, with one-step tran-
sition probabilities p(w0jw); (w nonterminal), given by (3.2). Furthermore, if
fw0(�)g0����+1 is such that Pfw(�) = w0(�); 0 � � � � + 1g > 0 and w0 :=
w0(� + 1) is nonterminal, then (denoting w = w0(� )) for every G0 2 G(w0) ac-
cording to (3.6) we have:

PfG(� + 1) = G0jw(�) = w0(�); 0 � � � � + 1g

=
PfG(� + 1) = G0jw(�) = w0(�); 0 � � � �g
Pfw(� + 1) = w0jw(�) = w0(�); 0 � � � �g

=
h(w0)�1p(w0jw)

p(w0jw)

=
1

h(w0)
:

The induction proof is complete.

The proof of (3.5) is straightforward, and we omit it. �

Notes. 1. The relations (3.2), (3.4) involve h(w) = jG(w)j . In the next section,
will be able to derive an asymptotic formula of h(w) for the relevant w s that is
su�ciently sharp for our purposes.

2. Using (3.3), we can transform the formula for f(w;w0) into

(3.8)

f(w;w0) =vi

kY
j=0

v0j !

vj !
�
2
4k�1Y
j=1

�
vj � �ij
uj

�35
v!

uk!uk+1!(v � uk � uk+1)!
;

where i = ���0 =
Pk+1

s=1 us and vk = v . This formula may look more complicated,
but it will work just �ne in our estimates. Without the factor

Q
j v

0
j ! , the last

product arises naturally if one wants to compute h(w0)f(w;w0) (the number of
transitions G ! G0 (G 2 G(w); G0 2 G(w0)) , that is) in a forward fashion, via
counting ways to delete edges in G .

4. Asymptotics for h(w) and p(w0jw) . Let d = (d1; : : : ; dn) be a sequence

of nonnegative integers with even sum, and ĥ(d) be the total number of labelled
graphs with degree sequence d . Then for w = (v; �) we have obviously

(4.1) h(w) =
n!Qk

j=0 vj !

X
d2D

ĥ(d);

where vk = n�Pk�1
j=0 vj = n� v0� v , and D = D(w) is the set of all nonnegative
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n-tuples d such that

(4.2)

d1 = � � � = dv0 = 0;

dv0+1 = � � � = dv0+v1 = 1;

:::::::::::::::::::::::::::::::;

dPk�2
j=0 vj+1 = � � � = dPk�1

j=0 vj
= k � 1;

dPk�1
j=0

vj+1; : : : ; dn � k;

nX
j=1

dj = 2�:

For D to be nonempty, it is necessary that

(4.3)

t := 2�� s � kv;

s :=
k�1X
j=1

jvj :

(If w = w(G) then s and t are the total degree of light vertices and the total

degree of heavy vertices of G , respectively.) No tractable precise formula for ĥ(d)
is known, but it turns out to be possible to estimate the sum in (4.1) sharply for
\likely" w s using the following asymptotic formula due to McKay and Wormald
[23].

For r > 0, de�ne Mr =
P

1�j�n[dj ]r where [x]r = x(x � 1) � � � (x � r + 1),

(in particular, M1 = 2� =
P

j dj ), and dmax = max1�j�n dj . If M1 ! 1 and

dmax = o(M
1=3
1 ) as n!1 then

ĥ(d) =
(M1 � 1)!!Qn

j=1 dj !

� exp[� M2

2M1
� M2

2

4M2
1

� M2
2M3

2M4
1

+
M4

2

4M5
1

+
M2

3

6M3
1

+ O(
d3max

M1
)];(4.4)

where
(M1 � 1)!! = 1 � 3 � � � (M1 � 1):

In the case of bounded degrees, dmax = O(1), the relation yields a formula

(4.5) ĥ(d) = (1 + o(1))
(M1 � 1)!!Q

j dj !
exp(� M2

2M1
� M2

2

4M2
1

)

obtained earlier by Bender and Can�eld [1]. Notice that

ĥ(d) � (M1 � 1)!!Qn
j=1 dj !

always. So the exponential factor in (4.4) is at most one. (In fact, Bollob�as [2]
rederived (4.5) by interpreting that factor as the probability that a certain random
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pairing on the set f1; : : : ;M1g is graph-induced. McKay and Wormald also used
the probabilistic approach, which they considerably strengthened by using switching
operations on those pairings.)

Let us show |using (4.4)|that for ws likely to appear in the deletion process
the ds that dominate in the sum (4.1) are such that (4.4) reduces to (4.5), with
o(1) = O(n�1+�);8� 2 (0; 1).

Given w such that h(w) > 0, introduce G(w) the random graph distributed
uniformly on G(w) . For a �xed b 2 (0; 1=3) de�ne

(4.6) Hn = Hn(b) := fG : dmax(G) � nb or
X

fheavy jg

d4j (G) � 2nE(Z4(c))g;

(c comes from m = cn=2), and consider

g(w) := PfG(w) 2 Hng:

Suppose w0 is such that p(w0jw) > 0. Then h(w0) > 0, too. Deletion of the edges
incident to a randomly chosen light vertex of the random graph G(w) produces
a random subgraph G0 . We know that Pfw(G0) = w0g = p(w0jw) > 0, and

so, conditioned on this event, G0
D� G(w0) . So, there is a probability space that

accomodates both G(w) and G(w0) in such a way that G(w0) � G(w) . Since the
property Hn is monotone increasing, we therefore obtain:

(4.7) g(w) � g(w0); if p(w0jw) > 0:

This means that the random sequence fg(w(� ))g is (almost surely) nondecreasing.

