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from � to � + d� there is a probability c1c2d� that they will merge. Com-
ponents have a peculiar gravitation in which the probability of merging is
proportional to their sizes. With probability (c21=2)d� there will be a new
internal edge in a component of size c1n

2=3 so that large components rarely
remain trees. Simultaneously, big components are eating up other vertices.

With � = �106, say, we have feudalism. Many small components (cas-
tles) are each vying to be the largest. As � increases the components in-
crease in size and a few large components (nations) emerge. An already
large France has much better chances of becoming larger than a smaller An-
dorra. The largest components tend strongly to merge and by � = +106 it
is very likely that a giant component, Roman Empire, has emerged. With
high probability this component is nevermore challenged for supremacy but
continues absorbing smaller components until full connectivity - One World
- is achieved.
An Continuous Model. In discussions at St. Flour it became apparent
that there was a continuous model underlying the asymptotic behavior of
G(n; p) with p = n�1 + �n�4=3. The following should be regarded as only
tentative steps toward de�ning of that continuous model. For �xed � and
k arbitrarily large but �xed one can look at the k largest components of
G(n; p) and parametrize them x1n

2=3; . . . ; xkn
2=3 in decreasing order. One

can give explicitly a limiting distribution function H(x1; . . . ; xk) for these
values. Now one can go to the limit with k and consider the \state" P (�)
at \time" � to be an in�nite sequence x1 > x2 > . . . of decreasing reals.
There will be a distribution over the possible sequences. The sequences
must be well-behaved; one can show, for example, that the number of xi
bigger than c must be asymptotic to 2

3(2�)
�1=2c�3=2 as c ! 0. (There is

further information concerning the nature of the components - e.g., are they
trees, unicyclic,. . . - that could also be added.) Now the intriguing thing
is the \gravity" that de�nes P (� + d�) in terms of P (�) in an appropriate
limiting sense. If P (�) has terms xi; xj then with probability xixjd� they
will \merge" and form a single term with value xi + xj . This corresponds
to certain coagulation models in physics though in the physical world the
probability of coagulation depends on the surface area (and perhaps other
invariants) of the objects) while here it depends only on their sizes. So it
seems there should be a probability space whose elements are histories - i.e.,
the value of P (�) for all real � - where the change from P (�) to P (�+d�) is
governed by these coagulation laws and where further there have to be some
appropriate entry laws so that each P (�) has the appropriate distribution.
Not that any of this has been done - but in theory there is a theory!
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with k� 1+ l edges, where cl was given by a speci�c recurrence. Asymptot-
ically in l,
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and letting X� be the total number of components of size between an2=3

and bn2=3
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a sum convergent for all c, (here c0 = 1). A component of size � cn2=3

will have probability clc
3

2
l=g(c) of having l � 1 more edges than vertices,

independent of �. As limc!0 g(c) = 1, most components of size �n2=3 ,
� << 1, are trees but as c gets bigger the distribution on l moves inexoribly
higher.
An Overview. For any �xed � the sizes of the largest components are of
the form cn2=3 with a distribution over the constant. For � = �106 there is
some positive limiting probability that the largest component is bigger than
106n2=3 and for � = +106 there is some positive limiting probability that the
largest component is smaller than 10�6n2=3, though both these probabilities
are minuscule. The functions integrated have a pole at c = 0, re
ecting the
notion that for any � there should be many components of size near �n2=3

for � = �(�) appropriately small. When � is large negative (e.g., �106)
the largest component is likely to be �n2=3, � small, and there will be many
components of nearly that size. The nontree components will be a negligible
fraction of the tree components.

Now consider the evolution of G(n; p) in terms of �. Suppose that at
a given � there are components of size c1n2=3 and c2n

2=3. When we move
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so that
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For any particular such k E[X ] ! 0 but if we sum k between cn2=3 and
(c + dc)n2=3 we multiply by n2=3dc. Going to the limit gives an integral:
For any �xed a; b; � let X be the number of tree components of size between
an2=3 and bn2=3. Then
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The large components are not all trees. E.M. Wright [1977] proved that

for �xed l there are asymptotically clk
k�2+ 3

2
l connected graphs on k points
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for �xed k. For c < 1

E[Y ] =
X

E[Yk]!
1X
k=1

ck

2k

has a �nite limit whereas for c > 1, E[Y ] ! 1. Even for c > 1 for any
�xed k the number of k-cycles has a limiting expectation and so do not
asymptotically a�ect the number of components of a given size.

