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1. Introduction

The outstanding results for the top-performing countries in the Third International
Mathematics and Science Study (TIMSS) have generated widespread interest in best
teaching practices around the world. In the TIMSS Videotape Classroom Study by
James Stigler et al. [31], the teaching styles in Germany, Japan, and the U.S. were
compared in an effort to discover what makes some programs so successful. The
conclusions from this comparison are striking and have been widely cited, but often
in a highly trivialized and even inaccurate manner. Moreover, this particular study,
as we will show, is marred by design errors that raise serious doubt about some of its
most influential conclusions. Indeed, it is these very findings that have been cited and
accidentally distorted in support of the latest reform programs and education policies —
both in the U.S. and elsewhere.

For example, it is widely acknowledged (cf. [31, p. 134]) that Japanese lessons
often use very challenging problems as motivational focal points for the content being
taught. According to the Glenn Commission! Report [10, p. 16],

*The author is grateful to the ICM, NSF and AMS for their support of this presentation. Disclaimer: although
the assessments and statements in this paper have been made in good faith by the author, they should not necessarily
be viewed as representative of or endorsed by the ICM, NSF or AMS.

The commission’s proper name is the National Commission on Mathematics and Science Teaching for the
21st Century. It was chaired by former U.S. Senator and astronaut John Glenn. The year-long Commission was
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“In Japan, ... closely supervised, collaborative work among students is the
norm. Teachers begin by presenting students with a mathematics problem
employing principles they have not yet learned. They then work alone or in
small groups to devise a solution. After a few minutes, students are called
on to present their answers; the whole class works through the problems and
solutions, uncovering the related mathematical concepts and reasoning.”

We revisit the TIMSS Videotape Classroom Study to resolve the one crucial classroom
question that both the Glenn Commission and the TIMSS Classroom Study group
failed to address:

How can Japanese eighth graders, with just a few minutes of thought, solve
difficult problems employing principles they have not yet learned?

We will see that the technique required to solve the challenge problem of the
day will have already been taught, and that the lesson begins with a review of the
fundamental method needed to solve the problem. Students begin working on these
problems individually — not in groups. Sometimes group-work is allowed for second
efforts on a given assignment, but only after individual seat-work. These lessons
include student-presented solutions, but the presentations are closely supervised by
the teacher, and the time allocated for this activity is limited so that students will be
able to work on a second challenge exercise of the same type, and the teacher will have
enough time to show how to apply a fundamental technique as many as ten times — all
in a single lesson. Stigler’s videotapes reveal master teaching of substantial content
hidden within a warm and inviting teaching style. Students do indeed participate, but
in moderation, and subject to the vigilant oversight of instructors who ensure that no
one wanders off course.

It is also worth noting that the Videotape Classroom Study identified some of the
significant differences between the current reform positions and Japanese teaching
practices. For example, it pointed out that students did not use calculators in the
Japanese classes, and that Japanese teaching has a far higher concentration of proofs
and derivations than both reform and traditional programs in the U.S. The Video-
tape Study also found that Japanese teachers spend more time lecturing than even
traditional U.S. teachers.

These distinctions not withstanding, the notion that Japanese teaching might be
implementing U.S. reforms is given far greater emphasis in a major Government
report, which flatly declares:

“Japanese teachers widely practice what the U.S. mathematics reform rec-
ommends, while U.S. teachers do so infrequently [25, p. 9].”

mandated to develop a strategy to raise the quality of mathematics and science teaching in all of the nation’s
classrooms. Unfortunately, the cited quote was, quite possibly, the most substantive paragraph in their report to
the nation. The preliminary Glenn Commission report cited Stigler and his TIMSS Videotape Classroom Study
as the source of this finding, although the final version omitted the specific citation.
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This report on best teaching practices worldwide makes no mention of any differences
between the U.S. reforms and Japanese teaching styles. Evidently, its perspective (see
also [25, pp. 40—43]) differs from that of its source of primary information, which is
the more cautiously worded TIMSS Videotape Study [31]. Moreover, the differences
identified in the Videotape Study — which concern direct instruction, calculators, and
teacher-managed demonstrations — are all matters of contention in the U.S. debate
over classroom reform.

Finally, we note that studies of individual classroom lessons — no matter how
comprehensive — are necessarily incomplete. They cannot detect how coherent a
curriculum might be day-by-day, much less over the course of years, and are ill-
equipped to assess the completeness of a given math curriculum.

2. Background

The need for sound — and indeed first-rate — K-12 mathematics programs is well
understood. In the U.S., many reform programs have been implemented over the
last fifty years, but the evidence shows that on balance, we have made very modest
progress toward this goal of world-class math education.

The majority of our past reform efforts can be characterized as a tug of war between
traditional and student-centric education movements. Just one of these programs
was sufficiently different to deserve special mention: the so-called New Math that
originated in the 1950s, and which was widely implemented in the *60s. This reform
was pioneered by mathematicians, and was the only program ever to attempt to teach
elementary mathematics from an informal set-theoretic perspective. It failed, in part,
because its implementations did not provide safeguards to ensure that mainstream
American students — and teachers — could handle the material, which is an error
that the current reformers have been very careful to avoid. Finally, the program has
historical importance because its failure led to a fairly sharp separation between those
concerned with K-12 math education and those interested in mathematics research
and college teaching.

In the mid-1980s, a new version of student-centric learning and teaching began
taking hold in the mathematics education community, and it is fair to say that these
ideas have swept the American schools of education, and are likewise well represented
by advocates in many other parts of the world.

In 1989, these ideas were codified into teaching policy when “educators . .. care-
fully articulated a new vision of mathematics learning and curriculum in the National
Council of Teachers of Mathematics’ (NCTM’s) Curriculum and Evaluation Stan-
dards for School Mathematics [6].” The 1989 Curriculum Standards [20], together
with the follow-up 1991 Teaching Standards [21] and the 1995 Assessment Standards
[22] called for a redirection of focus from what to teach grade by grade to new ideas
about how to teach and how to assess student progress. And with the publication of
these documents, the NCTM completed its transformation from an organization that
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began in the 1920s with ties to the Mathematical Association of America, and that
had been led by content-oriented math teachers who endorsed the revolutionary New
Math of the *60s, to an organization led by professors of mathematics education who
endorsed a new type of revolutionary math program? in the *90s.

Loosely put, the theoretical core of this new vision of education is called construc-
tivism. Like most complex social theories, constructivism is founded on a few main
principles, has many interpretations and derived consequences, and a bewildering
variety of implementations. A thumbnail (and necessarily incomplete) sketch of the
main principles of constructivism is as follows.

The philosophical basis of constructivism is that everyone learns differently, and
that we learn best by integrating new knowledge into our own core understandings
and thought processes. Therefore, education is most effective when it engages the
learner to become the main agent in the learning process. That is, learning should be
engaging in every sense of the word. Since we learn by discovering and by doing,
learning is a quintessentially social process wherein through mutual interaction, we
organize, communicate, share, and thereby develop deepened understanding. More-
over, content should be based on real-world problems to reach each learner’s core
knowledge base, and to maximize the purposefulness of each lesson.

As stated, these objectives have merit — especially for teaching younger learners.
Indeed, the author believes that the debate over abstract constructivism misses the
point. However, the teaching reforms advocated by the NCTM include, in addition
to abstract principles, very applied recommendations that have significant impact on
curricula, pedagogy and the opportunity for students to learn mathematics.

Thus, the real questions concern the content and training provided by the reform
program implementations, as well as the consequences of the derivative theories of
learning and testing that are put forward as logical consequences of constructivist
principles. And it is this debate about what kinds of education programs work that
defines the context for the TIMSS Videotape Classroom Study and the classification
of Japanese pedagogy.

The impact of reform principles on classroom structure and course content. The
applied education theories advanced by contemporary reformers must be sketched out
if the various assertions about Japanese teaching and the latest reform recommenda-
tions are to make sense.

The principle of discovery-based learning aims to have the students themselves
discover mathematical principles and techniques. According to Cobb et al. [5, p. 28],

2The NCTM reform program was also endorsed by the federal department of Education and Human Resources,
which provided funds to create reform-compliant textbooks, to support their use, and to support studies designed
to prove that the new programs were effective. To date, more than $75 million has been allocated to produce these
new mathematics textbooks, and about $1 billion has been spent on programs to foster their use. The Educational
Systemic Reform programs, for example, ran for nine years with an annual budget of about $100 million, and
related programs for K-12 math and science education received comparable funding. More about the history of
these programs can be found in [32].
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“It is possible for students to construct for themselves the mathematical
practices that, historically, took several thousand years to evolve.”

