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A Special Note: These notes are only an approximation to the actual
lectures. There is some extra material here, and there will almost certainly
be some material in the lectures not covered in the notes. In particular, the
split into specific days should be regarded only as an estimate. – JS

The Probabilistic Method.
Lecture II: Tuesday, October 30

1 Crossing Number

The crossing number κ of a graph G is the least number of crossings of edges
when the graph is embedded in the plane.

Theorem 1.1 Let G have v vertices, e edges and κ crossings. Assume (not
the tightest) e ≥ 10v. Then κ ≥ ce3v−2. (c an absolute positive constant.)

We use only that a planar graph on v vertices can have at most 3v − 6
edges. From this, κ ≥ e − (3v − 6). Why? If e ≤ 3v − 6 there is nothing
to prove. Otherwise, take a crossing, delete one of the edges creating the
crossing, and iterate. To make things less messy lets just use κ ≥ e − 3v.

Take a random subset of vertices S of G with each v in S with indepen-
dent probability p. Call that random graph H. The expected number of
vertices of H is vp. The expected number of edges of H is ep2 as each edge of
G remains in H with probability p2. The expected number of crossings of H
is p4κ as each crossing of G remains in H with probability p4. The expected
nuber of crossings minus edges plus 3 times vertices is then p4κ− p2e+ 3pv.
But we’ve said that this is always nonnegative. Hence p4κ− p2e + 3pv ≥ 0.
That is, κ ≥ p−2e − 3p−3v.

Now we use calculus! We set the derivative of the right hand side equal
to zero, so p = 9v

2e . The calculus doesn’t appear in the formal proof, we
simply set p to this value. As p is a probability we need p ≤ 1 which leads
to the side condition e ≥ 4.5v. Plugging in this value give κ ≥ ce3v−2.

Comment: This is the correct minimal κ (over all G with v vertices and
e edges) up to a constant. Given v, e we can have G as the union of v/t
disjoint complete graphs on t vertices, with t ∼ c1e/v. Each complete graph
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would give at most t4 crossing and so the total number of crossings would
be at most (v/t)t4 ∼ c2e

3v−2.

Asymptopia of m(n)

Recall the theorem proven in previous notes.

Theorem 1.2 (Erdős 1964) If there exists v with

2v

(

1 −
2
(v/2

n

)

(v
n

)

)m

< 1,

then m(n) ≤ m, i.e., there is a family A1, A2, . . . , Am ⊂ {1, . . . , v} with no
2-coloring.

We wish to solve for m and then choose v to maximize m. We begin by
using the inequality 1 − p ≤ e−p to find

m ≥

⌈

v ln 2

2
(v/2

n

) /(v
n

)

⌉

Define

p ≡
2
(v/2

n

)

(v
n

)

We need to explore the asymptotics of p. To gain some intuition about how
tight a bound we need, recall what the quantity p represents. In our original
proof, p was the probability that a randomly chosen set from a two-colored
v-sized universe is monochromatic. This is equivalent to the probability in
the following experiment: Fill a bag with v

2 red balls and v
2 blue balls. Draw

n balls at random without replacement. Then p is the probability that all
n balls have the same color. One might be tempted to bound p using the
approximation

(n
k

)

≈ nk

k! . This approximation yields p = 21−n, which is the
same as the probability of drawing n monochromatic balls with replacement.
Intuitively it is clear that for small v, drawing with replacement and drawing
without replacement yield different results. As we are trying to minimize m
(and thus will be dealing with small v), we look for a better approximation.

First we rewrite p.

p =
2
(v/2

n

)

(v
n

)

= 2
n−1
∏

i=0

v/2 − i

v − i

= 21−n
n−1
∏

i=0

(1 −
i

v − i
)

= 21−n exp(
n−1
∑

i=0

ln(1 −
i

v − i
))
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By the Taylor expansion,

ln(1 − ǫ) ∼ −ǫ −
ǫ2

2
− . . .