Clearly,

1

n
Pfg(w(0)) � 1

n
g �

X
w

g(w)Pfw(0) = wg

=
X
w

PfG(w) 2 HngPfw(G(n;m)) = wg

=PfG(n;m) 2 Hng:

Therefore

Pfg(w(0)) � 1

n
g � nPfG(n;m) 2 Hng
� n(P1 + P2);(4.8)

where
P1 = Pfdmax(G(n;m)) � nbg;

P2 = P

8<
:

X
fheavy jg

d4j (G(n;m)) � 2nE(Z4(c))

9=
; :

To estimate the last probabilities, we use|in sequence|two conditioning tech-
niques.
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First of all, the graph process fG(n; �)g0���m can be viewed as the multigraph
process fMG(n; �)g0���m conditioned on the event An = fMG(n;m)has no
loops and no multiple edgesg . (At each stage of the multigraph process, an edge

is inserted between two vertices, i and j , drawn uniformly and independently of
each other, and of the previous edges; if i = j the multigraph gets a loop at
i .) Therefore, using PfU jV g � PfUg=PfV g , and denoting by P 0i the analogous
probabilities for MG(n;m) , we can write

(4.9) Pi � P 0i
PfAng = O(P 0i );

since

lim
n!1

PfAng = lim
n!1

�(n2)
m

�
m!2m

n2m
= exp(�c=2� c2=4) > 0:

(This reasoning repeats, in essence, an argument used originally by Chv�atal [8] in a
similar context. As a proof tool, the random multigraph had been used implicitly
by Bollob�as [2], and explicitly by Bollob�as and Frieze [5].)

Secondly, d(MG(n;m)) := (d1(MG(n;m)); : : : ; dn(G(n;M))) is clearly the ran-
dom sequence of occupancy numbers in the classic allocation scheme \2m distin-
guishable balls into n boxes". So, using the Poissonization device, we have

d(MG(n;m))
D� (Z1; : : : ; Zn);

conditioned on Sn :=
Pn

j=1Zj = 2m , where Z1; : : : ; Zn are independent copies

of Z(c) , Poisson(c) distributed random variable. Since Sn is Poisson(nc) , that is
Z(2m) ,

PfSn = 2mg = PfZ(2m) = 2mg
= e�2m(2m)2m=(2m)! � const m1=2:

Therefore

(4.10) P 0i = O(n1=2P 00i );

where

P 001 = Pf max
1�j�n

Zj � nbg;

P 002 = Pf
nX
j=1

Z4
j � 2nE(Z4(c))g:

By Cherno�'s inequality,

(4.11) P 002 = O(e��(c)n); �(c) > 0;
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and

P 001 � nPfZ(c) � nbg
= n

X
r�nb

e�ccr=r!

= O(expf�bnb logn=2g):(4.12)

Combining the estimates (4.8)-(4.12), we obtain then

(4.13) Pfg(w(0)) � 1

n
g = O(e�n

b

):

Thus, see (4.6), (4.7), with probability � 1�O(e�n
b

) , the w s encountered in the
deletion process are such that

(4.14) g(w) � 1

n
:

In other words,

h(w) = (1 + O(
1

n
))h1(w);

h1(w) : = jfG 2 G(w) : d(G) 2 D1gj:
Here the set D1 � D is speci�ed by the additional restrictions

(4.15)

dmax � nb;X
fheavy jg

d4j � dn; d := 2E(Z4(c)):

Hence we may concentrate on the asymptotic behavior of h1(w) . Now, from the
McKay-Wormald formula (4.4) and (4.15) it follows that

(4.16)

h1(w) = (1 + O(n�1+3b))
n!Qk

j=0 vj !

X
d2D1

ĥ1(d);

ĥ1(d) :=
(M1 � 1)!!Qn

j=1 dj!
exp(��=2� �2=4);

� :=
M2

M1
;

if|in addition to requiring g(w) � n�1|we restrict ourselves to ws such that

M1(= 2�(w)) � an:

Here a > 0 is �xed, and arbitrarily small. We can a�ord this restriction since in our
subsequent proofs we will not be concerned about the moments t when �(t) = o(n) .
In fact, we go even further and concentrate on ws such that

(4.17)
v � an;

t � (k + a)v:
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(compare with (4.3)). The double-conditioning technique quickly reveals that the
starting graph G(n;m) meets the conditions (4.17) with exponentially high prob-
ability, if

(4.18)

a < PfZ(c) � kg;X
j�k

jPfZ(c) = jg � (k + a)PfZ(c) � kg:

To obtain a sharp estimate of the sum in (4.16), we use a version of a close deriva-
tion done by Pittel and Woyczynski [28]. A key idea is that|just as G(n;m)|the
degrees of heavy vertices of the random graph G(w) must jointly behave like in-
dependent Poissons subject to the total sum condition, each bounded below by k ,
(c.f. Karp and Sipser [16]).

Introduce a family of v(:= n�v0�
P

1�j�k�1 vj) independent random variables

Y1; : : : Yv , each being distributed as Poisson(Z(z)) , conditioned on fZ(z) � kg .
Explicitly,

(4.19)
PfYj = rg =

PfZ(z) = rg
pk(z)

; r � k;

pk(z) := PfZ(z) � kg:
The parameter z > 0 is chosen such that

(4.20) vE(Y ) = t:

Such z = z(w) exists and bounded away from both 0 and 1 , uniformly for all w s
satisfying (4.17). (z(w) is unique since E(Y1) = ze0k(z)=ek(z) is strictly increasing;
see (5.10).) Using Y1; : : : ; Yv , we can write (see (4.16)):

X
d2D1

ĥ1(d) =
(M1 � 1)!!Qk�1
j=1 (j!)vj

(ek(z))v

zt
(4.21)

� E[exp(��=2� �2=4);
X
`

Y` = t;Y 2 �];

ek(z) :=
X
r�k

zr=r!;

where

� =

Pk�1
j=1 j(j � 1)vj +

Pv
`=1 Y`(Y` � 1)Pk�1

j=1 jvj +
Pv

`=1 Y`
;

� := fy = (y1; : : : ; yv) : max
`

y` � nb;
X
`

y4` � dng;

and we use the notation E[U ;A] = E[U1A] . It su�ces to estimate sharply E[exp(��=2�
�2=4);

P
` Y` = t] , since (cf. (4.11),

(4.12))

(4.22) PfY =2 �g = O(e�n
b

):
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Furthermore, the distribution of � is sharply concentrated around

(4.23) � :=

Pk�1
j=1 j(j � 1)vj + vE(Y1(Y1 � 1))Pk�1

j=1 jvj + vE(Y1)
:

Indeed, using a large deviation theorem for the sums of i.i.d. random variables,
due to Cram�er (see Feller [11], Ch. XVI, for instance), we have: uniformly for w
satisfying (4.17),

Pfj
vX

`=1

Y` � vE(Y1)j � logn
p
ng = O[exp(�
 log2 n)];