In the 1999 Yearbook of the National Council of Teachers of Mathematics, the
article “Teaching Fractions: Fostering Children’s Own Reasoning” by Kamii and
Warrington [15] advises:

“1. Do not tell children how to compute by using numerical algorithms. .
2. Do not tell children that an answer is right or wrong. . ..

3. Encourage children to use their own reasoning instead of providing them
with ready-made representations or ‘embodiments.’

4. Ask children to estimate solutions to problems first because estimation is
an effective way to build strong number sense.”

To be fair to the authors, it should be pointed out that they provide alternatives to
prohibitions 1, and 2. For example, they recommend that the issue of correctness be
resolved by the entire class through cooperative discussion.

These discovery-based policies are often implemented via the workshop model of
teaching where students are seated in clusters of four desks facing each other with
no central lecture place in the classroom. This organization is designed to foster
collaborative learning and to reinforce the teacher’s role as a “guide on the side” as
opposed to the “sage on the stage.” In some programs, the purpose of the teacher
is to introduce the exercise of the day. The students then work in groups of four to
discover what they can about the problem. In the next phase, the students present their
findings to the class, and an active discussion typically ensues. The teacher might
have a role that is confined to being a moderator to maintain order in the discussions.
Likewise, some of the programs feature unsupervised group-work with the teacher
serving mainly as a passive observer.

In the higher grades, the U.S. discovery-based programs feature markedly di-
minished content depth, and the project-based texts exhibit poor coherence in their
management of topics and offering of reinforcement exercises. To date, some reform
programs simply omit material that does not fit within this model. Moreover, this
style of teaching, absent sufficient guidance from the teacher, is typically very time
consuming, and the slow pace cannot help but limit the curriculum.

For example, on page 315 of a tenth grade reform geometry textbook [37], exer-
cise 24 asks the student to draw an equilateral, an isosceles, and a scalene triangle,
and to draw the medians and observe the outcome in each case. The assignment also
asks the students to measure the lengths of the medians and the distance from the
vertices of each triangle to its centroid. The problem finishes by asking, “What do
you conclude?” No proofs are offered or requested, and for good reason. The study
of similar triangles begins in Chapter 13 on page 737, where the final two chapters of
the book present content that is less observation-based.

In 2001, T was invited to observe some of these workshop model classes at a
magnet high school in lower Manhattan. In one of the ninth grade classes, the lesson
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problem of the day was (in mathematical terms) to determine the equation of a line
through the origin that does not intersect any additional points on the integer Cartesian
lattice in R?. The students began the exercise working unsupervised in groups of four.
Then the class convened as a whole to discuss their findings with the teacher serving as
moderator. The tenth (or so) student to speak observed that if the line were to intersect
another lattice point, then it would have a rational slope. The teacher then called on
another student, and this key observation was soon lost. The discussion devolved into
an unsuccessful effort to understand the difference between rational numbers with
finite decimal representations and those with repeating decimal expansions, and the
math period ended with no solution to either question.

In atelevised eleventh grade lesson [24] from a reform textbook series [7], students
seated in groups of four were given the following problem. The teacher displayed
boards of different lengths, widths, and thicknesses suspended between pairs of bricks.
A karate expert, he explained, can deliver the tremendous energy necessary to break
a strong board. For the first part of the lesson, the students were asked to determine
a formula for the energy necessary to break a board as a function of its length and
thickness. The students discussed the question with great enthusiasm. There was no
evidence of any physical modeling, and it was not clear if the class knew Hooke’s
law or not. In the second portion of the lesson, a representative from each group
presented the group’s thoughts to the class. The first to speak was able to intuit that
a longer thinner board would be easier to break, but nevertheless went on to opine
that the formula for the energy E, as a function of the length L and thickness T,
should be E = L + T. Another group thought that the formula should be £ = kLT,
where k is a constant that depends on the physical properties of the wood. In the
next portion of the lesson, students were given strands of dried spaghetti to form a
bridge between two tables, pennies to use as weights, and a paper cup plus paper clip to
suspend on the strand(s) of spaghetti. They then conducted tests with different lengths
and strand counts to see how many pennies were necessary to break the spaghetti —
thus measuring the breaking force, which was misrepresented as energy. The use of
multiple strands served to emulate different thicknesses (albeit incorrectly). Data was
gathered for 1 to 5 strands, and distances of 2 to 5 inches. Then the students used
their graphing calculators under the supervision of the teacher to determine the best
fit for the data, which was £ = 10%, where E is measured in pennies, T in spaghetti
strands, and L in inches.

The TV program closed by noting that with the introduction of this new cur-
riculum, grades were higher, and more students were electing to take three and four
years of math classes. Of course, the stacking of spaghetti strands to model thicker
pasta constitutes a fundamental conceptual error. It is no accident that plywood is
manufactured with bonded layers, and as straightforward mathematical modeling
shows, strength, in a simple model of deformation, is proportional to the square of
a beam’s thickness. Likewise, the confusion between force and energy ill serves the
students, as does the lesson’s implication that mathematics might be an experimental
science.
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The reforms seeking to maximize engagement include mandates to avoid drill
and — by extension — the kind of practice necessary to instill knowledge transfer to
long-term memory.

In concrete terms, the reform programs do not teach the multiplication table in
elementary school. Ocken reviewed all of the printed materials produced by one of
the elementary school reform programs [33] for grades K-5, and found fewer than
30 problems asking students to multiply two whole numbers, both of which contain
a digit greater than five[23]. This program implements the reduced emphasis on
pencil and paper calculations as recommended in the 1989 NCTM Standards, and, as
recommended, supports student work with calculators even in the earliest grades.

Likewise, the standard place-based rules for multiplication of multidigit integers
are no longer taught as essential material. Opponents of these reforms see the structure
of place-based multiplication as precursor knowledge that helps the learner internalize
the more abstract operations of polynomial arithmetic.

In one textbook series [16], the division of fractions was simply omitted from the
curriculum. And long division is long gone from these programs.

To maximize engagement, reformers recommend that problems and content be siz-
uated, which means that exercises, derivations and even theorems should be presented
in an applied context whenever possible. More generally, abstraction and symbolic
methods are eschewed. Of course, the foregoing comments about abstraction and
symbolic methods are just words. In order to understand them, we again take a few
quick peeks into the reform textbooks to see how these theories and recommendations
are turned into practice. For example, one ninth grade reform book [8] has, scattered
among its 515 pages, only 25 pages that even contain an equal sign. Of these, only
pages 435 and 436 actually concern algebra. The totality of the information about
algebra is on page 436, and is as follows.

“Some such equations are easier to solve than others. Sometimes the partic-
ular numbers involved suggest tricks or shortcuts that make them easy to
solve. In each of the equations below, the letter x stands for an unknown
number. Use any method you like to find the number x stands for, but write
down exactly how you do it. Be sure to check your answers and write down
in detail how you find them.

x_7 x_72 x_ll x_5
5 6 24 8 4 7 3
x+1 4 5 19 2_6 9 x,
36 13 x x x 16

The preference for encouraging ad hoc “tricks” and “shortcuts” instead of teaching
systematic methods is evident. Indeed, the text does not present any methods for
solving these problems. The passage also illustrates how the these new programs
encourage students to write expository explanations and avoid teaching students to
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develop and record logical solution strategies based on correct operations, problem
decomposition, and the layered application of systematic methods.
On page 416 of this ninth grade text, problem 3 reads as follows.

a. b. 3. Consider the following pairs of figures.
D |:| In each case, state whether you consider
. the shape to be the same or not, and why.

C. [\ | / k

The chapter goes on to explore some of the most elementary properties of similarity,
but the development is probably closer to the level of sixth grade than ninth, and the
overall content of the textbook is far weaker than, say, the standard sixth grade books
used in Singapore [13].

The comparison with the Singapore books is worthy of elaboration. In an American
Educator article [1], the mathematician Ron Aharoni writes about what he learned
using the Singapore math program to teach first grade in Israel. He points out that these
lessons encourage students to describe problems in words, and feature more discussion
than is common in traditional programs. These characteristics are consistent with
some of the constructivist principles. There are, however, fundamental differences
between this teaching style and the applied recommendations and prohibitions that
characterize — and indeed define — the latest reform practices. Aharoni describes
how he actively teaches insights based on his mathematical knowledge — even in first
grade. And he also points out that significant reinforcement is necessary to help first
graders integrate this first grade content into their own thinking. Interestingly, the fifth
and sixth grade Singapore texts [13] exhibit a transition from this verbal/expository
approach of reasoned problem representation to an informal but precise prealgebra.
The books present — with many detailed examples —a kind of pictorial algebra, where a
physical segment might be used to represent an unknown length. The modeling allows
graphical unknowns to be added, subtracted, and multiplied and divided by integers
in physical representations of equations. Students solve many carefully constructed
word problems with this modeling process and its physical representation of variables.
This representation is used to strengthen intuition and understanding as preparation
for variables and algebra. By the sixth grade, the students are using the method to
solve sophisticated word problems that would challenge U.S. high schoolers. No
U.S. reform text presents such a coherent curriculum, and none provides a systematic
increase of content and problem depth chapter-by-chapter and over the course of years
to build deepening layers of understanding on behalf of the learner.

