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1 Introduction

The isoperimetric theorem states:

Theorem A. Among all planar regions with a given perimeter p, the circle encloses the greatest
area.

This result, which is also known as the isoperimetric inequality, dates back to antiquity.

The theorem has generalizations to higher dimensions, and even has many variants in two
dimensions. For example, one version states that among all polygons with k sides and a fixed
perimeter, those that are perfectly symmetric (i.e., regular) have the greatest area. These area
and volume optimization theorems are especially appealing because they offer physical insights into
nature. They tell us why a cat curls up on a cold winter night (to minimize its exposed surface area)
[11]. They help us understand why honeybees build hives with cells that are perfectly hexagonal
in shape. The isoperimetric theorem also helps explain why water pipes should have a round
cross-section.

Of course, nature is complicated, and the underlying mathematics can be difficult. Even the
simplest two-dimensional honeycomb conjecture, which dates back to Pappus, has an extensive
literature [2, 4, 7], and was only recently established in its entirety [4]. Furthermore, many shapes
are influenced by forces and other constraints as opposed to the efficient use of area and volume.
The isoperimetric inequality does not really explain why manhole covers are round.2 Similarly,
if coins are required to present a constant width for vending machines, then many non-circular
shapes are available to meet this standard. A result of J.E. Barbier states that all constant-width
regions of a given width w have perimeter πw, whence the isoperimetric inequality shows that

A Rouleaux triangle

w w

circular coins have the most metal, and are therefore the most expensive.
Perhaps this fact explains why the British 50 and 20 pence coins are shaped
as heptagonal analogs of the Rouleaux triangle.5

In three dimensions, the sphere has the greatest volume for a given sur-
face area, but this fact does not prove that eggs must be spherical. Sound
modeling must not abstract away the hen and the process of egg laying,
which will impose non-uniform forces on the egg. Still, the 2-D version of

the theorem seems to help explain why eggs have a circular cross-section.

1This research was supported in part by NSF grant CCR-9503793
2The true reason is to ensure that the cover cannot fall into the manhole; the problem is, in a sense, 2 1

2

dimensional. On the other hand, the mathematical requirement that the cover be unable to “fall in” would be

satisfied by any region of constant width. We must then appeal to either the isoperimetric inequality and the

economics of manhole design or a lack of knowledge about constant width regions to explain why all such covers

happen to be round.
5We resist the temptation to speculate about whether such cost-efficient engineering practices might have con-

tributed to Great Britain’s hesitance to adopt the Euro.
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This remarkable theorem even has a literary history dating back some twenty-one centuries
to Virgil’s Aeneid and the saga of Queen Dido [13]. Apparently, the good Queen had more than
her fair share of entrepreneurial skill and mathematical ability—as well as misfortune of epic
proportion. Her legend recounts, among other tragedies, the murder of her father by her brother,
who then directed his intentions toward her. She was obliged to assemble her valuables and flee
her native city of Tyria in ancient Phoenicia.

In due course, her ship landed in North Africa, where she made the following offer to a local
chieftain. In return for her fortune, she would be ceded as much land as she could isolate with the
skin of an ox. The proposition must have seemed too good to refuse. It was agreed to, and a large
ox was sacrificed for its hide. Queen Dido broke it down into extremely thin strips of leather, which
she tied together to construct a giant semicircle that, when combined with the natural boundary
imposed by the sea, turned out to encompass far more area than anyone might have imagined.
And upon this land, the city of Carthage was born.

It is easy to understand why such legendary exploits would be preserved in the historical and
literary record for all time. In terms of her business skills alone, Queen Dido must surely rank
among the most remarkable individuals of her millennium. But as innovative and significant as
her achievements may have been, one might wonder who among us—apart from Bill Gates and,
perhaps, Donald Trump—might possess the capacity to master the Aeneid’s teachings about barter
and real estate negotiation.

On the other hand, Queen Dido’s mathematics lessons are quite another matter. Evidently,
she knew the isoperimetric inequality, and understood how to use this fact to find the best solution
to her problem, which uses a semicircle rather than a circle. Yet despite the many insights and
occasional power transactions attributable to this very special inequality, most high school geom-
etry texts give this theorem rather short shrift. It is typically not even mentioned, and proofs are
never offered.

Surely the reason for these omissions cannot be attributed to any deficiencies in the isoperi-
metric theorem or its applications, but rather in its proof.