Pfj
vX

`=1

Y`(Y` � 1)� vE(Y1(Y1 � 1))j � logn
p
ng = O[exp(�
 log2 n)];

for some 
 = 
(a) > 0. Thus

�� � = O(
lognp
n

)

with probability � 1� exp(�
 log2 n) . Consequently (see also (4.23)) the expecta-
tion in (4.21) equals

[1 + O(
lognp
n

)] exp(��=2� �
2
=4)

�Pf
vX

`=1

Y` = tg+ O[exp(�
 log2 n)]:(4.24)

Here, by (4.20) and a local limit theorem for the sum of lattice-type i.i.d. random
variables ([11], Ch. XVI)

(4.25) Pf
vX

`=1

Y` = tg =
1p

v � 2�Var(Y1)
[1 + O(

1

v
)];

uniformly for ws subject to (4.17). (To be sure, the quoted limit theorem is proved
under the only condition that Var(Y1) <1 , with the remainder term being simply
o(1). However, an easy re�nement of the argument establishes (4.25) under a
stronger condition E(Y 4

1 ) < 1 . This condition obviously holds in our case, and
moreover|under (4.17)| E(Y 4

1 ) � 
2(a) <1; 0 < 
3(a) � Var(Y1) � 
4(a) <1 ,
which leads to the uniformity of (4.25) for those ws.)

Putting together the relations (4.16), (4.21), (4.24) and (4.25) we obtain the
following result.
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Proposition 2. Uniformly for w such that h(w) > 0 and the conditions
(4.14),(4.17) are met,

h(w) = [1 + O(n�1+3b + n�1=2 logn)] � n!(M1 � 1)!!

v!
Qk�1

j=1 (j!)vjvj !

� (ek(z))v

zt
exp(��=2� �

2
=4)

� 1p
v2�Var(Y1)

;(4.26)

here Y1; z; pk(z); and � are de�ned by (4.19),(4.20) and (4.23).

Corollary 1. Suppose that w is nonterminal, and h(w) > 0 . If w satis�es the
conditions (4.14), (4.17) and w0 is such that u = u(w;w0) � 0 then

(4.27)
p(w0jw) =[1 +O(n�1+3b + n�1=2 logn)] �

2
41 + O

0
@k�1X

j=1

(uj � 1)+

vj + 1

1
A
3
5

� q(w0jw);

where

(4.28) q(w0jw) :=

( vi
v
PfMultin (i;p) = ug; if vi > 0;

0; if vi = 0:

Here u = fujg1�j�k+1 is the solution of (3.3). Multin (i;p) stands for the multi-
nomially distributed random vector X = fX1; : : : ;Xk+1g , with parameter (number
of trials) equal i = � � �0 , and the probability vector p = p(w) = fp1; : : : ; pk+1g
of k + 1 possible outcomes in each trial given by

(4.29)

pj =
j(vj � �ij )

2�� i
; 1 � j � k � 1;

pk =
zkv

(2�� i)(k � 1)!ek(z)
;

pk+1 =
zv

2�� i
;

z is the root of the equation(4.20).

Note. According to (4.19), (4.20),

vzk

(k � 1)!ek(z)
+ vz =vz

2
4 zk�1

(k�1)! + ek(z)

ek(z)

3
5

=v
ze0k(z)

ek(z)
= vE(Y1) = t;
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and
k�1X
i=1

ivi + t = s + t = 2�: (!)

Therefore
k+1X
j=1

pj =
1

2�� i
(s� i + t) = 1:

Also, for vi > 0, we have pj � 0 (1 � j � k + 1); so fpjg is indeed a probability
distribution.

Proof of Corollary 1. Let Y 01 ; z
0; �

0
be for w0 what Y; z; � are for w . Since

kw � w0k = O(1) as n ! 1 , uniformly for all w;w0 related via (3.3), it follows
from (4.17) that

jz0 � zj = O(
1

n
);

hence

Var(Y 01) = [1 +O(
1

n
)]Var(Y1);

�
0

= [1 +O(
1

n
)]�:

Next, introduce

fvt(y) = v log ek(y) � t log y; y > 0;

so that
(ek(y))v

yt
= exp[fvt(y)]:

By (4.19) and (4.20),

d

dy
fvt(y)

����
y=z

= v
e0k(z)

ek(z)
� t

z

=
1

z

�
v
ze0k(z)

ek(z)
� t

�

=
1

z
[vE(Y1)� t] = 0;

so that z is a stationary point of fvt(y) . (It can be easily proved that fvt(z) =
minffvt(y) : y > 0g .) Consequently,

fvt(z
0)� fvt(z) =

1

2
fvt(~z)(z0 � z)2

(~z is between z0 and z)

= O(n
1

n2
) = O(

1

n
):
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Therefore

fv0t0(z
0) � fvt(z) = fvt(z

0)� fvt(z)

+ (v0 � v) log ek(z) � (t� t0) log z

+ O

�����log
ek(z0)

ek(z)

����+
����log

z0

z

����
�

= (v0 � v) log ek(z) � (t � t0) log z + O(
1

n
):

Here (see (3.3))
v � v0 = uk; t� t0 = kuk + uk+1:

(About t�t0 : in the transition w ! w0 , the total degree of heavy vertices decreases
by kuk due to uk vertices of degree k becoming light, of degree k�1; an additional
decrease by uk+1 is due to some uk+1 vertices of degree > k that remain heavy,
but each now of degree smaller by one than before.) Thus

(4.30)

(ek(z0))v
0

(z0)t0
� (ek(z))v

zt

= [1 +O(
1

n
)] �
�

zk

ek(z)

�uk
zuk+1 :

Further, again using (3.2)

(4.31)

v!
Qk�1

j=0 (j!)vjvj !

v0!
Qk�1

j=0 (j!)v
0

jv0j !
=

0
@ kY

j=0

vj !

v0j !

1
A �

0
@k�1Y

j=0

(j!)�uj+1+uj+�ij

1
A

(vk := v; v0k := v0)

= i!

0
@ kY

j=0

vj !

v0j !

1
A �

0
@k�1Y

j=1

juj

1
A �

�
1

(k � 1)!

�uk
;

(u0 = �1, as we recall). Finally (see (4.17)),

(4.32)
(2�0 � 1)!!