In terms of pedagogy, Aharoni emphasizes the importance of deep content knowl-
edge and a deep understanding of what is being taught as prerequisites for deciding
how to teach a particular topic [1, p. 13]. He says that the understanding of fundamen-
tal mathematical principles can be taught, but this instruction requires active teaching
by a very knowledgeable teacher.
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The current reform programs, by way of contrast, aim to teach less, not more. In
a ninth grade reform algebra text, for example, students receive enough training to
solve for x in the equation y = 3x 4 2, but there is just one equation in the book that
uses variable coefficients. This one exception, which is on page 748 reads [9]:

“Show how to derive the quadratic formula by applying completing the square
to the general quadratic equation, ax? + bx 4+ ¢ = 0.”

This question requires a tremendous leap in skill given the text’s limited use of equa-
tions with variable coefficients. Moreover, the presentation on completing the square
is so weak that it is inconceivable how any but the most exceptional student could
learn enough to solve this problem. The totality of the exposition reads:

“Here’s an example of how to use completing the square to solve the quadratic
equation x> 4+ 6x —2 = 5.

Since — 2 doesn’t make x? + 6x a perfect square, it is in the way. Move it
to the other side: x% + 6x = 7.

Add 9 to both sides to make the left side a perfect square: x> +6x +9 = 16.
Write the left side as a perfect square: (x + 3)% = 16.”

There is no attempt to teach a systematic approach for completing the square, or to
explain how the magical 9 was selected for use in this particular case.

The avoidance of abstraction and symbolic coefficients, and the recommendations
against teaching systematic methods have undermined the quality of the textbook.
This instance of teaching by one explicit example cannot instill wide-spread under-
standing. And the inclusion of the exercise to derive the quadratic formula (which is
just about the last problem in a very long book) would appear to be based less on it
being an appropriate exercise than on the need to include the topic in the curriculum.?

Ralston recommends the outright abandonment of pencil and paper calculations
in favor of mental arithmetic supplemented by calculators [26]. Non-reformers dis-
agree, and suggest that proficiency in arithmetic is not taught for its own sake but
rather to strengthen the learner’s core knowledge and intuition as a prerequisite for
understanding fractions. Arithmetic fluency is even more important for a mastery of
and fluency in algebra, where the rules of arithmetic are revisited at an abstract level
with the introduction of variables and exponents. Many teachers report that those who
lack a grounding in the concrete operations of arithmetic experience great difficulty
with algebra and its manipulation of symbols. Other non-reformers argue that the
written record of pencil and paper problem solving documents a student’s approach
to a problem, which can be reviewed by the student and the teacher for conceptual
errors as well as computational mistakes. Non-reformers also argue that it is the use
of the written record that allows learners to combine fundamental steps into more

3t is also fair to say that some of the most project-based reform texts are designed around sequences of
typically unrelated projects, which result in a disorganized and incomplete curriculum with very few review and
reinforcement exercises (cf. [33], [8], [7], [9]).
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complex solutions that are too detailed to retain as mental calculations. In addition,
it is argued that the written representations of algebra bring a precision of expression,
of computation and of modeling that surpasses the written word in accuracy, clarity,
and simplicity.

The purpose of this inside review of American mathematics education was to
identify the controversies arising from the latest reforms in concrete (i.e. situated)
— as opposed to abstract — terms. It is time to explain why Japanese pedagogy has
become a topic of worldwide interest, and to investigate how well it aligns with the
latest reform principles.

The Third International Mathematics and Science Study. TIMSS is an enormous
umbrella project that seeks to measure academic achievement around the world, and
which includes many subsidiary studies that analyze a host of related issues in an
effort to determine how best to improve math and science education. TIMSS began
in 1994-95 with the testing of 400,000 students worldwide at grades four, eight, and
twelve. It has grown into a quadrennial program that conducted additional testings
and data acquisitions in 1999 and 2003, and has already begun to lay the groundwork
for the next round in 2007. The program now includes nearly fifty countries, and the
studies cover a large number of independent projects with publications in the many
thousands of pages.

Although there have been some fluctuations in the TIMSS rankings over the last
decade, and the participating countries have varied to some degree over time, the
overall results have been much more consistent than not. This fact is probably a
testament to the meticulous effort to maintain balanced student samples from the
participating countries, and the care that is exercised in the testing protocols and data
analyses. The project also deserves very high marks for adhering to a wonderfully high
standard of scholarship. The research projects produce not only reports of findings
but also detailed documentation of the data acquisition and analysis procedures and
indeed every aspect of project methodology. When feasible, these studies even publish
enough raw data for independent researchers to review every step of the research effort
for independent assessment.

Despite the wealth of information provided by the TIMSS publications, it is fair
to say that two specific TIMSS findings have captured the majority of the headlines,
and have had the greatest influence on classroom practice and education policy.

The most eye-opening results come from the achievement scores of students
around the world. Forexample, in the little multicultural, multilingual, top-performing
country of Singapore, some 46% of the eighth graders scored in the top 10% of the
world. And 75% of their students placed among the top 25% of all eighth graders
worldwide. Just 1% of their students placed among the bottom 25% of all eighth
graders around the world. This is a stunning achievement. Singapore has indeed
shown what it really means to have an education system where no child is left behind.

Moreover, these performance results have held up with remarkable consistency in
each of the TIMSS testing rounds. Just a notch down from Singapore, the next group
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of top performers have been Korea, Hong Kong, Chinese Taipei (formerly known as
Taiwan) and Japan (mostly in this order) with Flemish Belgium trailing somewhat
behind, but consistently next in line.

The U.S. scores are also worth mentioning. Roughly put, American fourth graders
and eighth graders scored somewhat above the international average. But at the twelfth
grade, the U.S. scored at the bottom of the industrialized world, and only significantly
out-performed two countries: South Africa and Cyprus. No other country fell so far
so fast. There was also a more sophisticated twelfth grade test that was reserved for
twelfth graders in advanced math programs in the participating countries. On that
test, the U.S. was next-to-last; even Cyprus performed significantly better.

For completeness, it should be noted that the twelfth grade testing has not been
repeated since 1995 and the U.S. plummet just described. This is unfortunate because
the lack of follow-up testing forces us to infer whether the American mathematics
programs have recovered from the results documented in 1995. Moreover, the real
purpose of a K-8 program is to prepare students for subsequent study as opposed to an
eighth grade TIMSS test. So our understanding of mathematics education around the
world would be greatly enhanced by a schedule of testing that includes grade twelve
as well as grades four and eight.*

In view of the absence of follow-up twelfth grade testing, one could speculate that
the American TIMSS scores might show that the newest programs are beginning to
make a difference. After all, the latest math reforms are often introduced at the earlier
grades first, and then extended by one grade level per year. Could it be that U.S. high
school students are performing better now because more of them are participating in
reform math programs? The answer seems to be a clear no. A variety of studies’
have documented very little progress in high school math achievement over the last
decade. To date, the NAEP scores, for example, have been most notable for their lack
of improvement.

In short, TIMSS testing shows that the US, and indeed most of the world have
K-12 mathematics programs that are nowhere near the quality of the best programs
worldwide. These results constitute a compelling argument for continued testing on
an international scale. Simply stated, TIMSS is one of our best mechanisms for iden-
tifying unforeseen weaknesses in national programs, and for discovering exemplary
programs that can be investigated in an effort to improve domestic teaching.

The other finding that has generated enormous impact can be traced to “TIMSS
Videotape Classroom Study: Methods and Findings from an Exploratory Research
Project on Eighth-Grade Mathematics Instruction in Germany, Japan, and the United
States” [31]. For convenience, we condense the TIMSS Videotape Classroom Study’s
name to TVCS.

4For countries such as Singapore, which do not have a twelfth grade, the testing might well be given at the
completion of the secondary education system.

