
Fundamental Algorithms, Assignment 9
Due April 13/14 in Recitation

For every complex problem there is a simple solution. And it’s
always wrong.
H.L. Mencken, 1880-1956, American satirist.

1. (*) Suppose that the Huffman Code for {v,w, x, y, z} has 0 or 1 as the
code word for z. Prove that the frequency for z cannot be less than
1

3
. Give an example where the frequency for z is 0.36 and z does get

code word 0 or 1.

2. (a) What is an optimal Huffman code for the following code when
the frequencies are the first eight Fibonacci number?

a : 1, b : 1, c : 2, d : 3, e : 5, f : 8, g : 13, h : 21

(b) The Fibonacci sequence is defined by initial values 0, 1 with each
further term the sum of the previous two terms. Generalize the
previous answer to find the optimal code when there are n letters
with frequencies the first n (excluding the 0) Fibronacci numbers.

3. Suppose that in implementing the Huffman code we weren’t so clever
as to use Min-Heaps. Rather, at each step we found the two letters of
minimal frequency and replaced them by a new letter with frequency
their sum. How long would that algorithm take, in Thetaland, as a
function of the initial number of letters n.

4. DO NOT SUBMIT Consider the undirected graph with vertices
1, 2, 3, 4, 5 and adjacency lists (arrows omitted) 1 : 25, 2 : 1534, 3 : 24,
4 : 253, 5 : 412. Show the d and π values that result from running
BFS, using 3 as a source. Nice picture, please!

5. Show the d and π values that result from running BFS on the undi-
rected graph of Figure A, using vertex u as the source.

6. We are given a set V of boxers. Between any two pairs of boxers there
may or may not be a rivalry. Assume the rivalries form a graph G

which is given by an adjacency list representation, that is, Adj[v] is a
list of the rivals of v. Let n be the number of boxers (or nodes) and
r the number of rivalries (or edges). Give a O(n + r) time algorithm
that determines whether it is possible to designate some of boxers as



GOOD and the others as BAD such that each rivalry is between a GOOD

boxers and a BAD boxer. If it is possible to perform such a designation
your algorithm should produce it.

Here is the approach: Create a new field TYPE[v] with the values GOOD
and BAD. Assume that the boxers are in a list L so that you can pro-
gram: For all v ∈ L. The idea will be to apply BFS[v] – when you hit
a new vertex its value will be determined. A cautionary note: BFS[v]
might not hit all the vertices so, just like we had DFS and DFS-VISIT

you should have an overall BFS-MASTER (that will run through the list
L) and, when appropriate, call BFS[v].

Note: The cognescenti will recognize that we are determining if a
graph is bipartite!

7. DO NOT SUBMITShow how DFS works on Figure B. All lists are
alphabetical except we put R before Q so it is the first letter. Show
the discovery and finishing time for each vertex.

8. Show the ordering of the vertices produced by TOP-SORT when it is
run on Figure C, with all lists alphabetical.

9. DO NOT SUBMIT Let G be a DAG with a specific designated
vertex v. Uno and Dos (Spanish for One and Two) play the following
game. A token is placed on v. The players alternate moves, Uno
playing first. On each turn if the token is on w the player moves
the token to some vertex u with (w, u) an edge of the DAG. When a
player has no move, he or she loses. Except for the first part below,
we assume Uno and Dos play perfectly.

(a) Argue that the game must end. Indeed, argue that if G has n

vertices then the game cannot take more than n−1 moves. (Key:
Its a DAG!)

(b) Define VALUE[z] to be the winner of the game (either Uno or Dos)
where the token is initially placed at vertex z and Uno plays first.
(That is, VALUE[z] being Uno means that the player who has the
move will win, VALUE[z] being Dos means that the player who
has the move will lose.) When z is a leaf node and Uno plays first,
Uno has no move and so loses and therefore VALUE[z] is Dos. But
what if z is not a leaf node. Suppose the VALUE[w] are known for
all w ∈ Adj[z]. How do those values determine VALUE[z]? (To
give part of the answer: Suppose there is some w ∈ Adj[z] with



VALUE[w] equal Dos. From z Uno’s winning strategy is to move
to w.)

(c) Using the above idea modify DFS-VIST[v] to find who wins the
original game. In your modified algorithm there will be an extra
function VALUE[w] which is originally set to NIL for all vertices
w, representing that the winner of the game starting at w has not
yet been determined. When the unmodified DFS-VISIT[w]would
be finished add a couple of lines of pseudocode to give VALUE[w].
Give an upper bound on the time of your algorithm.

I cannot live without people. – Pope Francis