(2�� 1)!!
= [1 + O(n�1)](2�)�i = [1 + O(n�1)](2� � i)�i:

Combining Propositions 1,2, the relations (3.8) and (4.30)-(4.32), and using (4.17),
we arrive at

(4.33)

p(w0jw) =
h(w0)f(w;w0)

vh(w)

=[1 + O(n�1+3b + n�1=2 log n)] � ~p(w0jw);

~p(w0jw) :=
vii!

v(2�)i

k�1Y
j=1

�
vj � �ij
uj

�

� 1

uk!

�
zkv

(k � 1)!ek(z)

�uk
� 1

uk+1!
(zv)uk+1:
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Here, since uj � k � 1,�
vj � �ij
uj

�
=

(vj � �ij)uj

uj !

�
1 +O

�
(uj � 1)+

vj + 1

��
:

Therefore (see the notations (4.29)) the relations (4.27), (4.28) follow. �

Thus q(w0jw) can be viewed as an one-step transition probability of a Markov
chain that evolves on the set of ws de�ned in (4.14),(4.17), till the moment the
process exits this set.

5. Approximate dynamics of fE[w(� )]g . Let us look carefully at this
limiting Markov chain. According to (3.3) and (4.26), (4.27), for the transition
probabilities q(w0jw) and 0 � j � k � 1 we have:

(5.1)

Eq[vj(� + 1)jw(� ) = w] =
X
w0

v0jq(w
0jw)

=
X

1�i�k�1

vi
v

E(vj + Xj+1 �Xj � �ij);

(X0 := �1). Since E(Xj ) = ipj ; 1 � j � k + 1, we obtain then

(5.2) Eq[vj(� + 1)jw(� ) = w] = vj + fj (w(� )); 0 � j � k � 1;

where

(5.3) fj(w) =

8>>>>>><
>>>>>>:

1 +
v1s

2�v
; if j = 0;

(j + 1)vj+1s

2�v
� jvjs

2�v
� vj

v
; if 1 � j � k � 2;

zkvs

2�v(k � 1)!ek(z)
� (k � 1)vk�1s

2�v
� vk�1

v
; if j = k � 1:

(Recall that s :=
P

1�i�k�1 ivi .)Analogously,

(5.4)

Eq[�(� + 1)jw(� ) = w] =
X
w0

�0q(w0jw)

= ��
X

1�i�k�1

i
vi
v

= � s

v
:

As long as w(� ) meets the condition (4.17), the random variables fj(w(� ));
�s(� )=v(� ) are all only of order O(1). This makes us expect|though does not
actually prove{ that with high probability the sample sequence fw(� )g must be
close to the solution ~w(� ) = (~v(� ); ~�(� )) of

(5.5)

dvj(� )

d�
= fj (w(� ));

d�(� )

d�
= � s(� )

v(� )
;
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subject to the (random) initial conditions

(5.6) ~vj(0) = vj(0); (0 � j � k � 1); ~�(0) = �(0):

At any rate, it is clear that the more we know about this system of ordinary
di�erential equations, the better are our chances (no pun intended) for probabilistic
analysis of the random sequence fw(� )g itself.

As it turns out, that system has two remarkably simple integrals; namely

z2

�
� const;(5.7)

v

pk(z)
� const:(5.8)

(We recall that ze0kz=ek(z) = t=v; t = 2� � s; pk(z) = e�zek(z) = PfZ(z) � kg .)
Especially surprising is (5.7) since it connects �(� ) the current number of edges and
z(� ) the \hidden"parameter chosen so the Poisson(Z(z)) conditioned on fZ(z) �
kg has the expected value equal t(� )=v(� ) the average degree of a heavy vertex
in the current graph. Notice that (5.7) has the same form for all k . We should
emphasize though that these are merely the integrals of the approximate equations
for means E[w(� )] .

Let us prove (5.7). We observe �rst that (see (4.18)) for every x

E(xY1 ) =
ek(xz)

ek(z)
;

so that di�erentiating both sides of this identity twice at x = 1 we get

(5.9) E[Y1(Y1 � 1)] =
z2e00k(z)

ek(z)
;

in addition to E(Y1) = ze0k(z)=ek(z) . Therefore

(5.10)
d

dz

ze0k(z)

ek(z)
=

1

z
[E(Y1(Y1 � 1)) + E(Y1) � E2(Y1)] =

1

z
Var(Y1) > 0:
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On the other hand, using the equations (5.5) and v = n� v0 � v , we compute

d

d�

ze0k(z)

ek(z)
= (

t

v
)0� = (

2�� s

v
)0�

=
1

v
(2�0 � s0)� v0

v2
(2� � s)

=
1

v

��2s

v
�

k�2X
j=1

j

�
(j + 1)vj+1s

2�v
� jvjs

2�v
� vj

v

�

� (k � 1)

�
zkvs

2�v(k � 1)!ek(z)
� (k � 1)vk�1s

2�v
� vk�1

v

��
� 2�� s

v2

�
� zkvs

2�v(k � 1)!ek(z)

�

=
1

v

��2s

v
+

k�1X
j=1

�
jvjs

2�v
+
jvj
v

�
� (k � 1)zkvs

2�v(k � 1)!ek(z)

�

+
s

2�vv
(2�� s)

zk

(k � 1)!ek(z)

=
1

v

�
� s

v
+
s

v
� s

2�
� (k � 1)zkvs

2�v(k � 1)!ek(z)

�

+
s

2�vv
(2�� s)

zk

(k � 1)!ek(z)

(using
2�� s

v
=

ze0k(z)

ek(z)
)

=
s

2�v

�
�ze0k(z)

ek(z)
� z2(zk�2=(k � 2)!)

ek(z)
+
z2e0k(z)(zk�1=(k � 1)!)

e2k(z)

�

=
s

2�v

"
�ze0k(z)

ek(z)
� z2e00k
ek(z)

+

�
ze0k(z)

ek(z)

�2
#
:

So, invoking (5.9) and (5.10),

d

d�

ze0k(z)

ek(z)
= � sz

2�v

d

dz

ze0k(z)

ek(z)
;

that is

dz

d�
= � sz

2�v

=
z

2�

d�

d�
;(5.11)

(see (5.5)). Therefore
dz

d�
=

z

2�
;
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and (5.7) follows.