5 See, for example, Too Little Too Late: American High Schools in an International Context by William H.
Schmidt. In Brookings Education Policy papers 2003 (ed. by Diane Ravitch), pp. 253-277.
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The Videotape Classroom Study documentation. During 1994-95, the TVCS
team recorded 231 eighth-grade mathematics lessons in Germany, Japan and the U.S.
The TVCS project report by Stigler et al. [31] contains an extensive analysis of these
tapes and a description of the data acquisition and analysis methodologies. Stigler and
James Hiebert subsequently conducted a joint study of Japanese training in pedagogy,
which has strong cultural traditions that are surprisingly different from the programs
of teacher development in the U.S. [30]. In 1999, Hiebert and Stigler began a second
TIMSS videotape classroom study [11] that covered a broader selection of higher
performing countries.

These videotape study projects produced a variety of supporting documentation
[34], [35], [36], [14], [12], but the follow-up study did not record a new series of
Japanese lessons and instead relied on the earlier tapings. We cover the main findings
from the second study and the differences in its methodology and conclusions (which
may well have resulted from criticisms of the earlier project), but will focus primarily
on the 1995 TVCS, which remains the far more influential of the two publications.

The 1995 project produced a publicly available videotape [34] that begins with
Stigler presenting an overview of the Japanese lessons that is very similar to the de-
scription already quoted from the Glenn Commission Report. It then shows carefully
selected representative excerpts of the geometry and algebra lessons recorded in Ger-
many, Japan, and the U.S. The German and American lesson samples were produced
in addition to the original 231 recordings, which are not in the public domain due to
confidentiality agreements. The Japanese excerpts were selected from the original 50
tapings recorded in Japan, and disclosure permissions were obtained after the fact.

The TIMSS videotape kit includes a guide to the excerpts [36] and a CD ROM
[35] is available with the same excerpts, but without Stigler’s introduction.

3. What the Japanese video excerpts show

Geometry. The tape shows the Japanese geometry lesson beginning with the teacher
asking what was studied the previous day. After working to extract a somewhat
meaningful answer from the class, he him-
self gives a summary: Any two trian-
gles with a common base (such as AB
in Figure 1) and with opposing vertices
on a line parallel to the base (such as the
line through D, C and P) have the same
/718R \ area because the lengths of their bases are
the Iriungié;_on lhef"sum_e base equal, and their altitudes are equal. The
or height are all the’same. & teacher states this principle and uses his
- - p— computer graphics system to demonstrate

its potential application by moving vertex

Figure 1 P along the line C D. The demonstration
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shows how to deform triangle A B P in a way that preserves its area. Next, he explains
that this principle or method is to be the “foundation [36, p. 136]” for the forthcoming
problem, which he then presents. It is the following.

Eda and Azusa each own a piece of land that lies between the same pair of lines.
Their common boundary is formed by a bent line segment as shown.

The problem is to change the bent line
into a straight line segment that still di-
vides the region into two pieces, each with
the same area as before.

Despite the previous review, the prob-  Eda

lem is still going to be a challenge for Azusa

eighth graders, and it is fair to infer that

the teacher understands this very well. In

geometry, one of the most difficult chal- Fi )
gure

lenges in a construction or proof is deter-

mining where to put the auxiliary lines. These lines are needed to construct the angles,
parallel lines, triangle(s), etc. that must be present before a geometry theorem or prin-
ciple can be applied to solve the problem. For the exercise in Figure 2, the key step
is to draw two crucial auxiliary lines. One defines the base of a triangle that must be
transformed in a way that preserves its area. The other is parallel to this base, and
runs through its opposing vertex.

So what should a master instructor do? The answer is on the tape.

After explaining the problem, the teacher asks the students to estimate where the
solution line should go, and playfully places his pointer in various positions that begin
in obviously incorrect locations and progress toward more plausible replacements for
the bent line. Now here is the point. With the exception of two positions held for
about one second (which come shortly after the frame shown in Figure 4), none of
his trial placements approximate either of the two answers that are the only solutions
any student will find.

Figure 3 Figure 4
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Rather, they are all suggestive of the orientation for the auxiliary lines that must
be drawn before the basic method can be applied. He is giving subtle hints, and
calling the students’ attention to the very geometric features that must be noticed if
the problem is to be solved. It is surely no accident that the teacher pauses with his
pointer placed in two particular locations far longer than anywhere else. One of the
locations is shown in Figure 4. The other is parallel to this placement, but located at
the opposing vertex, which forms the bend in the boundary between Eda and Azusa.

Only after this telling warm-up — the heads-up review of the solution technique
necessary to get the answer, and the casual discussion loaded with visual cues about
what must be done — are the children allowed to tackle the problem.

But this is not the end of the lesson, and the students only get an announced and
enforced three minutes to work individually in search of a solution.

As the children work, the teacher circulates among the students and gives hints,
typically in the form of leading questions such as: “Would you make this the base?
[The question is] that somewhere there are parallel lines, okay [36, p. 140]7”

He then allocates an additional 3 minutes where those who have figured out the
solution discuss it with the other teacher. Weaker students are allowed to work in
groups or to use previously prepared hint cards. The excerpt does not show what hap-
pens next. The TIMSS documentation [36] reports that students prepare explanations
on the board (9 minutes).

Then a student presents his solution. The construction is clearly correct, and he
starts out with a correct explanation. But when the time comes to demonstrate the
solution, he gets lost and cannot see how to apply the area preserving transformation
that solves the problem. The teacher then tells him to use “the red triangle” as the
target destination.

The advice turns out to be insufficient, and the teacher
steps in to redraw the triangle that solves the problem,
and calls the student’s attention to it with the words,
“over here, over here.” The student seems to understand
and begins the explanation afresh. But he soon winds up
saying, “Well I don’tknow what I am saying, but...” He
The atbmis then regains his confidence, and the presentation comes
to an end without additional explanation.

A number of students say that they do not understand.

Figure 5

Then another student explains her answer, but the presentation is omitted from
the tape. According to the Moderator’s Guide [36, pp. 139-41], these two student
presentations take altogether less than three minutes. Next, the teacher explains how
to solve the problem. There are two equivalent answers that correspond to moving
the middle vertex in Figure 1 to the left or right. Both directions solve the problem,
and he shows this.

For completeness, we also show the two ways that the triangle transformation
technique can be used to solve the problem. In order to make the connection between
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the review material and the challenge problem absolutely clear, the problem and
its two answers have been rotated to present the same perspective as the triangle
transformations in Figure 1, which began the day’s lesson.

Evidently, no one devised an alternative solution method.

Figure 6 Figure 7

In his discussion of the solution, the teacher points out [36, p. 141] that this line
straightening technique eliminates one of the two corners at the base of the triangle
in Figures 6 and 7. This observation exposes a subtlety in that the corner that is
eliminated is not the apex of the triangle, which is the point being moved to straighten

out the line.

The lesson then continues with the teacher posing a
new problem that can be solved with the same technique.
This time the figure is a quadrilateral, and the exercise
is to transform it into a triangle with the same area. At
this point, the basic solution method should be within

sound understanding of the basic method. There is also

= )|
.:hnnging‘!he nrzc&

a student’s reach, although the problem still requires a 7 e
/

it into‘o triongle.

added difficulty due to the need to recognize that two

consecutive sides of the quadrilateral should be viewed Figure 8

as representing the bent line of Figure 2, and that the

other two sides should be extended as auxiliary lines to recast this new problem

Figure 9

into a version of the Eda—Azusa exercise. The basic line
straightening method can be applied so that any one of the four
vertices can serve as the point where the line bends, and this
designated vertex can be shifted in either of two directions to
merge one of its two connecting sides with one of the auxiliary
lines. The students again work individually for three minutes,
and then are allowed to work in groups, use hint cards or ask
the teacher.

The TIMSS documentation indicates that this joint phase
lasts for 20 minutes, and includes student presentations of their

answers. There are apparently eight such presentations, which were selected to illus-
trate all eight ways the basic method can be applied: there are four vertices that can
each be moved two ways. Then the teacher analyzes these eight ways in greater depth,
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and explains how they all use the same idea. All students remain seated during this
portion of the lesson, and he controls the discussion very carefully and does almost all
of the speaking. For homework, the teacher asks the students to transform a five-sided
polygon® into a triangle with the same area.

An analysis of the teaching and its content. This lesson is nothing less than a mas-
terpiece of teaching, and the management of classroom time is remarkable. Although
many students did not solve the first problem of the day, the assignment certainly
succeeded in engaging the attention of everyone. The second problem was no give-
away, but it gave students the chance to walk in the teacher’s footsteps by applying the
same ideas to turn a quadrilateral into a triangle. The teacher-led study of all possible
solutions masked direct instruction and reinforcement practice in an interesting and
enlightening problem space.

Evidently, no student ever developed a new mathematical method or principle that
differed from the technique introduced at the beginning of the lesson. Altogether,
the teacher showed how to apply the method 10 times. Yet the lesson is an excellent
example of how to teach problem solving, because each successive problem required
a complete understanding of the basic proof technique.