Therefore, for (see later for what happens when this doesn’t hold) v >> n1.5,

ln(1 −
i

v − i
) ∼

−i

v

Note we can safely ignore the second order term of the Taylor expansion
because

∑n
i=0 i2 ∼ n3 and, by assumption, v2 >> n3, so the ( i

v−i )
2 term

will tend to zero after the summation.
This gives our final approximation for p,

p ∼ 21−n exp(
−n2

2v
)

from where
m(n) ≤ ⌈2n−1(ln 2)ven2/2v⌉

for v >> n1.5. Let z = ven2/2v. We want to find v that minimizes z. Using
standard calculus techniques,

y ≡ ln z = ln v +
n2

2v

y′ =
1

v
−

n2

2v2
= 0

giving

v =
n2

2

for a final result

m(n) ≤

⌈

e ln 2

4
n22n

⌉

While this is the correct answer we haven’t completed our rigorous argument.
We assumed v ≫ n1.5 in making our approximations. We now need to check
that if v is not that large then the value is bigger than cn22n. This is a
somewhat typical (and annoying) part because here the value will be very
much bigger than n22n – so we can use crude tools. (Often in asymptotics
the calculations are easier when the results are tighter.) Lets take, leaving
room, v ≤ n1.51. The value of p is (remember that n is fixed) an increasing
function of v (check the representation as a product) and so it suffices to
look at v = n1.51. But there the approximation p ∼ 21−n exp(−n2/2v) does
hold and this gives a p which is exponentially small and so a bound on m
which is exponentially large, so it is way off from the real value.

Asymptopia of
(

n
k

)

In many of the problems in this field, we are faced with an
(n
k

)

that we
need to approximate. There is no single approximation for

(n
k

)

which always
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works. Rather, the approximation one should use depends greatly on the
relationship between n and k. Here we discuss several approximations of

(n
k

)

for various relationships between n and k.
First, if both n and k are fixed,

(n
k

)

has a definite value. Use it. Also, if

just k is fixed, clearly
(n
k

)

∼ nk

k! is a good approximation.
When both n and k grow, things get more complicated. First, we con-

sider the case where k = o(n). Notice

(

n

k

)

=
(n)k
k!

=
nk

k!

k−1
∏

i=0

(1 −
i

n
)

=
nk

k!
exp(

k−1
∑

i=0

ln(1 −
i

n
))

Using Stirling’s formula, we can approximate k! ∼ kke−k(2πk)
1

2 , and nk is
fine as is. What we have left to deal with is the ln(1 − i

n) term. Here we
can use the Taylor expansion

ln(1 − ǫ) = −ǫ −
ǫ2

2
− O(ǫ3)

from where
k−1
∑

i=0

ln(1 −
i

n
) =

−k2

2n
−

k3

6n2
− O(

k4

n3
)

Of course, we can retain even more terms of the Taylor expansion if we need
to. For each extra term we get yet another estimate that generalizes the
previous estimate.

The first three terms listed above yeild the following approximations:

• For k = o(n1/2),
∑k−1

i=0 ln(1 − i
n) ∼ 0.

• For k = o(n2/3),
∑k−1

i=0 ln(1 − i
n) ∼ −k2

2n .

• For k = o(n3/4),
∑k−1

i=0 ln(1 − i
n) ∼ −k2

2n + −k3

6n2 .

If k = o(n), we have a useful logarithmically asymptotic result. Since
k! ≥ (k

e )k for all k,
(

n

k

)

≤
nk

k!
≤ (

ne

k
)k

Furthermore, for some computable constant c,

(

n

k

)

≥
(n − k)k

k!
≥ (

ne

k
)kck−1/2(1 −

k

n
)k

where ck−1/2(1 − k
n)k = no(k). Combining these inequalities, we have the

result
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• For k = o(n),
(n
k

)

= (ne
k )k(1+o(1)).

If k = αn for some α ∈ (0, 1), we can use Stirling’s formula to see

(

n

αn

)

=
n!

(αn)!((1 − α)n)!

∼
nne−n(2πn)

1

2

(αn)(αn)e−(αn)(2παn)
1

2 ((1 − α)n)(1−α)ne−(1−α)n(2π(1 − α)n)
1

2

=
n−

1

2 (2πα(1 − α))−
1

2

(α)αn(1 − α)(1−α)n

For convenience, let cα ≡ (2πα(1 − α))−
1

2 . We use the entropy function
H(α) defined as

H(α) ≡ −α log α − (1 − α) log(1 − α)

One sets H(0) = H(1) = 0 so that this is continuous on [0, 1]. H is sym-
metric about α = 1

2 and assumes its maximum at α = 1
2 with H(1/2) = 1.

The slope of H(α) at 0 and 1 is ∞ and −∞. We can estimate H(1
2 + ǫ) as

H(1
2 ) + H ′(1

2 )ǫ + H ′′(1
2) ǫ2

2 + O(ǫ3) = 1 − 4
ln 2ǫ2 + O(ǫ3).

Now we can succinctly state our result.

• For k = αn,
( n
αn

)

∼ cαn−
1

2 2nH(α).