Next,

dv

d�
= �

k�1X
j=0

dvj (� )

d�

= � zkvs

2�v(k � 1)!ek(z)
;

and using (5.11), we have

dv

dz
= v

zk�1=(k � 1)!

ek(z)

= v
dpk(z)=dz

pk(z)
; (pk(z) = e�zek(z)):

This yields (5.8).

Let us also compute Eq[s(� + 1)jw(� ) = w] . First observe that

[s(� + 1)� s(� )] + [t(� + 1)� t(� )] = 2�(� + 1)� 2�(� ) = �2i;

the last equality holding with (conditional) probability vi=v , and

t(� + 1)� t(� ) = �kXk �Xk+1:

So (see (4.28)),

Eq[s(� + 1)jw(� ) = w] =s � 2

k�1X
i=1

ivi
v

+ k

 
k�1X
i=1

ivi
v

zkv

(2�� i)(k � 1)!ek(z)

!
+

 
k�1X
i=1

ivi
v

zv

2�� i

!

=s � 2s

v
+ [1 +O(n�1)]

svz

2�v

�
k(zk�1=(k � 1)!)

ek(z)

�

+ [1 + O(n�1)]
svz

2�v
:

Here

k(zk�1=(k � 1)!)

ek(z)
+ 1 =

k(zk�1=(k � 1)!)

ek(z)
+
e0k(z)

ek(z)
� zk�1=(k � 1)!

ek(z)

=
zk�1=(k � 2)!

ek(z)
+
e0k(z)

ek(z)

(
ze0k(z)

ek(z)
=

2�� s

v
)

=
1

e�zek(z)

�
e�zzk�1

(k � 2)!
� e�ze0k(z)

�
+ 2

2�� s

zv

=� �2k(z)

pk(z)

�
z

�k(z)

�0
+ 2

2�� s

zv
:



24 B. PITTEL, J. SPENCER, N. WORMALD

(Recall that pk(z) := PfZ(z) � kg = e�zek(z); �k(z) := PfZ(z) � k � 1g =
e�ze0k(z) .) Combining the two relations, and using z�k(z)=pk(z) = ze0k(z)=ek(z) =
t=v , we write

(5.12) Eq[s(� + 1)jw(� ) = w] = s� s2

�v
� st�k(z)

2�v

�
z

�k(z)

�0
+O(n�1);

uniformly for w in question. Like (5.2)-(5.4), the relation (5.12) motivates us to
consider a di�erential equation

(5.13)
ds

d�
= � s2

�v
� st�k(z)

2�v

�
z

�k(z)

�0
:

The equations (5.5), (5.13) will play a critical role in the next (last) section. It is
easy to determine s (equivalently, t) as a function of z , without having to integrate
the equation (5.13). Indeed,

t

2�

z

�k(z)
=
z2

2�

t

pk(z)

pk(z)

z�k(z)

=
z2

2�

t

pk(z)

v

t

=
z2

2�

v

pk(z)
� const;

see (5.7), (5.8). Below we will be using the notations

(5.14) J1(w) =
nz2

�
; J2(w) =

v

npk(z)
; J3(w) =

t

2�

z

�k(z)
:

6. Proofs of the main results.

Given a > 0, de�ne the set W = W(a) by

(6.1) W(a) :=

�
w : h(w) > 0; g(w) � 1

n
; v � an; t � (k + a)v

�
;

and the stopping (exit) time T = T (a) by

(6.2) T (a) =

�
minf� < T : w(� ) =2W(a)g; if such � exist;

T; otherwise:

(T is the total number of deletion steps.)

Lemma 1. Conditioned on fw(0) 2W(a)g \ f�(w(0)) = cn=2g , for 0 < � <
minf1=2; 1� 3bg;

(6.3) P

�
max
��T

����Ji(w(� ))

Ji(w(0))
� 1

���� > x

�
= O[e�xn

�

]; i = 1; 2; 3;
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uniformly for x > 0 .

Proof of Lemma 1. Consider i = 1, for instance. Introduce the function

Q(w) := expfn�[J1(w) � J1(w(0))]g:
Let us evaluate

� :=
X
w0

Q(w0)p(w0jw); w 2W = W(a):

By the de�nition of W(a) , and using (4.7), we see that|for n large enough|
w0 2 W(a=2) whenever w 2 W(a) and p(w0jw) > 0. For every point from the
line segment connecting w and w0 , the components of grad J1 are of order n�1 ,
while the second order derivatives are of order n�2 . Therefore

J1(w
0) = J1(w) + (w0 �w)�grad J1(w) + O(n�2):

(� stands for transposition operation.) So, expanding the exponential function,

Q(w0) = Q(w)
h
1 + n�(w0 �w)� grad J1(w) +O(n2(��1))

i
;

and consequently

(6.4) � = Q(w)
n

1 + n�E[w0 �wjw]�grad J1(w) + O(n2(��1))
o
:

Recall now that J1( ~w(� )) remains constant along the trajectory ~w(� ) of the dif-
ferential equations system (5.5). Geometrically, this means that

Eq[w
0 �w jw] ? grad J1(w);

so that

E[w0 �w jw]�grad J1(w) =
X
w0

(w0 �w)�grad J1(w)

� [p(w0jw)� q(w0jw)] :(6.5)

By Corollary 1,

(6.6)

jp(w0jw)� q(w0jw)j =O(n�1+3b + n�1=2 logn)

+O

2
4q(w0jw)

k�1X
j=1

(uj � 1)+

vj + 1

3
5 :

Now (see (4.28), (4.29)), for 1 � j � k � 1,

X
w0

q(w0jw)
(uj � 1)+

vj + 1
=

k�1X
i=1

vi
v
E

�
(Xj � 1)+

vj + 1

�

=O

�
vj
�2

�
= O(n�1):
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So the estimate (6.6) becomes

jp(w0jw)� q(w0jw)j = O(n�1+3b + n�1=2 logn):

Since kgrad J1(w)k = O(n�1) , we obtain then from (6.5)

(6.7) E[w0 �wjw]�grad J1(w) = O(n�2+3b + n�3=2 log n):

Thus (see (6.4))

(6.8)
� =Q(w)[1 +O(n�! logn)];

! := minf2� 3b� �; 3=2� �; 2(1� �)g > 1;

since � < min(1=2; 1� 3b) .