The homework assignment is yet another application of the same method, and
gives everyone a chance to revisit the lesson of the day once more. It also hints at the
use of induction.

It is also worth pointing out that this geometry lesson, which is a specific appli-
cation of measure preserving transformations, has additional uses. It appears, for
example, in Euclid’s proof of the Pythagorean Theorem (cf. Book I Prop 47 of Eu-
clid’s Elements).” More advanced exercises of this type appear on national middle
school mathematics competitions in China and regional high school entrance exami-
nations in Japan. And it is not much of a stretch to suggest that measure preserving
transformations lie at the heart of those mysterious changes of variables in the study
of integration.

All in all, the lesson is a wonderful example of the importance of a deep under-
standing of fundamental mathematics.

Algebra. The Japanese algebra lesson begins with student-presented answers for
each of the previous day’s six homework problems [36, p. 114]. These activities,
along with the accompanying classroom discussion are omitted from the excerpts.

Then the teacher presents a more challenging problem that uses the same basic
calculation method that the students have been studying, but needs one common-sense
extension. The problem is this.

The problem probably should be restricted to convex figures; otherwise it includes irregular cases that are
difficult to formalize. On the other hand, this concern is just a minor technicality that has no effect on the
pedagogical value of the problem.

In fact, the technique is central to Euclid’s development of area in general, which is based on transforming
any polygon into a square with the same area. And the natural extension of this problem became a question for
the ages: how to square the circle.
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There are two kinds of cakes for sale. They must be bought in integer multiples;
you cannot buy a fraction of a cake. The most delicious cake costs 230 yen, and a
less tasty one is available for 200 yen. You wish to purchase 10 cakes but only have
2,100 yen. The problem is to buy 10 cakes and have as many of the expensive cakes
as possible while spending no more than 2,100 yen.

The reproduction of the six homework exercises as shown in the TIMSS Mod-
erator’s Guide [36, p. 114] confirms that the class was already experienced with the
technical mechanics necessary to solve problems with inequalities. Evidently, prior
lessons had also covered word problems and the translation of word problems into
equations and inequalities. Indeed, the teacher introduces the problem with the re-
marks, “Today will be the final part of the sentence problems [36, p. 159].” Thus, itis
fair to infer that the only difference between the cake problem and the material they
had just reviewed is the requirement that the solution use whole numbers of cakes.

After making sure that the students understand the problem, he asks them to devise
a way to solve it. They get an announced and enforced three minutes.

Next, the teacher solicits solution approaches from the students. A student volun-
teers that she tried all possibilities. Her approach was to try 10 cheap cakes, then 9
cheap ones and 1 expensive one, etc., until she had the best answer. However, she was
unable to finish in the three minutes that the teacher allocated for the problem. The
teacher emphasizes the point, and it will soon become clear that part of the lesson is
to show that this unstructured approach is unsound.

He then briefly discusses another way to solve the problem. The approach, which
is quite inventive, uses a notion of marginal cost. If we buy 10 of the most expensive
cakes, we exceed our budget by 200 yen. Trading in an expensive cake for a cheaper
cake gives a net savings of 30 yen. Evidently, seven cakes have to be traded in, which
shows that the answer is three expensive cakes and seven cheaper ones. As the teacher
expected [36, p. 164], no student solved the problem this way.

Then he calls on another student, who explains how she set up the problem as
an inequality, solved it as an equality, and then rounded the number of expensive
cakes down to the nearest lesser integer. As she explains the equation, he writes it on
the board. Only a few students understand the explanation, and he asks for another
explanation of the same process. In subsequent activities that are only summarized
on the tape and in the Moderator’s Guide, the teacher then passes out a worksheet and
works through a detailed analysis of the solution for the class.

After the detailed presentation, another problem of the same type was assigned,
but with larger numbers. The teacher’s words are telling:

“If you count one by one, you will be in an incredibly terrible situation. In the
same way that we just did the cake situation, set up an inequality equation
by yourself and find out . . . [the answer]. Because finding the answers one
by one is hard, I wonder if you see the numerous good points of setting up
inequality equations ... ”
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The students worked on the problem individually. After 11 minutes, the teacher went
over the problem with the class. The class ended with the teacher summarizing the
solution technique that constituted the lesson of the day.

The video excerpts contain no group-based problem solving in this algebra lesson,
and the Moderator’s Guide confirms that none of the class time included problem
solving in groups.

An analysis of the teaching and its content. Students never developed new solu-
tion methods. In the algebra class, the students were given the opportunity to learn
first-hand why ad hoc trial-and-error approaches (which are encouraged by some of
the latest reform recommendations) do not work. Although the tape does not explicitly
show how many students were able to solve the original cake problem in the allotted
time, the student responses suggest that no more than five could have possibly suc-
ceeded. But the three minutes of struggle might well have served to make the lesson
more purposeful.

From a mathematical perspective, the cake problem was designed to require a deep
understanding of inequality problems and their solutions. Mathematicians would say
that when we solve a problem, we find all of the answers. If the cake problem had
allowed fractional purchases, and had simply required that altogether any mix of ten
cakes be purchased for at most 2100 yen, then the algebraic formulation would read,

230x 4+ 200(10 — x) < 2100,

where x is the number of expensive cakes purchased, and 10 — x is the number of the
inexpensive ones. The problem would also require that x be non-negative, since you
cannot buy negative quantities of cake. A little manipulation gives:

10

< —.

-3

Now, the point is that every x in this interval is a solution to the simplified problem,
and every solution to the problem is in this interval. So if we want a special answer,
the interval [O, %] is the place to look. If we want the largest x, it is ?. If we want
the largest integer x, it is 3. And if we wanted the largest even integer, for example,
we would look nowhere else but into [0, 13—0] to conclude that this answer is x = 2.
Incidentally, a complete answer must also observe that the number of inexpensive
items must be non-negative.

This problem variant is more than a matter of common sense; it exposes students
to a deep understanding of solutions to inequalities and the implications of real world
constraints. Moreover, the problem illustrates the idea of decomposing a complex
exercise into a more basic problem whose solution can then be adapted to achieve the
original objective.

Evidently, the video excerpts feature challenge problems that cover fundamental
principles, techniques, and methods of systematic thought that lie at the heart of
mathematics and problem solving. As such, they ought to provide experiences that

0<x
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build a powerful foundation of intuition and understanding for more advanced material
yet to come. As a derivative benefit, these problems are so rich they can be readily
transformed into follow-up exercises for use as reinforcement problems in class and
as homework.

Both lesson excerpts exemplify a multi-round teaching and reinforcement peda-
gogy that begins with review of the fundamental (and systematic) principle that is the
key to solving the challenge problem. The review is followed by two or three rounds
(when homework is counted) that feature equivalent problems, often with additional
educational content. Between each round, the teacher guides the students through
the solution process to open the eyes of each learner to the basic idea, and to give
the students yet another chance to apply the technique by themselves and to integrate
the material into their own understanding — all in an engaging style without rote or
tedium.

4. What can be deduced about Japanese teaching?

Many publications claim that the Japanese lessons teach students to invent solutions,
develop methods and discover new principles. For example, this view is expressed in
the Glenn Commission report [10, p. 4], and is clearly stated in TVCS as well: “[In
Japan, the] problem ... comes first [and] ... the student has ... to invent his or her
own solutions [31, p. vi].” Infact, TVCS reports that the 50 Japanese lessons averaged
1.7 student-presented alternative solution methods per class [31, Figure 22, p. 55]. Yet
the excerpts exhibit no signs of such activity. They contain just one student-devised
solution alternative, and it failed to produce an answer.

These differences are fundamental, and they should be reconciled. Part of the
problem is that students are unlikely to devise their own solutions when the time
is limited, the problems are so difficult that hints are needed, and the exercises are
(clearly) designed to teach the value and use of specific techniques. Students would
presumably have a better chance of finding alternative solution methods for less chal-
lenging exercises. And they would have an even better chance with problems that can
be solved by a variety of methods that have already been taught. Examples might
include geometry problems where different basic theorems can be used, and studies
of auxiliary lines where the exercises are designed so that different auxiliary lines
build different structures that have already been studied. TVCS illustrates alternative
solution methods with the U.S. assignment to solve x2 +43x —43 = 0 by completing
the square and by applying the quadratic formula [31, p. 97]. Of course, this problem
directed students to use different methods they already knew. The example contains
no hint of any discovery.

So the question remains: where are the alternative solution methods, and when do
they demonstrate signs of student-discovery?

