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Asperen, October 30- November 1, 2018

A Special Note: These notes are only an approximation to the actual
lectures. There is some extra material here, and there will almost certainly
be some material in the lectures not covered in the notes. In particular, the
split into specific days should be regarded only as an estimate. – JS

The Probabilistic Method.
Lecture I: Tuesday, October 30

1 History

The probabilistic method prove the existence of some object with a given
property, by showing that it occurs with non-zero probability when we se-
lect a random object from an appropriate probability space. Using the
probabilistic method, we can prove theorems that themselves involve no
probability. We can often avoid complicated constructions.

The probabilistic method was invented by Paul Erdős. It is hard to say
that it was his chief discovery, as he has contributed so many things to many
different branches of mathematics. But it is bears most deeply the mark of
his character, and he nurtured it as its sole practitioner for 25 years.

The first theorem we will prove has a story associated with it that goes
back to well before Erdős’ development of the probabilistic method. Three
friends were walking in the hills outside of Budapest, as was their habit,
talking about mathematics: G. Szekeres, Esther Klein, and the 17 year old
Paul Erdős, who was already know on the university campus as a mathe-
matical sorcerer.1 Esther had brought a mathematical problem back with
her. Allthough they didn’t realize it, Ramsey had already proven it, and it
is now known as a (version) of Ramsey’s theorem:

2 Ramsey’s Theorem

Let Kn be the complete graph with n nodes.

1Soon after Erdős was dubbed Die Zauberer von Budapest
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Theorem 2.1 Ramsey’s Theorem (limited version): For all k, l, there exists
n so that the edges of Kn are colored red and blue, either there exists a red
complete sub-graph of k points or there exists a blue complete sub-graph of l
points.

It turns out, Szekeres was able to prove this, and get a simple bound
on the growth rate of n, though, at the time, he was majoring in chemical
engineering. It may seem amazing that a chemical engineer could tackle
this problem. In fact, as he was to recall in later years, he had a powerful
incentive: he was married with Esther shortly afterwards.

For an example of Ramseys theorem with k = l = 3, the graph n = 6 is
satisfactory. Consider, for instance six people sitting listening to this lecture.
We’ll call a person gregarious if they know at least 3 other people. (Let us
assume that “knowing” is reflexive, as we are concerned with undirected
graphs.) Suppose there is a gregarious person. If any two of people known
also know each other, then we have a gregarious triangle. If all three of them
are mutually unacquainted, then we have a complete subgraph of strangers.
Obviously, if there is no gregarious person, then there must be a retiring
person who doesn’t know at least three people, and the argument works
symmetrically.

Define the Ramsey function R(k, l) is the least n with this property.
It can be shown by a simple induction that:

R(k, l) ≤
(

k + l − 2

k − 1

)

(The method is to show R(k, l) ≤ R(k − 1, l) + R(k, l − 1).)
In 1946-47, Erdős proved both an upper and a lower bound for R(k, k).

The lower bound involved essentially the first use of the probabilistic method.2

Theorem 2.2 (Erdős 47) 3

R(k, k) ≤
(

2k − 2

k − 1

)

∼ c4kk−1/2

Theorem 2.3 (Erdős 47) If
(n
k

)

21−(k

2), then R(k, k) > n.

We will prove this later theorem with the probabilistic method. In order to
prove that Ramsey’s function is greater than n, we must prove there exists
a two-coloring χ of Kn with no mono χ of Kn (where mono is short for
monochromatic, and “mono χ” means “monochromatic under χ”).

To prove this, consider a random coloring on n points. (So the proba-

bility space contains 2(
n

2) “points”). For any S ⊆ {1, . . . , n}, |S| = k, let AS

be the event that S is mono χ. Then:

Pr[AS ] = 21−(k
2)

2There was another paper a bit earlier by Schütte that used something like the prob-
abilistic method, but its significance was not appreciated.

3In this course, we will be interested in the asymptotic behavior. My recent book
”Asymptopia” deals with this viewpoint.
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Let BAD =
∨

|S|=k AS . BAD is the event that there is a set of points that

is mono. We are looking for a set that is not mono, so set GOOD = BAD.
By the union bound, we have:

Pr[BAD] ≤
∑

|S|=k

Pr[AS ] =

(

n

k

)

21−(k

2) < 1

Therefore,
Pr[GOOD] > 0

Thus, by “Erdős magic” we can conclude there is a good χ.4 End of Proof.
Analysis

Now let us analyze this result, as Erdős did in his paper, to see what
explicit asymptotic bound this gives for n. This is a typical example of what
might be called “asymptotic calculus”.