Probabilistically, the relation (6.8) means the following. Introduce the random
sequence

fR(� )g := fQ(w(� ))g:
Then, for w(� ) 2W ,

(6.9) E[R(� + 1)jw(� )] = [1 + O(n�!)]R(� );

that is fR(� )g is almost a martingale sequence, as long as w(� � 1) 2W .

Since the total number of steps is at most n , it follows then from (6.9), that the
sequence

(6.10) f ~R(� )g := f(1 + n�! log2 n)��R(� )g

is a supermartingale, as long as w(��1) 2W . Fix x > 0 and introduce a stopping
time

T 0 =

�
minf� � T : J1(w(� )) � J1(w(0)) > xg; if such � exist;

T + 1; otherwise:

Now, applying the Optional Sampling Theorem (Durrett [9]) to the supermartingale

f ~R(� )g and the stopping time T ^ T 0 , and going back to fR(� )g , we get

E[Q(w(T ^ T 0))] �(1 + n�! log2 n)n �E[Q(w(0))]

=(1 + n�! log2 n)n = O(1); as n!1:

Since obviously
E[Q(w(T ^ T 0))] � exn

� �P fT 0 � T g;
we have then

(6.11)
P fmax

��T
[J1(w(� )) � J1(w(0))] > xg =PfT 0 � T g

=O(e�xn
�

);
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uniformly for x > 0. Analogously,

(6.12) P fmin
��T

[J1(w(� )) � J1(w(0))] < �xg = O(e�xn
�

):

The estimate (6.3) follows immediately from (6.11) and (6.12), since 0 < c1(a) �
J1(w) � c2(a) <1; 8w 2W = W (a): �

Corollary 2. For 0 < � < � < min f1=2; 1� 3bg ,

(6.13) P fAjw(0) 2W(a); �(0) = cn=2g = O(e�n
���

);

where

(6.14) A :=

8<
:max

1�i�3
��T

����Ji(w(� ))

Ji(w(0))
� 1

���� > n��

9=
; :

Proof of Theorem 1. Given � > 0, let Pn denote the probability that the
deletion algorithm applied to the random graph G(n;m = cn=2) delivers a k -core
of size � �n . We have to show that Pn is subexponentially small if

(6.15) c � 
k � n��; � 2 (0; 1=2):

Using the double-conditioning device, we proved (see (4.13)) that

(6.16) PfBg � 1�O(e�n
b

); B := fg(w(G(n;m))) � 1=ng :

(Recall that g(w) := PfG(w) 2 Hng , and Hn = Hn(b) is a subset of graphs
G such that, in particular, dmax(G) � nb ; here b 2 (0; 1=3) is �xed.) The same
method plus Cram�er's large deviation theorem for the sums of i.i.d. random vari-
ables can be used to show that, for every b1 < 1=2,

(6.17) PfCg � 1�O(e�n
b1

);

where

(6.18)

C := C1 \ C2;

C1 :=
n
jv(G(n;m)) � npk(c)j � n

1+b1
2

o
;

C2 :=
n
jt(G(n;m)) � nc�k(c)j � n

1+b1
2

o
:

Notice right now that on the event C

(6.19) z(0) = z(G(n;m)) = c+ O(n�(1�b1)=2)
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(see (4.20)). Clearly, w(G(n;m)) 2W(a) on the event B \ C, if

a < min

�
pk(c);

c�k(c)

pk(c)
� k

�
:

Choose a even smaller, so that a < � .

Suppose G(n;m) has a k -core of size � �n . If the event A \B \C takes place
as well, then T = T , provided that a is chosen su�ciently small. To demonstrate
this, suppose w(� ) =2W for some � < T . Since h(w(� )) > 0; g(w(� )) � 1=n , and
v(� ) � v(T ) � �n > an , this can happen only if t(� ) < (k + a)v(� ) . But then

z(� )e0k(z(� ))

ek(z(� ))
=

t(� )

v(� )
< k + a;

and consequently
z(� ) � �a;

here (and below) � > 0 (with or without various attributes) stands for an absolute
positive constant. Then, using the de�nition of A in (6.14), and J2(�) in (5.14),
we conclude

v(� ) �2v(0)
pk(z(� ))

pk(z(0))

=
h
2n+ O(n(1+b

0)=2)
i e�z(�)zk(� )

k!
[1 + O(z(� ))]

��1nak;

(see (6.19)). If a < � is chosen su�ciently small (which we may assume) then the
last inequality is incompatible with v(� ) � �n . So indeed, T = T .

Consequently, w(T �1) 2W(a) , so that v(T �1); t(T �1) are of order n , while
2�(T ) = t(T ) . Since s(T ) = 0, we have

2�(T � 1) = 2�(T ) +O(1) = t(T ) + O(1) = t(T � 1) +O(1):

So, by the de�nition of J3(�) in (5.14), we obtain

J3(w(T � 1)) =[1 + O(n�1)]
z(T � 1)

�k(z(T � 1))

�
k � [1 + O(n�1)]:(6.20)

(Recall that 
k := min z=�k(z) .) By the de�nition of the events C1 and C2 in
(6.15), and (6.16), we also have

(6.21) J3(w(0)) = c �
h
1 + O(n�(1�b1)=2)

i
:

Putting (6.20) and (6.21) together, and using the de�nition of the event A , (or
rather its complement A ), we arrive at


k � c +O(n�� + n�(1�b1)=2):
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However, in view of (6.15), this is impossible if we choose � and b1 such that

(6.22) � < � and � <
1� b1

2
:

Therefore, for this choice of the parameters � and b1 the events A \ B \ C
and fG(n;m) has a core of size � �ng are disjoint! Hence (see (6.13), (6.16) and
(6.17))

(6.23)

Pn � PfA \ B \ Cg �PfB \ Cg+PfA \ (B \ C)g
�PfBg+PfCg+PfAjB \ Cg
=O(e�n

�

);

� := minf�� �; b1; bg:

Besides the restrictions (6.22), the parameters here are also subject to the con-
straints

(6.24)
� < � < minf1=2; 1� 3bg;
b < 1=3; b1 < 1=2:

By taking b; b1; � su�ciently close from below to 1=6; minf1=2; 1 � 2�g , and
minf1=2; 1�3bg respectively, and � from above to � , we can make the parameter
� in (6.23) arbitrarily close (from below) to minf1=2� �; 1=6g .