The answers are in TVCS. It presents the actual examples that were used to train
the data analysts who counted the “Student Generated Alternative Solution Methods”
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(SGSM1, SGSM2, ...) in each lesson. The training lessons, it turns out, were the
Japanese excerpts that we have just analyzed. The two student presentations for the
Eda—Azusa problem are coded as SGSM1 and SGSM2 [31, p. 26-27]. Similarly,
the second problem, where each of four vertices could be moved in two directions,
has the codings SGSM1-SGSMS. Altogether, this lesson is counted as having 10
student-generated alternative solution methods, even though it contains no student-
discovered methods whatsoever. And the failed try-all-possibilities approach in
the Japanese algebra excerpt is counted as yet another student-discovered solution
method. (See also “Teacher and Students Presenting Alternative Solution Methods
[36, pp. 161-163].”)

TVCS also contains a partial explanation for the source of these judgments. It
reports that the data coding and interpretation procedures were developed by four doc-
toral students — none of whom were in mathematics programs [31, p. 24]. Moreover,
TVCS states that the project’s supporting mathematicians only saw coder-generated
lesson tables, and were denied access to the actual tapes [31, p. 31]. It is reasonable
to infer, therefore, that they did not participate in the design of these coding practices.
As for the question of invention, TVCS explains: “When seat-work is followed by
students sharing alternative solution methods, this generally indicates that students
were to invent their own solutions to the problem [31, p. 100].” Altogether, there ap-
pears to have been a sequence of misinterpretations that counted student presentations
as alternative solution methods, which became student-generated, and then invented
and which ultimately evolved into invented discoveries that might even depend on
new principles the students had not yet learned ([31], [25], [10]).

On the other hand, the contributions by the Japanese teachers received much less
generous recognition. Yet in the defining examples of student discovery, the teachers —
not the students — manage the ideas and lead the education process.

Additional statistics from the TIMSS projects. It is worth reiterating that in the
sample Japanese lessons, students began working individually — and not in groups —
on each of the four representative exercises. Similarly, the Stigler—Hiebert analysis
[30, p. 79] states that “Students rarely work in small groups to solve problems until
they have worked first by themselves.” TVCS contains no comparable statement, and
even implies otherwise: “[After the problem is posed, the Japanese] students are then
asked to work on the problem ... sometimes individually and sometimes in groups
[31, p. 134].” However, not one of the 86 figures and bar charts documents instances
where problems began with students working in groups. Chart41 [31, p. 78] indicates
that of the seat-work time spent on problem solving, 67.2% of the time comprised
individual effort and 32.8% of the time was spent in group-work.

Another TIMSS study addressed this issue in the statistics it gathered for a care-
fully balanced sampling of 3750 or so eighth graders from each participating coun-
try. One of its questionnaires asked teachers about their classroom organization and
whether most of their lessons included students working in small groups, individu-
ally, as a class, etc. The results, which were weighted by the number of students
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in each responding teacher’s class, are reproduced below for the U.S. and Japan [3,
pp. 154-155].

Percent of Students Whose Teachers Report Using Each Organizational Approach "Most or Every Lesson"

Work Together as i i i i
aClasswith | VorkTOgether as | \york individually| Work Individually sﬁg{,“gg;ff,;;ﬂ;}{,, W;,;,';;,"g;;;;gf
Students Teacher Teaching | With without Assi from | without Assistance
Responding to One | the Whole Class from Teacher from Teacher Teacher from Teacher
Another
Japan 22 78 27 15 7 1
- G 3 T G 3 3
United States 22 49 50 19 26 12
An "r" indi teacher data i for 70-84% of students.
Figure 10

The table shows that Japanese lessons do not have significant numbers of small-group
activities. In fact, American classes evidently contain about 4 times as many such
lessons. Of course, it should be noted that the data is based on questionnaires and
depends, therefore, on the judgment of each respondent. The meaning of “most or
every lesson” might have cultural biases, as might the definitions of “small groups”
and “teacher assistance.” Still, these TIMSS statistics support the notion that the
Japanese style of teaching is substantially different from many of the U.S. reform
practices.

Placing Japanese teaching in the context of U.S. reform. The video excerpts show
Japanese lessons with a far richer content than the corresponding offerings from the
U.S. and Germany. TVCS reports that the eighth-grade lessons recorded in Japan,
Germany, and the U.S. covered material at the respective grade levels 9.1, 8.7, and
7.4 by international standards [31, p. 44]. We suspect that the interactive nature of the
teaching style, the coherent, concept-based exercises with disguised reinforcement
problems, the motivated direct instruction, and the deep understanding of the teachers
all contribute to the quality of the Japanese curriculum.

Additional analysis shows that 53% of the Japanese lessons used proof-based
reasoning, whereas the comparable statistic for the US lessons — which included
both traditional and reform programs — stood at zero [31, p. vii]. And comparisons
evaluating the development of concepts — including their depth and applicability —
and the overall coherence of the material likewise judged the Japanese programs to
be vastly superior [30, p. 59]. By all evidence, the use of proof-based reasoning as
reported in Japan is not at all representative of the reform programs in the U.S., and
the use of such remarkably challenging problems is beyond the scope of any American
program past or present.

When comparing U.S. reform practices and Japanese teaching methods, TVCS
offers somewhat guarded conclusions that are sometimes difficult to interpret:

“Japanese teachers, in certain respects, come closer to implementing the
spirit of current ideas advanced by U.S. reformers than do U.S. teachers.
For example, Japanese lessons include high-level mathematics, a clear
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focus on thinking and problem solving, and an emphasis on students de-
riving alternative solution methods and explaining their thinking. In other
respects, though, Japanese lessons do not follow such reform guidelines.
They include more lecturing and demonstration than even the more tradi-
tional U.S. lessons [a practice frowned upon by reformers], and [contrary
to specific recommendations made in the NCTM Professional Standards
for Teaching Mathematics] 3we never observed calculators being used in a
Japanese classroom [31, p. vii].”

Subsequent elaboration on the similarities between U.S. reform and Japanese peda-
gogy recapitulates these ideas in the context of various reform goals, but again offers
no statistical evidence to compare with the data accumulated from the analysis of
Japanese teaching practices [31, pp. 122-124]. Consequently, it is difficult — absent
additional context — to compare these reform notions in terms of mathematical coher-
ence, depth, international grade level, or the preparation of students for more advanced
studies and challenging problems. And no matter what “the spirit of current reform
ideas” may mean, it is clear that Japanese and U.S. reform pedagogies differ in their
management of classroom time, their use of proof-based reasoning, their tradeoffs
between student-discovery and the use of direct instruction, as well as their use of
individual and small group activities.

For completeness, we note that TVCS makes a distinction between the idealized
goals as prescribed in the NCTM Professional Standards for Teaching Mathematics,
and as embodied in actual classroom practices of some reform programs. In particular,
TVCS discusses two reform-style lessons. One involved students playing a game that
was purported by the teacher as being NCTM compliant, but happens to have very
little mathematics content: “It is clear to us that the features this teacher uses to define
high quality instruction can occur in the absence of deep mathematical engagement
on the part of the students [31, p. 129].” The other lesson was deemed compliant with
the spirit of NCTM reforms. It began with the teacher whirling an airplane around
on a string. The eighth graders then spent the period working in supervised groups
to determine the speed of the plane, and came to realize that the key issues were
the number of revolutions per second, and the circumference of the plane’s circular
trajectory. The problem also required a realization that units conversions would be
needed to state the speed in miles per hour. The problem engaged the class, and
a variant to compute the speed of a bird sitting on the midpoint of the string was
evidently a challenge. The homework for this math class was a writing assignment:
the students were asked to describe the problem, to summarize their group’s approach,
and to write about the role they played in the group’s work [31, p. 127]. TVCS did
not evaluate this lesson or the homework in terms of international grade level or its
coherence within a curriculum.

8The bracketed additions are elaborations from page 123 of TVCS, where the discussion of calculator usage
is reworded and thereby avoids the slight grammatical misconstruction we have caused with the unedited in-place
insertion.
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Other characterizations of Japanese classroom practices. Studies thatuse human
interaction as a primary source of data must rely on large numbers of interpretations
to transform raw, complex, occasionally ambiguous, and even seemingly inconsistent
behavior into meaningful evidence. Given the complexity of the lessons, it is not
surprising that different interpretations should arise. TVCS —to its credit — documents
an overview of these decision-making procedures, although the actual applications
were far too numerous to publish. Moreover, TVCS actually contains widely diverse
observations, ideas, and conclusions that sometimes get just occasional mention, and
that are necessarily excluded from the Executive Summary. Understandably, this
commentary is also missing — along with any supporting context — from the one-
sentence to one-paragraph condensations in derivative policy papers (cf. [25], [10]).
Perhaps the seventh and eighth words in the opening line of the TVCS Executive
Summary explain this issue as succinctly as possible: “preliminary findings [31,
p- vI.” It is now appropriate to explore these larger-picture observations and to place
them within the context of actual lessons.
TVCS even offers some support for our own observations:

“[Japanese] students are given support and direction through the class dis-
cussion of the problem when it is posed (figure 50), through the summary
explanations by the teacher (figure 47) after methods have been presented,
through comments by the teacher that connect the current task with what
students have studied in previous lessons or earlier in the same lesson (fig-
ure 80), and through the availability of a variety of mathematical materials
and tools (figure 53) [31, p. 134].”