The first rigorous proofs date back to Weierstrass and to F. Edler, whose methods were founded
in analysis and calculus. Since that time, many other proofs have been discovered. Some use
calculus, and even the calculus is somewhat advanced. Among the calculus proofs, the shortest
and one of the simplest is due to P.D. Lax [8]. There are also more sophisticated analytic studies
of isoperimetric inequalities in higher dimensions, and even on surfaces [9]. These inequalities are
all considerably more advanced than the problem we address.

The history of purely geometric proofs, however, is quite different. The theorem was known to
the ancient Greeks, and was recorded by Pappus in the fourth century A.D. [10, Book V]. He, in
turn, credited the isoperimetric results to Zenodorus, who lived during the second century B.C.
But by modern standards, their proofs were severely incomplete; Pappus and his contemporaries
seem to have just assumed that the nice pictures they drew must capture the essence of what
had to be established. They left no historical record about the irregular cases which, of course,
always turn out to have less area than the more natural figures they considered, but which must
nevertheless be taken into account in any rigorous proof. Archimedes also studied the problem,
but his work on the subject, like the original writings of Zenodorus, has been lost. No one knows
if these studies might have contained a proof complete enough to meet the standards of modern
mathematics.

The modern-day search for a rigorous proof can be traced to Steiner, who realized that the
ancient Greek arguments were inadequate. He reasoned that a better way to establish the inequality
would be by showing how any figure that does not have a circular boundary can be transformed
into a new region with the same perimeter and greater area. In 1841, Steiner published the first
of five elegant improvement procedures, which lie within pure Euclidean geometry, and which
he viewed as rigorous. However, Weierstrass, who was the strongest mathematician of the era,
thought otherwise, and developed mathematics to a level that could formalize Steiner’s error. He
also advanced calculus and other areas of mathematical analysis to a point where the problem could
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be solved correctly. The final conclusion, which is indeed substantiated by modern mathematical
understanding, is that Steiner’s ideas comprise significant and insightful contributions to Euclidean
geometry, but his proof of the isoperimetric theorem is fundamentally incomplete.

As of the mid 1960’s, the question of finding an elementary geometric proof was, according
to the literature, widely believed to be open (cf. [5, 3, 11]). Kazarinoff makes this point most
emphatically: “no one has yet found a simple geometrical argument to show that the circle has a
greater area than any other figure with the same perimeter. None is expected to be found [5, p.
61-2].”

Those are strong words. Our literature search found several proofs that lie within of elementary
geometry. Yaglom, for example, sketches out one such approach [14], but it is definitely not
simple. Benson presents an elegant monotonicity argument that exploits some intuitive notions
from integral geometry plus a bit of clever algebraic manipulation [1, p.127-8] to establish Theorem
1 with elementary but subtle reasoning. An extended literature search even revealed that the
approach we now present was actually discovered by Gary Lawlor about two years before we
attained it through independent means [6].

1.1 Some geometric preliminaries

Many geometric problems are simplified by exploiting notions about convexity, which is an impor-
tant concept in its own right. A thumbnail sketch of the idea is as follows.

not convex convex

From an intuitive perspective, a region is convex if it has no holes
and the boundary has no dents. We can fill in the holes and dents
of a non-convex region F by putting a rubber band around it and
taking the inside to be the new region. This new region is called
the convex hull of F .

Observe that the convex hull of F will be precisely F if the region is already convex, and will
otherwise have more area, since some hole or dent was filled in by the convex hull procedure.
Moreover, the perimeter will decrease because the convex hull replaces dents by straight line
segments—and a straight segment comprises the shortest path between its endpoints, as opposed
to some piece of curvy boundary that defines a dent in F .

A more formal definition of convexity is as follows.

A region F is convex if for any pair of points A and B in F , the
segment AB is fully contained in F .

This definition prevents F from having any holes or dents.

Some additional terminology is also helpful. A polygon with k sides is called a k-gon, and a
circle plus its interior is called a disk.

Lastly, the proof will depend on one more geometric fact, which is sometimes formulated as
follows.



4

L

A

D

B

C
The Peripheral Angle Theorem. Let AC be a chord of the circle S, and
suppose that B is another point on S. Let L be the infinite line through
A and C as shown. Suppose that D is on the same side of L as B. Then

6 ABC = 6 ADC if and only if D is on the circular arc
⌢

ABC.

D

A C

B
As a consequence, if AC is a diameter, then all such angles 6 ADC

will equal 90◦. Similarly, among all triangles with a common base
and congruent opposing angles, the isosceles triangle will have the
greatest altitude and, therefore, the greatest area.