3 Inside the Phase Transition

In the evolution of the random graph G(n; p) a crucial change takes place
in the vicinity of p = c=n with c = 1. The small components at that time
are rapidly joining together to form a giant component. This corresponds
to the Branching Process when births are Poisson with mean 1. There the
number T of organisms will be �nite almost always and yet have in�nite
expectation. No wonder that the situation for random graphs is extremely
delicate. In recent years there has been much interest in looking \inside" the
phase transition at the growth of the largest components. (See, e.g. Luczak
[1990].) The appropriate parametrization is, perhaps surprisingly,

p =
1

n
+

�

n4=3

When � = �(n) ! �1 the phase transition has not yet started. The
largest components are o(n2=3) and there are many components of nearly
the largest size. When � = �(n) ! +1 the phase transition is over - a
largest component, of size >> n2=3 has emerged and all other components
are of size o(n2=3). Let's �x �; c and let X be the number of tree components
of size k = cn2=3. Then
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stage, as only small components have thus far been found, the number of
remaining points is m = n � O(1) � n so the conditional probabilities of
small, giant and failure remain asymptotically the same. The chance of ever
hitting a failure component is thus � s� and the chance of hitting all small
components is � (y + �)s � � so that with probability at least 1� �0, where
�0 = (s + 1)� may be made arbitrarily small, we �nd a series of less than s

small components followed by a giant component. The remaining graph has
m � yn points and pm � cy = d, the conjugate of c as de�ned earlier. As
d < 1 the previous analysis gives the maximal components. In summary:
almost always G(n; c=n) has a giant component of size � (1 � y)n and all
other components of size O(lnn). Furthermore, the Duality Principle has a
discrete analog.
Discrete Duality Principle. Let d < 1 < c be conjugates. The structure of
G(n; c=n) with its giant component removed is basically that of G(m; d=m)
where m, the number of vertices not in the giant component, satis�es m �
ny.

The small components of G(n; c=n) can also be examined from a static
view. For a �xed k let X be the number of tree components of size k. Then
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2
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Here we use the nontrivial fact, due to Cayley, that there are kk�2 possible
trees on a given k-set. For c; k �xed

E[X ]� n
e�ckkk�2ck�1

k!

As trees are strictly balanced a second moment method gives X � E[X ]
almost always. Thus � pkn points lie in tree components of size k where

pk =
e�ck(ck)k�1

k!

It can be shown analytically that pk = Pr[T = k] in the Branching Process
with mean c. Let Yk denote the number of cycles of size k and Y the total
number of cycles. Then
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2k
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There are n choices for initial vertex v. Thus almost always all components
have size O(lnn).

Now assume c > 1. For any �xed t, limn!1 Pr[T = t] = Pr[T � = t] but
what corresponds to T � =1? For t = o(n) we may estimate 1�(1�p)t � pt
and n� 1 � n so that

Pr[Yt � 0] = Pr[B[n� 1; 1� (1� p)t] � t � 1] � Pr[B[n; tc=n] � t]

drops exponentially in t by Large Deviation results. When t = �n we
estimate 1� (1 � p)t by 1� e�c�. The equation 1� e�c� = � has solution
� = 1� y where y is the extinction probability. For � < 1� y, 1� e�c� > �

and
Pr[Yt � 0] � Pr[B[n; 1� e�c�] � �n]

is exponentially small while for � > 1� y, 1� e�c� < � and Pr[Yt � 0] � 1.
Thus almost always Yt = 0 for some t � (1 � y)n. Basically, T � = 1
corresponds to T � (1 � y)n. Let �; � > 0 be arbitrarily small. With
somewhat more care to the bounds we may show that there exists t0 so that
for n su�ciently large