Unfortunately, these insights are located far from the referenced figures and the expla-
nations that accompany them. The words are effectively lost among the suggestions
to the contrary that dominate the report. Itis also fair to suggest that the wording is too
vague to offer any inkling of how powerful the “support and direction through class
discussion” really was. Similarly, the value of the connections to previous lessons
is left unexplored. This discussion does not even reveal whether these connections
were made before students began working on the challenge problems, or after. For
these questions, the video excerpts provide resounding answers: the students received
masterful instruction.

The Math Content Group analyzed a representative collection of 30 classroom
lesson tables. Their assessments, as sampled in TVCS, agree with our overall ob-
servations, apart from the use of hints, which were mostly omitted from the tables.
These analyses are highly stylized with abstract representations for use in statisti-
cal processing and were, presumably, not intended to be a reference for the actual
teaching.’

9For example, the analysis of the excerpted geometry lesson consists of a directed graph with three nodes,
two links and nine attributes. The first node represents the basic principle (attribute PPD) illustrated in Figure
1. The node’s link has the attributes NR (Necessary Result) and C+ (Increased Complexity). It points to a
node representing the first challenge exercise. The representations were used to get a statistical sense of various
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Another sentence in TVCS begins with teachers helping students, but ends with
students inventing methods.

“The teacher takes an active role in posing problems and helping students
examine the advantages of different solution methods [however, rather than
elaborating on how this takes place, the sentence changes direction with
the words], but the students are expected to struggle with the mathematical
problems and invent their own methods. [31, p. 136].”

This interpretation of student work as inventive discovery appears throughout TVCS.
In its analysis of the excerpted Japanese geometry lesson, TVCS categorizes the
teacher’s review of the basic solution method (shown in Figure 1) as “APPLYING
CONCEPTS INNEW SITUATION [31, Figure 63, p. 101],” but inexplicably switches
tracks to count the student applications as invented student-generated alternative so-
lution methods. Another such instance reads, “students will struggle because they
have not already acquired a procedure to solve the problem [31, p. 135].” Similarly,
TVCS never explains how teachers participate in the problem solving by teaching
the use of methods and by supplying hints. Its only discussion about hinting is to
acknowledge the offer of previously prepared hint cards [31, pp. 26-30]. And by the
time the Glenn Commission finished its brief encapsulation of student progress, even
the struggle had disappeared along with proper mention of extensive teacher-based
assistance.

5. The matter of pedagogy

Having sequenced through the Japanese lesson excerpts to determine exactly what
took place in the classrooms, we now compare these applied teaching practices with
current reform principles.! One of the most important differences between these
two approaches to teaching concerns discovery-based learning. As with any idealized
theory, the real issue is how well it works in practice. Discovery-based lessons can
make sense — in moderation — provided suitable safeguards are in place. In particular:
e Judgments must resolve how much time is needed for students to discover the
mathematics, and the necessary tradeoffs among time for guided discovery, time
for additional (or deeper) lessons, and time for practice.

e There must be detection/correction mechanisms for incomplete “discoveries”.
e There must be allowances for the fact that in even the best of circumstances, only

a few students will succeed in discovering non-trivial mathematical principles.
The lesson excerpts reveal a teaching style that is surprising and very different from
the U.S reforms —in theory and practice. In the Japanese classes, the time allotted for
the first round of grappling with problems is remarkably modest. Consequently, the

broad-brush characteristics of the lessons [31, pp. 58—69].
105¢e [2] for an enlightening albeit jargon heavy exposition on the differences between the theories of learning
advanced by educators and by cognitive psychologists.
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remaining time is sufficient for teacher-assisted student presentations to help identify
conceptual weaknesses, and for direct instruction to present new insights, as well as for
follow-up problems designed to solidify understanding. Due to the time limitations
and the difficulty of the more challenging problems, many students will be learning
via a model of “grappling and telling.” That is, most students will struggle with
a tough problem in class, but not find a solution. They will then learn by being
told how to solve it, and will benefit by contrasting their unsuccessful approaches
against methods that work [27]. There is no question that preliminarily grappling
with a problem is both motivational and educational (cf. [4, p. 11] and [27]). And
discussions to understand why some approaches fail, to understand why a solution
might be incomplete, and to explore alternative problem solving techniques are all
sound investments of class time. However, the use of grappling and telling raises the
implementation question:
Who should do the telling?

In some teaching practices, the theory of discovery-based learning is extended to
include the notion of cooperative learning, which holds that the students should teach
one another because they “understand” each other. In contrast, the TIMSS videotape
and the data in Figure 10 show that Japanese teaching is by no means purely or princi-
pally based on cooperative learning. Although students get to explain their solutions,
the video excerpts show that Japanese teachers are by no means passive participants.
Student explanations frequently need — and get — supervision, and students can be
remarkably incoherent (cf. Figure 5) even when their solutions are absolutely perfect.
When all is said and done, the teachers do the teaching — and the most important
telling — but in an interactive style that is highly engaging and remarkably skillful.

Stigler and Hiebert report that the lessons do not adhere to a fixed organization.
Some lessons feature more direct instruction or extended demonstrations, whereas
others demand that the students memorize basic facts [30, pp.48—51]. Students might
even be asked to memorize a mandate to think logically [30, p. 49].

Aharoni’s article on experimental math programs in Israel deserves mention in
this context. In the late 1970s, Israel developed a unique and nearly unrecognizable
adaptation of the 1960s New Math, which is still in use to this day. The curriculum
has been controversial; Israel had placed first on the original 1964 precursor to the
TIMSS exams, and had fallen to 28th place on TIMSS 1999. Of course, this small
country has experienced demographic shifts and many other sources of instability, so
this drop in rank is by no means proof that the curriculum has failed, but there were
other concerns about the program, and the TIMSS results gave little reason to believe
that all was well.

Israel was just months away from adopting the latest U.S. reform standards when
circumstances led to a reconsideration and the decision to test a program based on
translations of the Singapore textbooks (from English). Aharoni is participating in
this experiment, and writes about his experiences with these textbooks.

He argues that teachers must have a deep knowledge of fundamental mathematics
if they are to instill a sound understanding of elementary arithmetic. His first-grade



26 Alan Siegel

teaching uses deep insights to provide a purposeful understanding of the most basic
arithmetic operations. For example, he guides first-graders through story problems
designed to open their eyes to the many different ways that a single operation — such
as subtraction — can be used in the modeling of problems so that all students will
enter the higher grades with the intuition and core knowledge necessary to master the
translation of word problems into the native language of algebra. Only time will tell
if the program is successful, but if so, his observations would have implications about
best practices and teacher training.

This perspective places high demands on teachers and — by extension — on schools
of education. Currently, most education programs allocate modest resources for
courses on mathematics content, and very few programs are prepared to offer the
kind of deep applied understanding that Aharoni describes. Instead, schools of ed-
ucation typically emphasize courses on developmental psychology, learning theory,
and related topics such as authentic assessment, which is a grading practice based
on portfolios of student work such as a study of how ancient Greek geometry was
used 2000 years ago, or on real-life applications of periodicity — as opposed to ex-
ams. Similarly, very few mathematics departments feature course offerings on deep
knowledge for K-12 instruction. This problem is further compounded by the certainty
that most education majors would not have attended K-12 programs where such deep
understanding would have been taught.

A small, but highly respected and widely cited comparative study by Liping Ma
gives additional insight into this problem. In her study, American and Chinese el-
ementary school teachers were asked to compute 1% = % and to give a physically
meaningful problem where the answer is determined by this computation. In the
U.S., only 43% of those questioned performed the calculation correctly, and just one
of the 23 teachers provided a conceptually correct story problem. In China, all 76
teachers performed the calculation correctly, and 80% came up with correct story
problems [17].