D
B

A C

1.1.1 Steiner’s Method

Steiner’s approach was to characterize those regions F that do not have the maximum area for a
given perimeter.

First, he observed that the area of F can be increased if F is not convex.
In the leftmost figure, the region is non-convex because of an inward
depression. This piece of boundary can be reflected across the support
line as shown. The result is a new region with greater area and exactly
the same perimeter.

Now suppose that F is convex. Steiner suggested drawing a line
that partitions F into two pieces with equal perimeters. If one
of the halves has greater area, select that larger piece. Create a
new region with this half and a mirror image of itself. The new
figure must have a greater area than F and the same perimeter.

So suppose that F is convex, and suppose that this bisection line produces two halves with
equal area and equal perimeters.

C

AB
H

Let the boundary of F intersect the bisection line at points A and C. The
Peripheral Angle Theorem says that F will be circular if and only if for every
point B on its boundary (apart from A and C): 6 ABC = 90◦. Consequently,
we suppose that there is such a B where 6 ABC 6= 90◦. Let H be the half region
of F that contains B.

B

AB

A

C

A

C

B

Steiner’s idea was to view △ABC as having two sides with the fixed lengths |AB|
and |BC|, and to imagine a hinge at vertex B so that the angle at B is free to
change. Thus, H is the union of three subregions: the adjustable △ABC, the region
bounded by AB and the portion of the boundary subtended by segment AB, and
the analogous region associated with the segment BC. Changing 6 ABC will change
the area and shape of △ABC, but not the other two pieces, which are essentially
rigid shapes that are glued to their respective sides AB and BC. Evidently, the
triangle with base length |AB| and side length |BC| has the greatest area when its
altitude is maximum. This occurs precisely when 6 ABC is 90◦. So if the angle is
not a perpendicular, the area can be increased by changing the angle to be 90◦.
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A

B

C
Once angle B is upgraded to 90◦, the new figure can be com-
bined with a mirror image copy to produce a new region that
has the same perimeter as F and greater area.

For completeness, we note that for some figures, decreasing 6 ABC to 90◦ will
cause portions of the region to spread across the bisection line L as shown.
There are several ways to fix this problem; the details are left as an exercise
for the interested reader.

These constructions show that if F is not circular, then there is some other region that has the
same perimeter and even greater area. Consequently, if there is a region with the maximum area,
it must be a disk, and cannot be anything else.

But are we entitled to conclude that a maximum area region actually exists?

1.1.2 The gap in Steiner’s argument

To see why Steiner’s argument is incomplete, consider the following problem.

BA

L
?D ?? Given: A segment AB of unit length, and a line L that is parallel to

AB and has unit distance from the segment.

Problem: Find a point D on L, so that 6 ADB is as small as
possible.

Of course, there is no such best point: by selecting candidate points that are located farther
and farther to the left, we get a sequence of angles that approach 0◦, but there is no point on
L that gives this angle. Nevertheless, the following argument pretends to find a best angle by
mimicking Steiner’s improvement scheme. Evidently, there must be an error.

BA

CEF

L
Let C be the point on L that is equidistant from A and B, so that it
lies at the intersection of L and the perpendicular bisector of AB. Let
E be a candidate solution that is not C. Use a compass to locate F on
L so that E is the midpoint of segment FC. Then F is an improvement
over E. In particular, a standard extension of the Peripheral Angle
Theorem will show that 6 AFB < 6 AEB. Evidently, this procedure
will transform any point E 6= C on L into a better point F , and the
scheme will leave C unchanged.

Now, 6 ACB is the largest possible angle, not the smallest. So we cannot conclude that 6 ACB

is the smallest angle, despite the fact that no other point can be the solution.

From an intuitive perspective, the difference between this contrived improvement scheme and
Steiner’s elegant approach is obvious: his scheme makes figures more circular, in some sense,
whereas the above scheme moves candidate solution points farther away from the fixed point
C. But the underlying mathematical issue is: how do we formalize the notion that the Steiner
improvements could lead to a circle? This question, it turns out, is resolved by the notion of
compactness, which characterizes when and how limit solutions exist. Blashke was the first to show
that compactness arguments can complete Steiner’s proof, and more elegant justifications have also
been discovered. However, these approaches lie outside of elementary Euclidean Geometry.