Improving bounds of m(n)

In 1963 Erdős gave a lower bound for m(n) of 2n−1. In 1964, he gave an
upper bound of e ln 2

4 n22n. These bounds are quite far apart, especially if
you consider 2n as 1. In 1978 Beck improved Erdős’s result giving a lower
bound of 2nn1/3. In 2000 Radhukrishnan and Srinivasan improved the lower
bound to 2n( n

ln n)1/2. There is, of course, still room for improvement, but
these are the best known bounds to date. We will give the Radhukrishnan
Srinivasan bounds using a beautiful new argument of Kozik and Cherkashin.

It will be convenient to parametrize m = 2n−1k. Let an arbitrary family
of m = 2n−1k sets, each of size n. Let Ω be the set of elements. (Note: the
size of Ω is arbitrary.)

Kozik and Cherkashin give a Random Greedy algorithm to color Ω. Using
Erdős Magic they only need show that the probability the algorithm fails
is less than one. Turning things around, at the end they make k as big as
possible so that the failure probability (well, the upper bound on the failure
probability) is less than one.

The random part consists of randomly ordering Ω. To facilitate the
analysis to each v ∈ Ω we assign an independent uniform “birthtime” tv ∈
[0, 1]. (With probability one no two birthtimes are the same.) Begin at time
zero with no vertices colored. At time tv we decide how to color v by the
following rediculously easy protocol:

The Protocol: Color v Red unless doing so would create a totally red
set. When that is the case color v Blue.
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Let BAD be the event that this randomized algorithm produces a monochro-
matic set.

Tautologically, a Red set cannot be created. Suppose a blue set Ai is
created. Let v be that point of Ai with the least birthtime. Why wasn’t v
colored red? There must have been a set Aj (there may be more than one)
such that making v red would have made Aj red. When this happens we
say Ai blames Aj and we denote this event by BLAME[Ai, Aj ]. There are
less than (2n−1k)2 choices of Ai, Aj so

What is the probability of BLAME[Ai, Aj ]. First of all, Ai, Aj must
intersect in precisely one vertex, call it v. Set t = tv, the birthtime of
v, which is uniform over [0, 1]. All other w ∈ Ai must have birthdates in
[t, 1] and all other z ∈ Aj must have birthdays in [0, t]. As birthdates are
independent this has probability (1− t)n−1tn−1. Thus BLAME[Ai, Aj ] has
probability at most

∫

[t(1− t)]n−1. There are less than (2n−1k)2 pairs Ai, Aj

so

Pr[BAD] ≤ (2n−1k)2
∫

[t(1 − t)]n−1

This leads to a nice asymptotic calculus problem, what is the maximal k
(asymptotic in n) so that the right hand side is ≤ 1?

But it turns out (it took several years to see this!) that one can do a
better analysis without changing the algorithm. Let ǫ = ǫ(n, k). Call a set
A = Ai unbalanced if either the largest birthtime tv amongst the v ∈ A is
less than (1 − ǫ)/2 or the least birthtime tv amongst the v ∈ A is greater
than (1 + ǫ)n. Then A is unbalanced with probability 2 · ((1 − ǫ)/2)n. Let
BAD2 be that some A is unbalanced. Then

Pr[BAD2] ≤ 2n−1k · 2 · ((1 − ǫ)/2)n = k(1 − ǫ)n−1

Suppose no A is unbalanced. Then for Ai to blame Aj it must be that
their common vertex v has birthdate t = tv within ǫ/2 of 1/2. This oc-
curs with probability ǫ. Given the birthdate the probability is [t(1 − t)]n−1

which we bound by 4−(n−1). Let BAD1 be that no A is unbalance and yet
BLAME[Ai, Aj ] for some i, j. Then

Pr[BAD1] ≤ (2n−1k)2ǫ4−(n−1) = k2ǫ

For BAD to occur we must have BAD1 or BAD2. Thus

Pr[BAD] ≤ k(1 − ǫ)n−1 + k2ǫ

Another calculus problem! What is the largest k = k(n) such that there
exists ǫ = ǫ(k, n) with k(1 − ǫ)n−1 + k2ǫ ≤ 1. Asymptotic answer: Select
ǫ = C(ln n)/n) to kill off the first term and then k = c1ǫ

−1/2 = c2

√

n/(ln n)
will make the second addend small.

Many of the more recent (and more exciting) results involve the analysis
of Random Processes or Randomized Algorithms. Let us even give this a
name:

Modern Erdős Magic: If there is a randomized algorithm
that creates an object with desired properties with positive proa-
bility that that object must exist.
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