Fundamental Algorithms, Assignment 7 Solutions

1. Determine an LCS of 10010101 and 010110110.

Solution: We create an eight by eight array giving C[m, n], the length of the LCS between the first m of the first sequence and the first n of the second sequence.

Here is array. The sequences are placed on top and on the left for convenience. The numbering starts at 0 so that the row zero and column zero are all zeroes.

-	-	0	1	0	1	1	0	1	1	0
		0								
1	0	0	1	1	1	1	1	1	1	1
0	0	1	1	2	2	2	2	2	2	2
0	0	1	1	2	2	2	3	3	3	3
1	0	1 1 1	2	2	3	3	3	4	4	4
0	0	1 1	2	3	3	3	4	4	4	5
1	0	1	2	3	4	4	4	5	5	5
0	0	1	2	3	4	4	5	5	5	6
1	0	1	2	3	4	5	5	6	6	6

So the length is 6. Start at the bottom right and walk until hitting the edge. At (i,j) go diagonal left if C[i,j] = C[i-1,j-1] + 1; if not go left or up, whichever is C[i,j]. (We'll go left if they both are.) This gives

-	-	0	1	0	1	1	0	1	1	0
-	0	0	0	0	0	0	0	0	0	0 1 2 3 4 5 6 6
1	0	0	1	1	1	1	1	1	1	1
0	0	1	1	2	2	2	2	2	2	2
0	0	1	1	2	2	2	3	3	3	3
1	0	0	2	2	3	3	3	4	4	4
0	0	1	2	3	3	3	4	4	4	5
1	0	1	2	3	4	4	4	5	5	5
0	0	1	2	3	4	4	5	5	5	6
1	0	1	2	3	4	5	5	6	6	6

The places where you go diagonally left are the same in both sequences and these give the common sequence **010101**. Note that there is no uniqueness to the sequences themselves.

-	_	0	1	0	1	1	0	1	1	0
							0			
1							1			
0	0	1	1	2	2	2	2	2	2	2
0	0	1	1	2	2	2	3	3	3	3
1	0	0	2	2	3	3	3	4	4	4
0	0	1	2	3	3	3	4	4	4	5
1	0	1	2	3	4	4	4	5	5	5
0	0	1	2	3	4	4	5	5	5	6
1	0	1	2	3	4	5	5	6	6	6

2. Write all the parenthesizations of ABCDE. Associate them in a natural way with (setting n = 5) the terms P(i)P(5 - i), i = 1, 2, 3, 4 given in the recursion for P(n).

Solution: Splitting 1-4 gives P(1)P(4)=5 parenthesizations:

$$A(B(C(DE))), A(B((CD)E)), A((BC)(DE)), A((B(CD))E), A(((BC)D)E)$$

Splitting 4-1 gives P(4)P(1)=5 parenthesizations:

$$(A(B(CD)))E, (A((BC)D))E, ((AB)(CD))E, (((AB)C)D)E, ((A(BC))D)E$$

Splitting 2-3 gives P(2)P(3)=2 parenthesizations:

Splitting 3-2 gives P(3)P(2)=2 parenthesizations:

- 3. Let x_1, \ldots, x_m be a sequence of distinct real numbers. For $1 \le i \le m$ let INC[i] denote the length of the longest increasing subsequence ending with x_i . Let DEC[i] denote the length of the longest decreasing subsequence ending with x_i .
 - (a) Find an efficient method for finding the values INC[i], $1 \le i \le n$. (You should find INC[i] based on the previously found INC[j], $1 \le j < i$. Your algorithm should take time $O(n^2)$.) Solution: The longest increasing subsequence ending in x_i is either simply x_i or it is obtained by appending x_i to some subsequence ending in x_j where j < i. One can do that if and only if

 $x_i < x_i$. So we should take INC[i] to be 1 $(x_i \text{ itself})$ plus the

- maximum of the INC[j], j < i, for which $x_j < x_i$. However, if there are no such j (for example, when i = 1) the default value should be 1. Each INC[i] then takes a single loop which is time O(n) and so the total time is $O(n^2)$. (Of course, DEC[i] can be found similarly.)
- (b) Let LIS denote the length of the longest increasing subsequence of x_1, \ldots, x_m . Show how to find LIS from the values INC[i]. Similarly, let DIS denote the length of the longest decreasing subsequence of x_1, \ldots, x_m . Show how to find DIS from the values DEC[i].
 - Solution: LIS is simply the maximum of all INC[i], $1 \le i \le n$, as the subsequence has to end somewhere. Similarly, DIS is simply the maximum of all DEC[i], $1 \le i \le n$.
- (c) Suppose i < j. Prove that it is impossible to have INC[i] = INC[j] and DEC[i] = DEC[j].
 - Solution: Suppose $x_i < x_j$. Then $INC[j] \ge INC[i] + 1$ since you can take the maximal increasing sequence ending at x_i and append x_j . (That may not be optimal, but INC[j] is at least that length.)
 - Similarly, suppose $x_i > x_j$. Then $DEC[j] \ge DEC[i] + 1$ since you can take the maximal decreasing sequence ending at x_i and append x_j .
- (d) Deduce the following celebrated results (called the Monotone Subsequence Theorem) of Paul Erdős and George Szekeres: Let m = ab + 1. Then any sequence x_1, \ldots, x_m of distinct real numbers either LIS > a or DIS > b. (Idea: Assume not and look at the pairs (INC[i], DEC[i]).)
 - Solution: If $LIS \leq a$ and $DIS \leq b$ then there are only ab possibilities for the pair (INC[i], DEC[i]), but from the previous part we have ab+1 distinct pairs!
- 4. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is 5, 10, 3, 12, 5, 50, 6. Solution:
- The matrix chain product of $A_1A_2A_3...A_n$ can be broken down to $(A_1...A_k)(A_{k+1}...A_n)$. To find an optimal parenthesization for n matrices, we find the subset of k matrices, where k < n. And then compose them altogether.
- In our algorithm, we have two matrices, one to record the minimum number of operations it takes and the other to record the parenthesization.

```
\begin{split} & Matrix[i][j] = 0 \, (i=j) \\ & Matrix[i][j] = minm[i][k] + m[k+1][j] + p_{i-1}p_kp_j \\ & Result[i][j] = k+1 \ which \ gives \ min \ values \ to \ Matrix[i][j] \end{split}
```