6

2 A classical dissection-style proof

The proof will assume that the region of interest F is convex. If not, we can replace F by a region
that is convex, has greater area, and a perimeter that is no larger than that of F . There are many
was to find such a region. One way is to use the convex hull of F . This notion was not featured
in the ancient Greek works, but has certainly come to be viewed as elementary. A completely
elementary alternative is presented after the following proof.

As is standard in studies of elementary geometry, we omit any formal development of measure
theory, and simply assume that area and arclength are well defined. We also deliberately avoid
formalizing the notion of a planar region. The reader who prefers more rigor may wish to suppose
that F is a convex polygon. Then the notions of area and arclength need no elaboration.
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The Proof. [First discovered by Lawlor [6]]
Let F be a convex region. Let n ≥ 2 be an integer.
• Place the points v0, v1, . . . , v2n−2, v2n−1 along the bound-
ary of F so that the length of boundary between any pair of
consecutive points is exactly p

2n
.

• Let G be the polygon formed by connecting edges between
consecutive vertices.

H

h

nv

h0nh

0v

nv 0v

Draw a regular (perfectly symmetric) 2n-gon H with center h,
vertices h0, h1, . . . , h2n and each side of length p

2n
as shown.

Thus, the inscribed polygon G is an approximation of F ,
and H is an approximation of a circle with perimeter p. We will
show that H encloses at least as much area as G. By letting n go
to infinity, the areas of the approximating polygons converge to
the areas enclosed by F and the circle as used in the statement
of the isoperimetric theorem.

Let the figures be rotated so that vnv0 and hnh0 are parallel
and horizontal. Draw a segment from each vertex of H to h.
From each vertex of vi of G, draw a ray ~ri that is parallel to the
axial ray that points from hi through the center h. (Although

the ~ri are infinite, they have been drawn as finite segments to expose the underlying geometry.)
We might expect, as the figure suggests, that the consecutive rays ri and ri+1 will, in general,
intersect.

0

v
v

1h

0 1
2v

h

However, it is possible that some pairs of consecutive rays
(such as, in the contrived illustration, rays r0 and r1, which
emanate from v0 and v1 as shown) might not intersect.
• But if ~ri and ~ri+1 do intersect at some point si, let ti be
the triangular region △vivi+1si. Otherwise, it is convenient
to define ti as the segment vivi+1.

v0

i
i+1v

nv

v

nv

0v

si

We claim:
(a) Area(ti) ≤ Area(△hihi+1h),

and
(b) The “regions” t0, t1, . . ., t2n−1 cover G and all of its inte-

rior.
To establish (a), it suffices to assume that ti is a triangle, since
segments have zero area. The length of the base vivi+1 is at most
p

2n
, since the vertices vi were placed at a distance of p

2n
along F .

Of course, △hihi+1h has a base length of p
2n

. So we can shrink (or
rescale) △hihi+1h into a similar triangle whose base length equals
|vivi+1|, and relocate the two triangles to share a common base.
By construction, both triangles have the same angle at the vertex
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opposite their base, since the rays ~ri and ~ri+1 were chosen to be parallel to sides hih and hi+1h.

According to the Peripheral Angle Theorem, these two vertices will lie on a circle that
goes through the endpoints of their common base. But since the triangle corresponding
to (a possibly shrunken) △hihi+1h is isosceles, it must have the larger altitude and area.

Claim (b)—which says that while individual “triangles” might seem somewhat problematic in
definition and chaotic in behavior, they are collectively quite well behaved—is established next.

Lemma 1. The “triangles” t0, t1, . . . , t2n−1 cover G and its interior. Formally, let G be the finite
polygonal region with boundary G. Then G is contained in the union of the triangular regions:

G ⊂ ∪0≤i<2n ti.

L

L
0

h
v
h

v

v v

U

−1

G

P

n

k
v

0

Proof of Lemma 1. The proof will be by contradiction. Suppose
that P is a point in G that is not covered by any ti. Draw a horizontal
line L0 through vertices v0 and vn. The line splits G into two pieces,
which we call GU and GL. By construction, the rays ~r0 and ~rn point
at each other and lie on L0. So we can suppose that P lies in GU , since
the proof for the alternative case is exactly the same. The definition of
the ti-s ensures that P must be in the interior of G, since ti contains
vivi+1.

Now draw a horizontal line L through P . Let the vertices of GU that lie above L be vh, vh+1,
. . ., vk, so that L intersects vh−1vh to the right of P , and vkvk+1 to the left. Since P lies in the
interior of G, vh and vk exist (but could be the same).