Define:

f(k) := maxn such that

(

n

k

)

21−(k

2) < 1

As a rough estimate, lets try:5

(

n

k

)

≈ nk

k!

Then, as a first cut, we get:

nk

k!
≈ 2k2/2 ⇒ n ≈

√
2

k
(ignoring k!(!))

Now, a little more formally, this can be converted into an upper bound:

(

n

k

)

<
nk

k!
< 2(

k
2)−1

n < k!1/k2
1
2
k−12−

1
k

where 2−
1
k ∼ 1 asymptotically, and can be ignored. Now we can apply

Stirling’s formula to get an approximation for k!:

k! ∼ kke−k
√

2πk ⇒ (k!)
1
k ∼ k

e

Plugging back in:

n <
k

e
√

2

√
2

k

4This non-constructive proof leads to algorithmic questions: how long does it take to
find a solution?

5Note that “≈” means “roughly like”, with no formal interpretation. f(n) ∼ g(n), on

the other hand, means limn→∞

f(n)
g(n)

= 1.
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We saw the
√

2
k

term when we dropped k!, so we can conclude that n is at
least exponential in k. In fact, we have a lower bound for n that turns out
to be just the same:

(

n

k

)

>
(n − k)k

k!
∼ nk

k!
if

(

1 − k

n

)k

∼ 1

This condition is fulfilled whenever n >> k2 (if not, we have an additional

e−
k2

n term). So certainly, with n > ck2
1
k ,
(n
k

)

∼ nk

k! . Therefore

f(k) ∼ k

e
√

2

√
2

k

End of Proof.
Remark: what is the intuition behind using randomness? We want a set
that does not have structure, because structure can be used against us.
Randomness is a way to get such a set.

3 Tournaments (Beginning)

A tournament Tn is a round-robin competition between n players (vertices).
For all i, j, either i beats j or j beats i (directed edges).
Definition (Schütte) Tn has property Sk if for all distinct players x1, . . . , xk

there exists y who beats all of them.
Some examples: S1 - every player is beaten by all others. T3 provides

an example 1 beating 2 beating 3 beating 1. T7 provides an example of a
tournament with property S2 The rule for the edges is: i beats j if i− j is a
square mod 7. What about S10? This problem seems to get pretty complex
as it scales up. Nevertheless, Erdős came up with a simple proof for the
existence of tournaments using the probabilistic method.

Theorem 3.1 (Erdős, 1963) For all k there exists a (finite) tournament
Tk with property Sk.

In fact, well show the following result, where we’ll fill in the . . . later!

Theorem 3.2 (Erdős 1963) If . . . . . . then there exists a tournament Tn

with n vertices that has the property Sk.

Proof: Consider a random tournament Tn. Let K = {x1, . . . , xk} be a
set of k players. Call y is a witness for K if y beats {x1, . . . , xk}. Then:

Pr[y is a witness for K] = 2−k

Then let AK be the event that K has no witness.

Pr[AK ] = (1 − 2−k)n−k

Why? Each y 6∈ K has probability 2−k of being a witness and therefore prob-
ability 1 − 2−k of not being a witness. As different y 6∈ K involve separate
coin flips, the events “y is not a witness for K” are mutually independent.
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Now, let BAD =
∨

|K|=k AK and GOOD = BAD. Clearly, GOOD is
the event that the tournament has the property Sk.

Computing the probability of the event BAD is not easy. However, we
can bound this probability using the fact that the probability of a disjunction
of events is less than or equal to the sum of the probabilities of individual
events. Therefore,

Pr[BAD] ≤
∑

|K|=k

Pr[AK ] =

(

n

k

)

(1 − 2−k)n−k.

Therefore, if we replace “. . . . . . ” in the statement of the theorem by the
condition

(n
k

)

(1 − 2−k)n−k < 1, we will obtain Pr[GOOD] > 0. Now,

Erdős Magic: If the probability of an event is positive, there
exists some point of the probability space for which the event
occurs. For example, since Pr[GOOD] > 0, there exists some
tournament Tn with the property Sk.

