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Abstract
Let
�

be a simple polygon. Let the vertices of
�

be mapped, according to a counterclockwise traversal
of the boundary, into a strictly increasing sequence of real numbers in � �������
	 . Let a ray be drawn from each
vertex so that the angle formed by the ray and a horizontal line pointing to the right equals, in measure, the
number mapped to the vertex. Whenever the rays from two consecutive vertices intersect, let them induce
the triangular region with extreme points comprising the vertices and the intersection point. It is shown that
there is a fixed � such that if all of the assigned angles are increased by � , the triangular regions induced
by the redirected rays cover the interior of

�
.

This covering implies the standard isoperimetric inequalities in two dimensions, as well several new
inequalities, and resolves a question posed by Yaglom and Boltanskiı̆.

1 Introduction and summary

The isoperimetric theorem states that among all planar regions with a given boundary length � , the disk
has the maximum area. This bound, which is also known as the isoperimetric inequality, dates back to
antiquity; its literary debut occurs—albeit obliquely—in the Aeneid [9]. There are also more specialized
forms of the inequality for simple polygons.

We take all polygons and boundary curves to be simple. If
�

is a polygon, let
��
����

denote the bounded
polygonal region with ��� � 
���� 	�� � . Let ��������� � 	�� ��������� � 
!��� 	 .

Definition 1. Let " be a ray or directed line. The angular direction of " is the measure of the angle
formed by " and a horizontal ray # that originates at some point on " and runs to the right. The measure of
such an angle is taken in a counterclockwise direction from # to " .

Definition 2. Let
�

be an $ -gon with the consecutive vertices %'& , %)( , *+*+* ,% � , which are sequenced in counterclockwise order around
�

. Let, for, �.-/���'�0*+*+*+��$ , �01 be an infinite ray that originates at vertex %21 and has an
angular direction 3)1 . The rays � & , � ( , *0*+*0�4� � are called a monotone slicing
for
�

if 3 &�5 3 (658707+795 3 � 5 ���;:<3 & . We say that the slicing rays are
associated with

�
, and the angles 3 & �0*+*0*=��3 � are associated with the rays.

Figure 1

Definition 3. Let
�

be an $ -gon and �)&��!�0(2�+*+*0*+�!� � be a monotone slicing for
�

. Let >@? be the region
whose boundary is the triangle defined by the base %�?+%4?!AB& and the intersection of the consecutive2 rays �=?
and �=?!AC& as the opposing vertex, provided �+?ED;�=?!AC& exists, and let >F?G�IH otherwise. We call >F? a slicing
triangle for

�
, and say that the set of slicing triangles J0>@?�K �?!LB& is associated with the rays J0� 1 K �1 LC& .

1This research was supported in part by NSF grant CCR-9503793
2Of course, the index value MON;P is interpreted as P .
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Theorem 1. Let
�

be an $ -gon with consecutive vertices%2&���%)(2�+*+*0*=��% � , and let ��&)���4()�+*0*+*0��� � be a monotone slicing for
�

with associated angles 32&��!3�(/�+*0*+*+�!3 � . Let Q6�R��	.� J4��?2�S�B	�K �?!LC&
be the monotone slicing for

�
with associated angles 3�?G:T� , forU �V-2�W���+*+*0*=��$ . Let XY�R��	 be the set of slicing triangles associated

with Q��S�B	 . Then for some fixed � ,� 
����[Z]\ ? > ? �S�B	=*
Figure 2

That Theorem 1 is an isoperimetric inequality can be seen from the following corollaries.

Corollary 1. Let ^ be a polygon. Then among all polygons with edges congruent to those of ^ , those
polygons whose vertices lie on a circle have the greatest area.

Of course, Corollary 1 is standard. The proof is algorithmic. Let _ be a polygon that is inscribed in a circle,
and which has sides congruent to those of ^ . The construction splits _ 
���� into a collection of $ slicing
triangles that are mapped onto a set of slicing triangles that cover ^ 
���� . The mapping is area reducing and
elementary.

Let `C�ba�	 be a curve parameterized by arclength. Let c��ba�	 be the angular direction of a normal to `
at `B�Sa�	 . We say that ` is piecewise smooth if it can be partitioned into a finite number of pieces wherecd�Sa�	 is continuously differentiable on the closure of each piece. Let c��ba�:e	��gfihijlknm=opcd�q>�	 , and let cd�Sa2rs	��fthij6knu=opc��R>�	 .
Corollary 2. Let v be a piecewise smooth closed simple curve with perimeter � and which encloses a
region with area � . Let v be parameterized by `C�ba�	 , for the arclength parameter a , with �xwyalwz� . Letcd�Sa�	 be the angular direction of the outward normal to v at `B�Sa�	 . Let 3{�Sa�	 be monotone increasing with3{�R�|	��g� and 3{�}��	�� �)� . Let ~3{�Sa�	����� o 3{�Sa�	 . Then

��wzj����� �E������=�|� ( �R��:�3{�ba�	�r�cd�ba4	!	�O~3{�ba4	 � a���*
To see that this is an isoperimetric inequality, let 3{�Sa�	�� (!� o� . Substituting gives

��w<j������� � �� � �+�2� ( �R�x:�3{�Sa�	�r�cd�Sa�	�	� � � a{��w �� � �
�� � a�� � (� � �

and equality can hold only if ����� o@ � o is constant, which is to say that v is a circle. This special case is the
most common formulation of the isoperimetric inequality in two dimensions.

A strong consequence of the proof given for Theorem 1 is the following.