While the proof will be completed soon, we momentarily pause to recommend that the reader
try to draw a counter-example before proceeding any further. The difficulty is that P will wind
up being trapped between some pair of consecutive rays. The following definition formalizes a
rotational sense for the rays to simplify the proof of this trapping property.

L

h

h
v

vkv

−1P

• For h ≤ j ≤ k, let ray rj be called right-oriented if it intersects
L to the right of P , and left-oriented if it intersects to the left. A
ray that intersects P will be both left-oriented and right-oriented. By
construction, the rays ~r1 through ~rn−1 all have a downward direction,
so rays ~rh through ~rk will intersect L and be classifiable. All other rays
are left unclassified.

r
r

v

v

P

k

L

k
+1

1+1

k

k L

Bolstered by these classifications, we return to the proof. There are three
cases.

Case 1: Ray rk is right-oriented. We show that P must be contained within
triangle tk. Draw a horizontal line L1 through vk+1, and view it as directed
to the right. Ray rk and segment vkvk+1 must intersect L1 in the same order
as they intersect L. Hence rk intersects L1 to the right of vk+1 as shown.
Since rk+1 forms an angle with L that is (in absolute value) less than that
of rk, the two rays must intersect below L. Hence sk exists and P is trapped
inside of △vkvk+1sk.

Case 2: Ray rh is left-oriented. The reasoning is analogous to Case 1.

r

r

v

v

P L

j+1
j

j

j+1

Case 3: Ray rh is exclusively right-oriented and rk is exclusively left-oriented.
Let rj be the ray that, among the right-oriented rays within rh, rh+1, rh+2,

. . . , rk, has the largest possible index. Since rh is right-oriented, there is such
an rj . Moreover, j < k since rk is not right-oriented. Hence rj+1 is classified,
and it must be left-oriented. Evidently, vj+1vj

lies in the halfplane above L;
rj intersects L to the right of P ; and rj+1 intersects to the left. Since rj+1

forms an angle with L that is (in absolute value) less than that of rj , the two
rays must intersect below L. Hence △vj+1sjvj exists and must contain P .

So Area(G) ≤ Area(t0) + Area(t1) + · · · + Area(t2n−1) ≤ 2nArea(△h0h1h) = Area(H).

If we pass to the limit by increasing n to infinity, the area of the approximating G-s approaches
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the area of F , and the area of the regular 2n-gons approaches the area of a disk with perimeter p

by standard arguments. The proof is complete.

Error bounds. The preceding construction only showed that the area of the inscribed polygon
G is bounded by Area(Dp), where Dp is a disk with perimeter p. The proof relied on the fact
that the area of G should be, somehow, as close to the area of F as we like, for suitably large n.
Of course, this must be true, as otherwise we do not have a satisfactory theory of area for general
regions. On the other hand, it is worth remarking that this reasoning can be made rigorous by
appealing to a simple covering argument.

G G

Recall that consecutive vertices of G are defined to partition F ’s
boundary into pieces of length p

m
, where m is the number of ver-

tices used. Consequently, no part of the boundary that lies between
vertices vi and vi+1 can be at a distance from vi that exceeds p

m
. So

by centering a disk of radius p

m
on each vertex, we ensure that F will

be completely covered by G and the m disks. (It is not difficult to see
that a covering is achieved by disks with half this radius, but this hardly matters.) Since these

disks increase the total area of the covering by at most m × π( p
m

)2 = π p2

m
, we get the following

overestimate:

Area(F ) ≤ Area(G) + π
p2

m
≤ Area(Hm,p) + π

p2

m
,

where Hm,p is a regular m-gon with perimeter p. Letting m go to infinity shows that

Area(F ) ≤ Area(Dp).

As presented, the proof shows that no planar region with perimeter p can have an area that
exceeds Area(Dp). So Dp does indeed have the largest area, and it now follows from Steiner’s
results that the disk is the only such figure with this maximum area: otherwise there would be
even larger regions with perimeter p.

Convexity revisited. To keep the argument squarely within the genre of Euclidean geometry, it
is convenient to suppose that F is a polygon. In this case, the convex hull of F is easily defined,
but the notion lies outside of the world of Euclid. An attractive alternative can be extracted from
the ideas of Steiner as follows.