End of Proof.
The first corollary of the above theorem is that for every k, there are

tournaments with property Sk. The reason is that for every fixed k,
(n
k

)

is a
polynomial in n, while (1 − 2−k)n−k is exponentially small. Therefore, the
condition

(n
k

)

(1 − 2−k)n−k < 1 is satisfied if n is large enough.
Now, let f(k) be the smallest n such that

(n
k

)

(1 − 2−k)n−k < 1. What
are the asymptotics for f(k)?

In order to find the asymptotics, we estimate
(n
k

)

using the inequality
(n
k

)

≤ nk. This is not a good estimate in general (For example, nk

k! is a
better estimate), but it turns out that in this problem using more accurate
estimates won’t give us better results. Also, we know that for small ǫ, we
have 1 − ǫ ∼ e−ǫ, and for all positive ǫ, 1 − ǫ < e−ǫ. Therefore, it suffices
to have nke−2−k(n−k) < 1. Also, it turns out that we won’t lose much by
replacing (n − k) by n. Therefore, we need nk < e2−kn, or equivalently
2kk log n < n.

Now, the problem is to find the smallest n such that α log n < n, where
α = 2kk. If n = α log α(1 + ǫ) for some positive ǫ, we have

α log n = α log (α log α(1 + ǫ)) = α log α+α log((1+ǫ) log α) < α log α(1+ǫ) = n.

Thus, for n = α log α(1 + o(1)), we have α log n < n. Therefore,

f(k) = (2kk) log(2kk)(1 + o(1)) = 2kk2 ln 2(1 + o(1)).

Therefore, if ANS(k) denotes the minimum n for which there is a tour-
nament Tn with the property Sk, we have ANS(k) = O(k22k). The following
theorem provides a lower bound for ANS(k).

Theorem 3.3 If n ≤ 2k −1, then every tournament Tn with n vertices does
not have the property Sk.
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Proof: It is easy to see that there must be a player in the tournament that
wins at least half its games. Let x1 be such a player, and A1 be the set of
players that have beaten x1. Therefore, |A1| ≤ 2k−1 − 1. Now consider a
player x2 in A1 that wins at least half its games with other players in A1, and
let A2 be the set of players in A1 that have beaten x2 (Thus, |A2| ≤ 2k−2−1).
Similarly, we can define x3, x4, . . .. Now, it is not difficult to see that the set
x1, x2, . . . is a set of at most k players with no witness. End of Proof.

Using a more complicated non-probabilistic argument it can be shown
that ANS(k) = Ω(k2k). The exact asymptotic for ANS(k) is not known.

Asymmetric Ramsey Numbers

Let’s assume we want to find R(1000, 2000). Therefore, we need to construct
a 2-coloring of the edges of a complete graph with no red K1000 or blue K2000.
Since the situation is not symmetric between red and blue, we should not use
a fair coin for coloring. Instead, we should bias the coin to color more edges
with blue. Since we don’t know how to bias the coin, we use a technique
called parameterization.

To bound R(k, l) (from below), try a coloring of Kn with Pr[χ({i, j}) =
Red] = p, where p is number that will be fixed later. There are two kinds of
bad events: For every set S with |S| = k, AS is the event that all the edges
between the vertices in S are colored red, and for every set T with |T | = l,
BT is the event that all the edges between the vertices in T are colored blue.
Let BAD =

∨

|S|=k AS ∨∨|T |=l BT .

Clearly, Pr[AS ] = p(k
2) and Pr[BT ] = (1 − p)(

l
2). Therefore,

Pr[BAD] ≤
(

n

k

)

p(k

2) +

(

n

l

)

(1 − p)(
l

2).

Thus, we have proved the following theorem.

Theorem 3.4 If there exists a p ∈ [0, 1] with
(n
k

)

p(k

2) +
(n

l

)

(1 − p)(
l

2) < 1,
then R(k, l) > n.