To obtain the bound O(n�(k�2)(k+1)=2) for the probability that G(n;m) has
a k -core of any size, it is enough now to handle the sizes � �n , where � can be
selected arbitrarily small. The corresponding probability is bounded above by the
expected number of k -cores of those small sizes, which turns out to be of the above
order, if � is appropriately small. (The dominant contribution to the expectation
comes from possible k -cores of the minimum size, k + 1 that is.) We omit the
details. �

Proof of Theorem 2. Now we have to consider the case

(6.25) c � 
k + n��; � 2 (0; 1=2):

Let the parameters �; �; b and b1 satisfy the conditions (6.22) and (6.24). Then,
by (6.25), on the event C (see (6.18).(6.19))

z(0) � 
k + n�� +O(n�(1�b1)=2)

� 
k +
1

2
n��

� �k +
1

2
n��;(6.26)
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because 
k = �k=�k(�k) > �k . Since c > 
k , the minimum value of �=�k(�) , the
equation

�

�k(�)
= c

has two roots. Let �k(c) denote the larger root. How far is �k(c) from �k ? Since

(6.27)

�
z

�k(z)

�0�����
z=�k

= 0;

�
z

�k(z)

�00�����
z=�k

> 0;

using (6.25) we obtain

(6.28) �k(c)� �k � �n��=2:

We want to show that, with high probability, t(T ) = 2�(T ) and z(T ) is close to
�k(c) , so that v(T ) (the size of the k - core) is about npk(�k(c)) . To this end, �x
� > 0 and introduce ẑ by

(6.29)
ẑ =�k(c) + �n��;

� :=min f�=2; (1� b1)=4g:

Notice right now that

(6.30)

ẑ

�k(ẑ)
=c +

�
�

�k(�)

�0�����
�=�k(c)

�n�� + O(n�2�)

=c + O(n��); (� := �=2 + �);

ẑ

�k(ẑ)
�c +

"�
�

�k(�)

�0�����
�=�k

+ �1n
��=2

#
�n�� +O(n�2�)

�c + �2�n
��;

since �=2 < � (see (6.22)).

Next, set in (6.1), (6.2)

(6.31) a = min

�
1

1 + �n��
pk(ẑ);

1

1 + n�1=2
ẑ�k(ẑ)

pk(ẑ)
� k

�
:

We claim that if n is large enough, then|with high probability |there exists
�̂ < T (a) such that

(6.32) z(�̂ � 1) > ẑ; z(�̂ ) � ẑ:

To prove this, let us suppose the event B \ C happens. Then , since c > ẑ ,
see (6.29)), w(G(n;m)) 2 W(a) , and (Corollary 2) the event A takes place with

conditional probability � 1�O(e�n
���

) . Assuming simultaneous occurrence of all
three events, A; B and C , consider two possible alternatives.
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1. T (a) = T . In this case, v(T ) � an , so that the algorithm delivers a giant
k -core. Then 2�(T ) = t(T ) and

z(T )

�k(z(T ))
=

t(T )

2�(T )

z(T )

�k(z(T ))

=(1 + O(n��))J3(w(G(n;m)))

=c
h
1 + O(n�� + n�(1�b1)=2)

i
=c(1 + O(n�2�)):

Now, z(T )=z(T � 1) = 1 + O(n�1) , because kw(T ) � w(T � 1)k = O(1), and
w(T � 1); w(T ) 2W(a) ; therefore

z(T � 1)

�k(z(T � 1))
= c(1 + O(n�2�));

as well. Since 2� > � , we see that, for n large enough

ẑ

�k(ẑ)
>

z(T )

�k(z(T ))
:

The last inequality certainly implies existence of � that satis�es (6.32). (At this
moment of the proof, we do not know yet that is very unlikely that z(T ) is close
not to ẑ , but to ~z < ẑ de�ned by ~z=�k(~z) = ẑ=�k(ẑ) .)

2. T (a) < T . Then, for some � < T , we have w(� ) 2 W(a) , but either
v(� + 1) < an or t(� + 1) < (k + a)v(� + 1). In the �rst case,

v(� )

pk(z(� ))
=(1 + O(n�1))

v(� + 1)

pk(z(� + 1))

�(1 + O(n��))(1 + O(n�(1�b1)=2))n

�n(1 + O(n�2�)):

So, by the de�nition of a ,

1

1 + �n��
pk(ẑ)

pk(z(� ))
� 1 +O(n�2�);

It follows then pk(ẑ) > pk(z(� )) , whence ẑ > z(� ) , if n is large enough. In the
second case,

z(� )�k(z(� ))

pk(z(� ))
=(1 + O(n�1))

z(� + 1)�k(z(� + 1))

pk(z(� + 1))

=(1 + O(n�1))
t(� + 1)

v(� + 1)

�(1 + O(n�1))(k + a) � 1 + O(n�1)

1 + n�1=2
ẑ�k(ẑ)

pk(ẑ)

<
ẑ�k(ẑ)

pk(ẑ)
;
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which shows that z(� ) < ẑ since z�k(z)=pk(z) is strictly increasing (see (5.10)).

Thus,

(6.33)

Pf9�̂ < T (a) : z(�̂ � 1) > ẑ; z(�̂ ) � ẑg
�1�O(e�n

�

);

� = minf�� �; b; b1g;

(see (6.23)).

We extend the de�nition of �̂ setting �̂ = T (a) if z(� ) never falls below ẑ .
Observe that �̂ is a stopping time adopted to fw(� )g .

Let us have a close look at the sequence fw(� )g���̂ , conditioned on the event

A \ B \ C . First of all,
z(�̂ ) = (1 + O(n�1))ẑ:

So,

(6.34)

t(�̂)

2�(�̂ )
=(1 + O(n��))J3(w(G(n;m))) � z(�̂ )

�k(�̂ )

=(1 + O(n�2�))c � c(1 + O(n��))

=1 + O(n��);

that is
s(�̂ ) := 2�(�̂) � t(�̂) = O(n1��):

(Recall that s(� ) is the total degree of light vertices of G(� ) .) However, v(�̂ ) , the
total degree of heavy vertices of G(�̂ ) is still of order n . More precisely,

(6.35)

v(�̂) =pk(z(�̂ ))
v(0)

pk(z(0))
(1 + O(n��))

=(1 +O(n�2�))npk(ẑ)

=(1 +O(n��))npk(�k(c)):

What remains to show is that, with high probability, the deletion process will
end within at most n�; (� 2 (0; 1)); steps, delivering a giant k -core having about
npk(�k(c)) vertices.