Pr[t0 < T < (1� �)n(1� y) or T > (1 + �)n(1� y)] < �

Pick t0 su�ciently large so that

y � � � Pr[T � � t0] � y

Then as limn!1 Pr[T � t0] = Pr[T � � 0] for n su�ciently large

y � 2� � Pr[T � t0] � y + �

1� y � 2� � Pr[(1� �)n(1� y) < T < (1 + �)n(1� y)] < 1� y + 3�

Now we expand our procedure to �nd graph components. We start with
G � G(n; p), select v = v1 2 G and compute C(v1) as before. Then we delete
C(v1) , pick v2 2 G�C(v1) and iterate. At each stage the remaining graph
has distribution G(m; p) where m is the number of vertices. (Note, critically,
that no pairs fw;w0g in the remaining graph have been examined and so it
retains its distribution.) Call a component C(v) small if jC(v)j � t0, giant
if (1 � �)n(1 � y) < jC(v)j < (1 + �)n(1 � y) and otherwise failure. Pick
s = s(�) with (y + �)s < �. (For � small s � K ln ��1.) Begin this procedure
with the full graph and terminate it when either a giant component or a
failure component is found or when s small components are found. At each
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the result follows by induction. 2
We set p = c=n. When t and Yt�1 are small we may approximate Zt

by B[n; c=n] which is approximately Poisson with mean c. Basically small
components will have size distribution as in the Branching Process. The
analogy must break down for c > 1 as the Branching Process may have an
in�nite population whereas jC(v)j is surely at most n. Essentially, those
v for which the Branching Process for C(v) does not \die early" all join
together to form the giant component.

Fix c. Let Y �0 ; Y
�

1 ; . . . ; T
�; Z�1 ; Z

�

2 ; . . . ; H
� refer to the Branching Process

and Y0; Y1; . . . ; T; Z1; Z2; . . . ; H refer to the Random Graph process. For any
possible history (z1; . . . ; zt)

Pr[H� = (z1; . . . ; zt)] =
tY

i=1

Pr[Z� = zi]

where Z� is Poisson with mean c while

Pr[H = (z1; . . . ; zt)] =
tY

i=1

Pr[Zi = zi]

where Zi has Binomial Distribution B[n�1�z1�. . .�zi�1; c=n]. The Poisson
distribution is the limiting distribution of Binomials. When m = m(n) � n

and c; i are �xed

lim
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hence
lim
n!1

Pr[H = (z1; . . . ; zt)] = Pr[H� = (z1; . . . ; zt)]

Assume c < 1. For any �xed t, limn!1 Pr[T = t] = Pr[T � = t]. We now
bound the size of the largest component. For any t

Pr[T > t] � Pr[Yt > 0] = Pr[B[n � 1; 1� (1� p)t] � t] � Pr[B[n; tc=n] � t]

as 1� (1� p)t � tp and n� 1 < n. By Large Deviation Results

Pr[T > t] < e��t

where � = �(c) > 0. Let � = �(c) satisfy �� > 1. Then

Pr[T > � lnn] < n��� = o(n�1)
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2 The Giant Component

Now let's return to random graphs. We de�ne a procedure to �nd the
component C(v) containing a given vertex v in a given graph G. We are
motivated by Karp [1990] in which this approach is applied to random di-
graphs. In this procedure vertices will be live, dead or neutral. Originally
v is live and all other vertices are neutral, time t = 0 and Y0 = 1. Each
time unit t we take a live vertex w and check all pairs fw;w0g, w0 neutral,
for membership in G. If fw;w0g 2 G we make w0 live, otherwise it stays
neutral. After searching all neutral w0 we set w dead and let Yt equal the
new number of live vertices. When there are no live vertices the process
terminates and C(v) is the set of dead vertices. Let Zt be the number of w0

with fw;w0g 2 G so that
Y0 = 1

Yt = Yt�1 + Zt � 1

With G = G(n; p) each neutral w0 has independent probability p of
becoming live. Here, critically, no pair fw;w0g is ever examined twice so
that the conditional probability for fw;w0g 2 G is always p. As t � 1
vertices are dead and Yt�1 are live

Zt � B[n� (t� 1)� Yt�1; p]

Let T be the least t for which Yt = 0. Then T = jC(v)j. As in Section 1 we
continue the recursive de�nition of Yt, this time for 0 � t � n.
Claim 2.1 For all t

Yt � B[n � 1; 1� (1� p)t] + 1� t

It is more convenient to deal with

Nt = n � t � Yt

the number of neutral vertices at time t and show, equivalently,

Nt � B[n � 1; (1� p)t]