4 Alteration

Theorem 4.1 For all integer m and p ∈ [0, 1]

R(k, l) ≥ m −
(

m

k

)

p(k
2) −

(

m

l

)

(1 − p)(
l
2)

Proof: Take a random coloring of Km with edges Red with probability
p. For each red Kk and each blue Kl remove one of their vertices. The
remaining graph will have neither red Kk nor blue Kl. As the expected
number of points removed (we may remove the same point more than once
but this just goes in our favor) is

(

m

k

)

p(k
2) +

(

m

l

)

(1 − p)(
l
2)
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so the expected number of points remaining is at least

m −
(

m

k

)

p(k
2) −

(

m

l

)

(1 − p)(
l
2)

and by Erdős Magic this can be achieved.
Asymptotic Calculus: How good does this theorem do? That is, given

k, l, what is the maximum over m, p of

m −
(

m

k

)

p(k
2) −

(

m

l

)

(1 − p)(
l
2)

Lets take k = 4 and l large. We have

(

m

l

)

(1 − p)(
l
2) ≤ [me−pl/2]l

so this will be small if we take, say, l = (3/p) ln m. We want m−
(m

4

)

p6 to be

big. If we take p = m−1/2 then we are subtracting less than m/2 so we still
have at least m/2. That is, we would want l = 3m1/2 ln m or m = cl2/ ln2 l.
So the Theorem gives R(4, l) = Ω(l2 ln−2 l). This isn’t the best known but
its not bad.

2-Colorable Families

Let {A1, A2, . . . , Am} be a family of subsets of a set Ω. We say that this
family is 2-colorable (or has the property B), if there is a coloring χ : Ω 7→
{Red,Blue} such that no Ak is monochromatic.

For example, the family {{1, 2}, {2, 3}, {3, 1}} is not 2-colorable Also,
the family {{1, 2, 3}, {1, 5, 6}, {3, 4, 5}, {1, 4, 7}, {3, 6, 7},{2, 5, 7}, {2, 4, 6}}
is not 2-colorable. This family is constructed from the Fano projective plane

Theorem 4.2 (Erdős 1963) Let |Ai| = n for 1 ≤ i ≤ m. If m < 2n−1, then
{A1, . . . , Am} is 2-colorable.

Proof: Color randomly. Let BADi be the event that Ai is monochromatic.
Since |Ai| = n, Pr[BADi] = 21−n. Let BAD =

∨

i BADi. Therefore,
Pr[BAD] ≤ m21−n < 1. Therefore, there is a coloring which is not BAD,
i.e., no Ai is monochromatic under this coloring. End of Proof. Let m(n)
be the least n such that there is a family {A1, . . . , Am} with |Ai| = n which
is not 2-colorable. Using this notation, the above theorem can be stated as
follows.

Theorem 4.3 (Erdős 1963) m(n) ≥ 2n−1.

In order to find an upper bound for m(n), we need to construct families
that are not 2-colorable. The following non-probabilistic construction gives
such a family. Set |Ω| = 2n − 1, and consider the family of all n-element
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subsets of Ω. This family is not 2-colorable, because for every 2-coloring of
Ω, there is a set of n elements that are colored the same. This shows that

m(n) ≤
(

2n − 1

n

)

∼ c4nn−1/2.

In most problems, the probabilistic method can be applied to find lower
bounds or upper bounds, but not both. However, in this problem Erdős
also used the probabilistic method to improve the above upper bound.

The idea is to pick the sets A1, A2, . . . , Am independently at random
from the set of all n-element subsets of a universe Ω of size v, where v is a
parameter.

Let χ : Ω 7→ {Red,Blue} be a 2-coloring of the universe with a red and
b = v − a blue points. It is easy to see that

Pr[Ai is monochromatic under χ] =

(a
n

)

+
(b
n

)

(v
n

) ≥ 2
(v/2

n

)

(v
n

) .

The last inequality follows from the convexity of the function
(x
n

)

=
x(x−1)···(x−n+1)

n! (this function is defined for all real x) for x ≥ n.
Let BADχ be the event that no Ak is monochromatic under χ. Since

Ak’s are chosen independently, we have

Pr[BADχ] =

(

1 −
(a
n

)

+
(b
n

)

(v
n

)

)m

≤
(

1 − 2
(v/2

n

)

(v
n

)

)m

.

Let BAD =
∨

χ BADχ and GOOD = BAD. By the union bound, since
there are 2v different colorings,

Pr[BAD] ≤ 2v

(

1 − 2
(v/2

n

)

(v
n

)

)m

.

Therefore, we have proved the following theorem.

Theorem 4.4 (Erdős 1964) If there exists v with

2v

(

1 − 2
(v/2

n

)

(v
n

)

)m

< 1,

then m(n) > m, i.e., there is a family A1, A2, . . . , Am ⊂ {1, . . . , v} with no
2-coloring.
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