We will specify � shortly. Whatever � is, it is clear that for �̂ � � � �̂ + n� ,

j�(� )� �(�̂ )j; jv(� )� v(�̂ )j; jt(� )� t(�̂ )j = O(n�);

so that �(� ); v(� ); and t(� ) are all of order n , while

s(� ) = O(n�1); �1 = max f1� �; �g:
A little re
ection based on the equation z�k(z)=pk(z) = t=v (see (4.20)) and (5.10)
shows then that

z(� ) = ẑ + O(n�(1��)):
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So, comparing with (6.28),(6.29), and remembering that �=2 < � ,

z(� )� �k ��n��=2 +O(n�(1��))

��3n��=2;(6.36)

if we require that

(6.37)
�

2
< 1� �1:

Denoting
�s(� ) = s(� + 1)� s(� );

and using (5.12), we have then: for s(� ) > 0,

Eq[�s(� )jw(� )] �� s(� )t(� )�k(z(� ))

2�(� )v(� )

�
z

�k(z)

�0�����
z=z(�)

+ O(n�1)

(
s(� )

v(� )
� 1)

�� �4n
��=2:(6.38)

We notice that �s(� ) � 2(k � 1) always. So, invoking (6.6) and the estimate that
follows it, we get from (6.38)

(6.39) E[�s(� )jw(� )] � �5n
��=2:

(� < minf1=2; 1� 3bg , see (6.22),(6.24).)

The rest is short. For y > 0, it follows from (6.39) that

E[eys(�+1)jw(� )] =eys(�) exp[yE(�s(� )jw(� ))]

�E fexp[y(�s(� )�E(�s(� )jw(� )))]jw(� )g
� eys(�) � exp

�
�y�5n��=2 + 2y2k2

�
:(6.40)

(We have used a well-known estimate

E(eyY ) � ey
2d2=2;

provided that jY j � d and E(Y ) = 0.) Set

y = yn =
�5n

��=2

4k2
;

yn minimizes the second exponent on the right in (6.40). Then (6.40) becomes

E(eyns(�+1)jw(� )) � eyns(�) � e��n�� ; � :=
(�5)2

8k2
:
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Therefore, the sequence

fS(� )g���̂ :=
�

exp [yns(� ) + (� � �̂)�n�� ]
	
���̂

is a supermartingale, as long as s(� ) > 0. Hence (the Optional Sampling Theorem
again !)

E [S(�̂ + n� ^ (T � �̂))jw(�̂ )] �S(�̂)

=eyns(�̂)

= exp [��n1����=2]:

Thus

(6.41)
PfT � �̂ � n�jw(�̂ )g � exp [��n1����=2 � �n���]

� exp [����n��� ];

if we require
� � � > 1� � � �=2; (� = �=2 + �);

or equivalently

(6.42) � > 1� �:

For the estimate (6.41) to be useful, we also have to satisfy

(6.43) � < �:

Using (6.33), (6.41), and collecting the constraints (6.22),(6.24),(6.35), (6.37),
(6.42), and (6.43), we can state now the following result.

With probability � e�n
�

,

(6.44) � := minf�� �; b; b1; � � �g;

the edge deletion process �nds a giant k -core of size npk(�k(c)) + O(n�) ,

(6.45)
� := max f1� �; �g;
(� = minf�=2; (1� b1)=4g):

Here

(6.46)

b < 1=3; b1 < 1=2; � < � < minf1=2; 1� 3bg;
� <� < 1;

� < 2(1� �) <minf�; (1� b1)=2g:

It is easy to see that, for every � < 1=2 and � 2 (3=4; 1 � �=2), we can sat-
isfy the restrictions (6.46) by choosing b; b1; � su�ciently close to (but less than)
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1=6; minf1=2; 4��3g; 1=2 respectively, and � su�ciently close to (but more than)
2(1 � �) . This way, we can make � in (6.44) arbitrarily close from below to
minf2� � 3=2; 1=6g , and � in (6.45) arbitrarily close from below to � .

This observation completes the proof of Theorem 2. �

Finally,

Proof of Theorem 3. Let � 2 (3=4; 1) and � 2 (0; pk(�k)) be given. Denote
by P (n;m) the probability that the random graph G(n;m) has a k -core of size in
the interval [n�; npk(�k)�n� ] . We need to show that P (n;m) is subexponentially
small, uniformly for m � �n2� .

Fix � 2 (2(1 � �); 1=2). According to Theorems 1 and 2, it su�ces to consider
m = cn=2 with

jc� 
kj = O(n��):

Suppose G(n;m) has a k -core of size in question, � n� in particular. Following
line by line the proof of Theorem 1, we obtain: on the event A \ B \ C ,

z(T )

�k(z(T ))
=c
h
1 + O(n�minf�;(1�b1)=2g)

i
=
k

h
1 + O(n�minf�;(1�b1)=2;�g)

i
=
k[1 + O(n��)];

provided that

(6.47) � < �; and � <
1� b1

2
:

Consequently,
jz(T ) � �kj = O(n��=2);

and

(6.48)
pk(z(T ))

pk(�k)
= 1 +O(n��=2):

Furthermore,

v(T )

pk(z(T ))
= J2(w(T )) =[1 + O(n��)] � J2(w(0))

=n
h
1 + O(n�minf�;(1�b1)=2g)

i
:

Since v(T ) � npk(�k)� n� , the previous estimate yields

pk(�k)

pk(z(T ))
�[1 + �n�(1��)] � [1 + O(n�minf�;(1�b1)=2g)]

=1 + �0n�(1��):(6.49)
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(We know that 1� � < �=2 < minf�; (1 � b1)=2g .)

The relations (6.48) and (6.49) are incompatible since 1� � < �=2. Therefore

(6.50)

P (n;m) �PfA \B \ Cg
=O(e�n

�

);

� = minf�� �; b; b1g:

Recall also that

(6.51)
� <� < minf1=2; 1� 3bg;

b < 1=3; b1 < 1=2:

Like two times before, it is easy to choose|subject to constraints � > 2(1 �
�) , (6.47), (6.51)|the values of �; �; �; b and b1 such that � gets arbitrarily close
(from below) to min f2� � 3=2; 1=6g . �
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