MATRIX-CHAIN-ORDER()

$$\begin{split} & \text{for}(t=1;\,t < p;\,t++) \\ & \text{for}(i=0;\,i < p-t;\,i++) \\ & \text{for}(k=i;k < i+t;k++) \\ & \text{matrix}[i][i+t] = \text{matrix}[i][k] + \text{matrix}[k+1][i+t] + \text{size}[i] * \text{size}[k+1] * \text{size}[i+t] \\ & \text{result}[i][i+t] = k+1; \end{split}$$

Matrix[i][j] as following

0	150	330	405	1655	2010
0	0	360	330	2430	1950
0	0	0	180	930	1770
0	0	0	0	3000	1860
0	0	0	0	0	1500
0	0	0	0	0	0

Result[i][j] as following

Therefore the optimal parenthesization is (AB)((CD)(EF))

For example, Matrix[2][5] gives the optimal matrix chain product of CDEF. The optimal choice comes from the minimum of C(DEF), (CD)(EF), (CDE)F. Take C(DEF) for example. It divides into subproblem C and DEF. C is given by Matrix[2][2], which is 0 since C

is itself. DEF is given by Matrix[3][5], which is 1860. C is a matrix of 3*12. The result of DEF is a matrix of 12*6. Therefore, $p_{i-1}p_kp_j$ equals 3*12*6 = 216. The number of operations taken to get C(DEF) is therefore 1860+216 = 2076. We can also get (CD)(EF) and (CDE)F with the same manner. They are 1770 and 1830. As a result, we take 1770 for Matrix[2][5] and 4 for k+1, which is recorded in Result[2][5].

5. Some exercises in logarithms:

- (a) Write $\lg(4^n/\sqrt{n})$ in simplest form. What is its asymptotic value. Solution: $n \lg(4) \frac{1}{2} \lg(n) = 2n \frac{\lg n}{2}$.
- (b) Which is bigger, 5^{313340} or 7^{271251} ? Give reason. (You can use a calculator.)

Solution: The numbers themselves are too big for calculators but compare their lgs, which are around 727000 and 761000 respectively so the second is bigger.

- (c) Simplify $n^2 \lg(n^2)$ and $\lg^2(n^3)$. Solution: $2n^2 \lg(n)$ and $(3 \lg n)^2 = 9 \lg^2 n$.
- (d) Solve (for x) the equation $e^{-x^2/2} = \frac{1}{n}$. Solution: $-\frac{x^2}{2} = \lg(1/n) = -\lg n$ so $\frac{x^2}{2} = \lg n$ so $x^2 = 2\lg n$ so $x = \sqrt{2}\sqrt{\ln n}$.
- (e) Write $\log_n 2^n$ and $\log_n n^2$ in simple form. Solution: The first is that x for which $n^x = 2^n$ so $x \lg(n) = n$ so $x = \frac{n}{\ln(n)}$ is the answer. For the second the answer is 2.
- (f) What is the relationship between $\lg n$ and $\log_3 n$? Solution: $\log_3 n = \frac{\lg n}{\lg 3}$. As $\lg(3) \sim 1.5$ is a constant they are "the same" in Θ -land.
- (g) Assume i < n. How many times need i be doubled before it reaches (or exceeds) n?

 Solution: If we double x times we reach $i2^x$ so we need $i2^x \ge n$, or $2^x \ge \frac{n}{i}$ or $x \ge \lg(\frac{n}{i})$. As x need be an integer the precise number of times is $\lceil \lg(\frac{n}{i}) \rceil$.
- (h) Write $\lg[n^ne^{-n}\sqrt{2\pi n}]$ precisely as a sum in simplest form. What is it asymptotic to as $n\to\infty$? What is interesting about the bracketed expression?

Solution: This is Stirling's Formula and is asymptotic to n!. Precisely

$$\lg[n^n e^{-n} \sqrt{2\pi n}] = n \lg n - n \lg e + \frac{1}{2} \lg(2\pi) + \frac{1}{2} \lg n$$

which is asymptotic to $n \lg n$.