
Notes on Kruskal’s Algorithm for Minimal
Spanning Tree

In Kruskal’s algorithm (§23.2) the edges are ordered e1, . . . , eE by of weight
and ei is added to the tree if and only if its addition does not cause a cycle.
The data structure that does this efficiently is covered in detail in Chapter
21, which we are not covering. Instead, these notes give a specific imple-
mentation of the algorithm. Assume the edges have already been ordered by
weight and xi, yi are the vertices of ei. To each vertex x we have functions
π(x) and SIZE(x), initially all π(x)← x and all SIZE(x)← 1.

For i = 1 to E we set (for notational convenience) x ← xi, y ← yi and
do the following:
WHILE π(x) 6= x

x← π(x) (*going down the stairs*)
WHILE π(y) 6= y

y ← π(y) (*going down the stairs*)
IF x 6= y then DO

IF SIZE(x) ≤ SIZE(y) then DO
π(x)← y

SIZE(y)← SIZE(y) + SIZE(x)
OTHERWISE DO

π(y)← x

SIZE(x)← SIZE(x) + SIZE(y)
Add ei to Minimal Spanning Tree

At any time the π(x) will give a rooted forest with π(x) = x exactly when
x is a root. In that case SIZE(x) will be the size of the forest. Certain
edges will have already been put in the Minimal Spanning Tree so that the
structure will be a forest. That forest and the forest given by π(x) will have
the same components (though they may have different edges).

Example. e1 = (a, c), e2 = (c, b), e3 = (d, e), e4 = (a, d), e5 = (b, d). With
i = 1 we add e1 to tree, π(a) ← c and SIZE(c) ← 2. With i = 2 we add
e2 to tree, as SIZE(c) > SIZE(b) we set pi(b) ← c and SIZE(c) ← 3.
With i = 3 we add e3 to tree, π(d) ← e and SIZE(e) ← 2. Now i = 4 so
x← a; y ← d. The WHILE parts trace x down to its root c and y down to
its root e. As SIZE(c) > SIZE(e) we set π(e)← c, SIZE(c)← 5 and add
e4 to the tree. Note that the current state of the Minimal Spanning Tree
and the forest given by π have different edges but the same components.
Now with i = 5, x← b; y ← e. Both x, y trace down with the WHILE loops
to the same c so we do nothing and e5 is not added to the tree.



To analyze the time we note that the process is done E times, so we
analyze the process with a particular x = xi, y = yi. The key aspect to the
time is we must iterate π(x)← x until reaching a root. (Similarly for y.) At
first blush, this seems like it might take time V . (V is number of vertices.)
However, here we use the fact that when we earlier considered an edge
x, y and we moved them down to their roots we then reset π(x)← y where
SIZE[y] had been bigger than SIZE[x]. Now the new SIZE[y] became the
old SIZE[x]+SIZE[y]. That is, the new SIZE[y] is at least double the old
SIZE[x]. As x is no longer a root its value of SIZE[x] will never change.
The value of SIZE[y] may change later, but it can only get larger. Hence
we will have 2 ·SIZE[x] ≤ SIZE[y] forevermore. Therefore, as we look at a
path x, π(x), π(π(x)), . . . the value SIZE(·) at least doubles each iteration.
Therefore the path can only be of length log V . This is a big savings over
the length V without this aspect. Now the process with a particular x, y

takes time O(log V ) and therefore the total time is O(E log V ).
Path Compression: (This is extra material and not on the final!) Be-

fore we move “down the stairs” we save, temporarily, the original value of
x. (same for y) with
originalx← x

Then we go “down the stairs” to the new value of x. Now we go back up to
originalx and reset the entire path to arrow the new x:
z ← originalx

π[z]← x

WHILE π[z] 6= z

π[z]← x

z ← π[z]
That is, the entire path from originalx to x is now pointing directly to
x. This has effectively doubled the time, as we go down the WHILE loop
twice. However, when later in the program we have a WHILE loop that hits
originalx it will jump directly to x. That is, the path has been compressed.
Analysis of path compression is remarkably subtle (mathematicians love it!)
but lets just say that it gives an improved running time for MST when n is
really large.