In contrast, Hiebert and Stigler came to very different conclusions about how best
to foster world-class teaching. They began with the TVCS tapes and findings, and
conducted new investigations into Japanese teaching traditions. Their findings are
published in The Teaching Gap: Best ldeas from the World’s Teachers for Improving
Education in the Classroom [30]. According to the authors, “differences” such as
“teaching techniques, . .. and [teaching] basic skills [versus teaching for] conceptual
understanding . . . paled” in comparison to the differences they observed in the culture
of teaching. In their view, the Japanese tradition of life-long reflection on how to teach,
and the culture of teachers sharing these ideas among each other in a continuing process
of professional development was more significant than any of these other issues, which
comprise the entirety of the debate over education reform in the U.S. and elsewhere.
That is, they opined that the Japanese practices of ongoing collaborative- and self-
improvement were even more important than the current state of the Japanese art of
teaching as well as the curriculum differences reported in their book.

However, in a follow-up videotape classroom study of teaching in Australia, the
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Czech Republic, Hong Kong, Japan, the Netherlands, Switzerland, and the United
States, Stigler and Hiebert came to different conclusions [11]. For this study, new
data coding schemes were developed to replace those used in the 1995 TVCS. Two
of the findings are particularly noteworthy. First, the new study does not mention
student-invented or student-discovered solution methods, and instead of reporting an
average of 1.7 student-presented solution alternatives per Japanese lesson, the new
study reports that 17% of the Japanese problems featured presentations of alternative
methods [11, p. 94], and that students had a choice of methods in 31% of the lessons.
Second, the study found no unifying theme to explain why the stronger countries
perform so well. According to the authors:

“A broad conclusion that can be drawn from these results is that no sin-
gle method of teaching eighth-grade mathematics was observed in all the
relatively higher achieving countries participating in this study [12, p. 11].”

“It was tempting for some people who were familiar with the 1995 study to
draw the conclusion that the method of teaching mathematics seen in the
Japanese videotapes was necessary for high achievement [11, p. 119].”

Evidently, this positional retreat (see also [11, p. 1]) must include Stigler, Hiebert,
and the Glenn Commission, among others. And the fact that the follow-up videotape
study did not report student-discovered mathematics suggests that the earlier finding
of student discoveries was inaccurate.

These changes in understanding notwithstanding, the earlier TVCS and the follow-
up The Teaching Gap: Best Ideas from the World’s Teachers for Improving Educa-
tion in the Classroom will almost certainly outlive the more recent Hiebert—Stigler
classroom study. These earlier publications continue to make must-read lists on edu-
cation, and continue to inspire calls for reforms based on their findings. For example,
on November 21, 2005, a New York Times editorial titled “Why the United States
Should Look to Japan for Better Schools” cited the Teaching Gap book, and issued a
call to reconsider

“how teachers are trained and how they teach what they teach” (emphasis added).

Not one word was spent on the importance of what content is taught, and what a
teacher should know in depth [29].

6. Conclusions

Mathematicians often ask what they can do to help preserve the integrity of K-12
math programs. In 1999, a letter protesting the new textbooks was signed by more
than 200 leading American mathematicians and scientists and was published in the
Washington Post. It had some positive results, but failed to stop the latest reforms.
A similar protest in Israel was successful — but just barely. In California, protests
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supported by grassroots parents organizations, mathematicians, scientists, concerned
journalists, and politicians were able to secure a sound revision of the State K-12 math
standards in 1997 — after more than five years of struggle.

In many countries, mathematics societies will probably be most effective by lob-
bying as a group and by seeking a role in the textbook adoptions and in overseeing
the assessment programs. In the U.S., reform curricula have often been introduced in
conjunction with new testing programs designed and even managed by the publishers
of the newly adopted textbooks. This practice eliminates the opportunity to compare
pre- and post-reform student achievement. And publishers seldom provide in-depth
testing on the weakest aspects of their own programs.

It is also worth pointing out that program validation tests should cover an entire
curriculum. Whereas achievement tests should concentrate on the most important
material that can be covered in the allotted time, the testing of education programs
should use sampling to achieve comprehensive coverage at a nominal marginal cost in
the overall testing process. Needless to say, the oversight required for these assessment
programs should be of the highest caliber.

Some tests use closely guarded questions. The secrecy allows the same questions
to be used year after year to maintain consistency in the scoring. For example, one
of the more widely cited validation studies relied mainly on a test that to the best
of my knowledge has had only three of its questions appear in the literature. This
achievement test was devised to align with the new math reforms, but is also reported
to assess basic computational skills. It is given over a period of three days with the
teachers retaining custody of the materials after school. So its questions are not really
secret, and the administrative procedures lack safeguards to protect the integrity of
the assessment program. Sometimes students were even allowed to rework questions
from the previous day. Moreover, the test manufacturer does not require the test to
be given with time limits, which are optional even for the testing of basic skills. The
validation project reported year-by-year improvement of fourth-grade scores with the
new reform program, but this progress was not matched by the scores for the more
securely administered state testing of fifth graders.

In the U.S., the government-mandated No Child Left Behind (NCLB) testing
(with state-determined tests) shows good progress for the majority of our states year
by year, whereas the National Assessment of Educational Progress (NAEP) math
testing shows that the net achievement of our twelfth graders has been unchanged
nationwide for more than a decade. Something does not quite add up. The NAEP
uses a mix of new and secret questions but is designed to be free of the biases that
result from test-specific instruction and cramming. It is given to randomly selected
schools, and the performance results are reported at the state level with additional
results for subcategories based on gender and socio-economic status. Each student
is given a randomly selected subset of test questions, and no performance results are
released for students, schools, school districts, or education programs. Consequently,
there is little incentive to teach to the test. The majority of the California achievement
test questions are released and retired each year, and state law forbids the use of these
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materials in classroom preparation for forthcoming tests. There are programs in place
to detect cheating, but it is not possible to know how effective they are, and students
can always use these questions for practice independently of their school assignments.
In New York, there are no such prohibitions, and many New York City schools use old
tests routinely in required after-school preparation sessions held during the six weeks
prior to the State and City testing.

But although the NAEP may be our most uncompromised testing program, it is
far from perfect. The test is consensus-based, with an oversight committee that has
limited authority and where only about 10% of its members are mathematicians. The
web-released sample questions suggest that the twelfth grade test is probably at a
sixth grade level, on average. A representative question on fractions might be to
compute two-thirds of 12 marbles. Evidently, the NAEP Governing Board (NAGB)
has not reached a consensus about the benefits of knowing if an American high school
education enables seniors to evaluate, say, 1/6 — 1/9, much less 2% — 4%.

To date, just one of the released algebra problems is categorized as solving a
system of equations. This twelfth grade multiple choice question reads:

What number, if placed in each box below, makes both equations true?
4x[|=[]and 3x[|=[ A)O B) 1 02 D)3 E)4

A “hard” problem reads:
For what value of x is 8> = 162  A)3  B)4 (8 D)9 E)12

Only 34% of our high school seniors found the correct answer even though calculators
were available for use on this problem. The NAEP testing also asked students if they
used a calculator for this question, but this data, unfortunately, does not appear to
have been released on the web.

Needless to say, the TIMSS test questions and testing procedures, unlike many
U.S. practices, stand out as a beacon of hope. But we must take care to ensure that all
of the TIMSS analyses are well documented, are open to external review, and are as
accurate as possible. And with so many challenges in the search for sound education
reform, we may all be able to contribute somewhere in this complex of vital activities.

We close with the following summary assessments.

1. The undisciplined appeal to constructivist ideas has produced American pro-
grams that are more a betrayal of true constructivism than an advance of its principles.
The result is an unprecedented reduction in the transmission of mathematical content.

2. The reform books and classroom curricula focus on examples, tricks, and
experiments rather than fundamental mathematical principles, systematic methods,
and deep understanding.

3. The justification for these “reforms” is based on mostly inaccurate interpre-
tations of the best teaching practices in other countries. In particular, paradigmatic
classroom examples from Japan have been misconstrued by researchers to suggest
that students discover mathematical principles. In fact, the teacher conveys these
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principles quite explicitly, albeit engagingly and through examples.

4. As a consequence of these misinterpretations, “exemplary’” math lessons in the
U.S. convey little content, take too much time, and can even lead to false “discoveries”
of mathematical principles.

5. A proper understanding of best practices suggests that

i. teachers must be trained to understand, at a deep level, the mathematics they
are teaching

ii. teachers should encourage individual work, but must ensure that important
principles are conveyed in an orderly and cumulative manner.

6. Mathematicians, guided by proven programs such as those in Singapore, should
be involved in determining the principles that are taught, the examples that help convey
them, and the exercises that reinforce the net learning.

7. Mathematicians must play an active role in overseeing the quality of achieve-
ment tests in an effort to determine where our education programs are succeeding and
where they are not.
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