This is reasonable since each w 6= v has independent probability (1� p)t of
staying neutral t times. Formally, as N0 = n � 1 and

Nt = n� t � Yt = n � t� B[n � (t� 1)� Yt�1; p]� Yt�1 + 1
= Nt�1 �B[Nt�1; p]
= B[Nt�1; 1� p]
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been de�ned. T (whether �nite or in�nite) is the total number of organisms,
including the original, in this process. (A natural approach, found in many
probability texts, is to have all organisms of a given generation have their
children at once and study the number of children of each generation. While
we may think of the organisms giving birth by generation it will not a�ect
our model.)

We shall use the major result of Branching Processes that when E[Z] =
c < 1 with probability one the process dies out (T < 1) but when E[Z] =
c > 1 then there is a nonzero probability that the process goes on forever
(T =1).

When a branching process dies we call H = (Z1; . . . ; ZT ) the history of
the process. A sequence (z1; . . . ; zt) is a possible history if and only if the
sequence yi given by y0 = 1; yi = yi�1 + zi � 1 has yi > 0 for 0 � i < t and
yt = 0. When Z is Poisson with mean �

Pr[H = (z1; . . . ; zt)] =
tY

i�1

e���zi

zi!
=
e��(�e��)t�1Qt

i=1 zi!

since z1 + . . . + zt = t � 1.
We call d < 1 < c a conjugate pair if

de�d = ce�c

The function f(x) = xe�x increases from 0 to e�1 in [0,1) and decreases
back to 0 in (1;1) so that all c 6= 1 have a uniqe conjugate. Let c > 1 and
y = Pr[T <1] so that y = ec(y�1). Then (cy)e�cy = ce�c so

d = cy

Duality Principle. Let d < 1 < c be conjugates. The Branching Process
with mean c, conditional on extinction, has the same distribution as the
Branching Process with mean d.
Proof. It su�ces to show that for every history H = (z1; . . . ; zt)

e�c(ce�c)t�1

y
Qt

i=1 zi!
=

e�d(de�d)t�1Qt
i=1 zi!

This is immediate as ce�c = de�d and ye�d = ye�cy = e�c:
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Lecture 7: The Phase Transition

1 Branching Processes

Paul Erd}os and Alfred R�enyi, in their original 1960 paper, discovered that
the random graph G(n; p) undergoes a remarkable change at p = 1=n.
Speaking roughly, let �rst p = c=n with c < 1. Then G(n; p) will con-
sist of small components, the largest of which is of size �(ln n). But now
suppose p = c=n with c > 1. In that short amount of \time" many of the
components will have joined together to form a \giant component" of size
�(n). The remaining vertices are still in small components, the largest of
which has size �(ln n). They dubbed this phenomenon the Double Jump.
We prefer the descriptive term Phase Transition because of the connections
to percolation (e.g., freezing) in mathematical physics.

To better understand the Phase Transition we make a lengthy detour
into the subject of Branching Processes. Imagine that we are in a unisexual
universe and we start with a single organism. Imagine that this organism
has a number of children given by a given random variable Z. (For us, Z
will be Poisson with mean c.) These children then themselves have children,
the number again being determined by Z. These grandchildren then have
children, etc. As Z = 0 will have nonzero probability there will be some
chance that the line dies out entirely. We want to study the total number of
organisms in this process, with particular eye to whether or not the process
continues forever. (The original application of this model was to a study of
the -gasp!- male line of British peerage.)

Now lets be more precise. Let Z1; Z2; . . . be independent random vari-
ables, each with distribution Z. De�ne Y0; Y1; . . . by the recursion

Y0 = 1

Yi = Yi�1 + Zi � 1

and let T be the least t for which Yt = 0. If no such t exists (the line
continuing forever) we say T = +1. The Yi and Zi mirror the Branching
Process as follows. We view all organisms as living or dead. Initially there
is one live organism and no dead ones. At each time unit we select one of
the live organisms, it has Zi children, and then it dies. The number Yi of
live organisms at time i is then given by the recursion. The process stops
when Yt = 0 (extinction) but it is a convenient �ction to de�ne the recursion
for all t. Note that T is not a�ected by this �ction since once Yt = 0, T has


