
Fundamental Algorithms, Problem Set 1 Solutions

1. Let A is a max-heap with heapsize fifty million, being used as a priority
queue. Suppose HEAP-INCREASE-KEY(A,300,key) is called. What is
the maximum number of exchanges that can take place. What is the
minimal number of exchanges that can take place.
Solution:The minimal number is zero, if the new key has smaller
value than the key of the parent of 300. The maximal number is
achieved when the new key is the largest key in the heap, and so the
exchanges go up to the root. So there are exchanges with 150, then
75, then 37, then 18, then 9, then 4, then 2, then 1 for a total of
eight exchanges. (In general the position A[i] is on row j (counting
the root as row zero) where 2j ≤ i < 2j+1. Reversing, j = ⌊lg i⌋. The
maximum number of exchanges would then be j.

2. When A is a array with length fifty million and MAX-HEAPIFY(A,300)

is called. What is the maximum number of exchanges that can take
place. What is the minimum number of exchanges that can take place.
Solution:With MAX-HEAPIFY we work down to the leaves. The mini-
mum is zero, if the key at 300 is bigger than the keys of both its chil-
dren. The maximum would be if we have to work all the way down the
the leaves. We could exchange with 600, 1200, 2400, 4800, 9600, 19200, 38400
then 76800, 153600, 307200, 614400 then (in rough millions) 1.3, 2.6,5.2,
10.4, 20.8, 41.6. So the total would be seventeen exchanges. (One
might also exchange with the right children, but as we are examining
worst case we consider the left children as they have smaller indexes.)
In general, if the array has length n then starting at i there is a de-
scendent j generations down if and only if i2j ≤ n, or, equivalently,
j ≤ lg(n/i). So the maximal number would be ⌊lg(n/i)⌋.

3. Consider a min-heap H with length 1023. 1 Assume the elements of
the array are distinct. Let x be the third smallest element in the array.
What are the possible positions for x.
Solution:It could be in any position in the first two rows, that is,
from two to seven.
Let y = H[700]. Can y be the largest element in the array?
Solution:Sure, any leaf could be the largest in a min-heap.
Can y be the smallest element in the array?

1Did you recognize 1023 as a special number? Its one less than 1024 = 210. The binary

tree with that many nodes just fills out a row!



Solution:No way, the smallest in a min-heap must be at the root.
(hard!) Give all i for which it is possible that y is the i-th smallest
element of the array.
Solution:Its ancestors (350, 175, 87, 43, 21, 10, 5, 2, 1) must be smaller
so it can be at best tenth smallest. Its descendents must be bigger but
it doesn’t have any descendents. A full proof is a bit complicated (did
you find it?!) but these are the only conditions and it could be the
i-th smallest for any 10 ≤ i ≤ 1023.

4. Using the figures in the text as a model, illustrate the operation of
BUILD-MAX-HEAP on the array A = (5, 3, 17, 10, 84, 19, 6, 22, 9)

5. The operation HEAP-DELETE(A,t) deletes the item in node t from heap
A. Give an implementation of HEAP-DELETE that runs in O(lg n) time
for an n-element max-heap.
Solution:First a simple case: If t is A.heapsize then simply decre-
ment A.heapsize. ELSE first reset A[t] ← A[A.heapsize] and decre-
ment A.heapsize. Now you have the right elements but A[t] may
be in the wrong places. First check if A[t] > A[parent[t]] (Ignore
this if t is the root.) If so, we have a WHILE loop, exchanging A[t]
and A[parent[t]] and then resetting t ← parent[t] while t is not the
root and A[t] > A[parent[t]]. ELSE (that is, if we did not have
A[t] > A[parent[t]], then the only (possible) problem is that A[t] is
too small. So we apply MAX −HEAPIFY [A, t].

6. Let A be an array of length 127 in which the values are distinct and in
increasing order. In the procedure BUILD-MAX-HEAP(A) precisely how
many times will two elements of the array be exchanged?
Solution:BUILD-MAX-HEAP(A) starts from I = LENGTH(A)/2
DOWN to 1, every I will do Max-Heapify.
For 32 ≤ I ≤ 63 ,there should be one exchange.
For 16 ≤ I ≤ 31, there should be 2 exchanges.
For 8 ≤ I ≤ 17, there should be 3 exchanges.
For I = 4, 5, 6, 7 , there should be 4 exchanges.
For I = 2, 3 there should be 5 exchanges.
The root goes down to the bottom, 6 exchanges.
Total: 32 · 1 + 16 · 2 + 8 · 3 + 4 · 4 + 2 · 5 + 1 · 6 = 120
Now suppose the values are distinct and in decreasing order. Again,
in the procedure BUILD-MAX-HEAP(A) precisely how many times will
two elements of the array be exchanged?
Solution:Never! Each element will be placed originally in precisely



its correct final spot.