Suppose that the line ℓ seals off some pocket of F as shown.
Technically, all of F should lie in one of the halfplanes bounded
by ℓ, and there should be distinct vertices vi, vj such that
F ∩ vivj = {vi, vj}. Steiner symmetrization flips (reflects) one
boundary subpath connecting vi to vj about ℓ to increase the
area of the resulting figure while preserving the edge lengths.
Unfortunately, this mirroring scheme presents a new problem:
how do we prove that the process terminates? As a practical
matter, it is simpler to reverse the sequencing of these edges,
which effectively rotates the boundary portion about the mid-

point of vivj . While iterations of either operation lead, eventually, to a convex region with increased
area, the virtual rotation operation is easier to analyze. It simply rearranges the segment ordering
without introducing any rotations. Since this procedure can produce no more than (n − 1)! such
arrangements, one of these polygons must have a maximal area. This polygon must be convex,
since otherwise the procedure would further increase the area. Of course, the figure becomes con-
vex when the segments are sorted according to their directed orientations, where the orientations
are determined by a traversal around the region.
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3 Extensions

The covering property stated in Lemma 1 has a natural but somewhat surprising generalization
[12], which we state without proof.

Theorem B. Let P be a simple polygon that is not necessarily
convex. Let the vertices of P be in, counterclockwise order,
v1, v2, . . . , vn. Let, for i = 1, 2, . . . , n the ray ri emanate from
vi and form an the angle θi with a horizontal ray emanating
to the right from vi, and suppose that θ1 < θ2 < . . . < θn <

θ1 + 2π.

Whenever the rays from two consecutive vertices intersect, let
them induce the triangular region defined by the two vertices
and the intersection point.

Then there is a fixed α such that if all of the assigned an-
gles are increased by α, the triangular regions induced by the
redirected rays cover the interior of P .

4 Conclusions

The basic isoperimetric theorem for two dimensions can be established with very elementary ge-
ometry, and the reshaping ideas of Zenodorus and Pappus can indeed be completed to give solid
proofs. Who knows? The day may yet come when an archaeological dig will prove that the ancient
Greeks had found comparable constructions, or maybe ones that were even better.

5 Exercises and further questions

1. Dido’s problem is usually presented as follows. Let s be a string of length ℓ, and let L be a
straight line. Among all planar regions with a boundary that can be formed by part of L and
all of s, find those with the largest area.

a. Solve Dido’s problem.

There are many variations to this problem. Suppose we have the same problem where L is not
a line but instead is the following:

b. L is a finite line segment. Characterize the best solution.

c. L is an angle α < π, and s must be placed in the interior of the region bounded by L.
Characterize the best symmetric solution. Is this solution the best possible without the
requirement of symmetry?

d. L is an angle α > π. characterize the best symmetric solution. Is this solution the best
possible without the requirement of symmetry?

e. L is a parabola, and s is to be placed in its interior. characterize the best symmetric solution.
Show that no non-symmetric solution can have the greatest area. Conclude that the symmetric
solution has the greatest area.
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f. L is a parabola, and s is to be placed in its exterior. Characterize the best symmetric solution.
Can this solution the be improved by dropping the symmetry requirement?

g. L is a circle, and s is to be placed in the exterior of the circle. Show that in the best solution,
the two curves are perpendicular to each other.

2. Prove Barbier’s theorem.

3. Use theorem B to prove the following standard variant of the isoperimetric inequality.
Let F be a polygon. Then among all polygons with edges congruent to those of F , those
polygons whose vertices lie on a circle have the greatest area.
Suggestion: First assume that the inscribed polygon contains the center of the circumscribing
circle.
Then address the case where the center is not inside the polygon.

4. Use theorem B to prove the following.
Let P be an n-gon with side lengths of ℓ1, ℓ2, . . . , ℓn. Let θ1, θ2, . . . , θn be nonnegative values
that sum to 2π. Then

n∑

j=1

1

4
ℓ2
j cot(

θj

2
) ≥ Area(P ),

and equality holds if and only if P is inscribed in a circle and each θj equals the radial angle
of the arc subtended by a chord of length ℓj.

5. Use Theorem B to prove the following. Let P be a simple (but not necessarily convex) n-
gon, and let Q be an n-gon with that has the same side lengths as P , and is inscribed in a
circle. Suppose that the interior of Q contains the center of its circumcircle. Then Q can
be partitioned into 2n pieces that can be rearranged to cover all of P and its interior. (This
covering will, in general, have overlaps and portions that extend beyond the borders of P .)

6. Prove Theorem B.

7. (Open question) Is there a three dimensional analog to Theorem B?

A lovely set of classical geometric optimization problems and related developments can be
found in Courant and Robbins [3, p. 346–79].
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