Corollary 3. Let v , a , ` , c and 3{�ba4	 be as in Corollary 2. Let Q be the finite region bounded by v . Let"/�Sa2�!��	 be a directed line segment that originates at `B�ba4	 , has an angular direction of 3{�ba4	¡:¢� , and has
length j����9�R�{�G£E¤@¥W¦ � � A
§ � o@  £ ��� o £  q ¨§ � o@  �Y£�©@ª o � � A
§ � o@  £ ��� o A  q ¨§ � o@  	 . Then for some constant � ,

Q Zg\ o!"/�Sa2�!��	�*
Theorem 1 also has an immediate interpretation as an area minimization formulation.

Corollary 4. Let
�

be an $ -gon with side lengths of " & ��" ( �0*+*+*0�«" � . Let 3 & ��3 ( �+*0*+*=�!3 � be nonnegative
values that sum to �)� . Then �¬?!LC& -� " (? �=�/­ � 3 ?� 	E®z��������� � 	��
and equality holds if and only if

�
is inscribed in a circle and each 3�? equals the radial angle of the arc

subtended by a chord of length "�? .
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2 Proofs of Corollaries 1–4

The main part of Corollary 1 is established first.

Corollary 1a. Let
�

be an $ -gon with consecutive vertices % & ��% ( �+*+*0*+�!% � , and let ¯ be a polygon that is
inscribed in a circle, and which has edges with the same lengths as those of ^ . Suppose that ¯ 
!��� contains
the center of its circumscribing circle.

Then �s�������R^°	Owz�s�������S¯�	��
and equality holds if and only of ^ can be inscribed in a circle.

Proof: The first step is to show that ¯ exists. Create a path of $�r¢- segments that are congruent to the
sides of

�
, apart from some side of maximum length a . Let the path have its vertices placed along a circle

of huge radius, and consider how the path is forced to curl up as the radius is decreased. Evidently, the
endpoints of the path would begin at a distance that equals the sum of the segment lengths, when the circle
radius is infinite, and decrease continuously as the radius diminishes. The existence of

�
ensures that a is

no more than than this initial sum, so the radius can be decreased until the distance between the endpoints
equals a . Then the path can be closed with the omitted edge. For completeness, it should be noted that
the construction would fail if the diameter of the circle were decreased to a value that is smaller than some
edge in the chain of $;r<- segments, since such a segment cannot be a chord of such a circle. But since all
such lengths are bounded by a , and since the diameter must be at least a when the termination condition is
satisfied, this failure cannot occur.

v1

s1

Figure 3

Let ¯ have the consecutive vertices a)&��Wa4()�0*+*0*+�Wa � . Suppose that ¯
has a natural correspondence with

�
where ± %�?+%4?!AC&|±'�²± a=?4a=?!AC&2± for

all
U
. In addition, suppose that a)&��Wa4()�0*+*0*+�Wa � circulate about ¯ with

the same rotational sense as %|&)�+*0*+*=�!% � rotate about
�

. Let ³ be the
circumcenter of ¯ . Define Jp´�+?)K �?!LC& to be the monotone slicing of¯ where ´�=?�� rpµa=?0³ , and let J0�=?)K �?!LB& be the monotone slicing of

�
where �=? begins at %4? and is parallel to ´�=? . Let the slicing triangles
for J�´��?�K �?!LC& be ´>b?��I�b¶�a=?!AC&=a=?0³+	 
���� , for

U �T-/���'�+*0*+*��!$ .

Figure 4

According to Theorem 1, the rotated slicing rays J4� ? �S�B	�K �?!LC&
must, for some fixed � , induce a set of slicing triangles that cover�·
!���

. But the slicing triangle >F?/�S�B	 , if it exists, will have a base
that is congruent to the corresponding base of ´>b? . Moreover, the
angle subtending >F?2�R��	 ’s base must equal ¸ a�?0³0a�?!AB& since rotat-
ing �=? and �=?!AC& , by � will keep their angle of intersection the
same as that of ´�=? and ´�=?!AC& , provided �=?|�S�B	 and ��?!AB&/�S�B	=� in-
tersect. The Peripheral Angle Theorem in basic Euclidean Ge-

ometry says that �=?·D���?!AC& will move along the boundary of a fixed circle and will have, therefore, a
maximum altitude precisely when >@?2�R��	 is isosceles, in which case it will be congruent to ´>b? . Of course���������S¯�	��º¹ �?!LB& ��������� ´> ? 	 , and hence

��������� � 	Ew ¬ ? �s���4���R> ? �R��	�	Ew ¬ ? ��������� ´> ? 	�� �������p�b¯�	�* (1)

Evidently, equality can only hold only if >@?2�S�B	�»� ´>b? for all
U
, and �s���4���R> 1 D;>b?4	��y� , for

,G¼� U , in which
case
�

will be congruent to ¯ .

Finally, it should be noted that the edges of ¯ need not have a natural correspondence with those of
�

.
Since each ´>b? has radial sides of length � , where � is the radius of the circumcircle, these triangles can be
permuted to ensure that the edges of ¯ are sequenced to correspond with those of

�
.
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The less interesting part of Corollary 1, which concerns the case when ¯ 
!��� does not
contain its circumcenter, is postponed. This case is different because the largest side
in ¯ will be the base of a triangle with a reflex angle, and this triangle will contribute
a negative term in the formulation of �������p�b¯�	 as given in equation 1. The specifics
comprise Corollary 1b in Section 4.

Figure 5

Corollary 2 is just a matter of applying Theorem 1 and passing to the limit.

Proof of Corollary 2. Let v be approximated by an $ -gon
�

. Let the vertices of
�

be % ? �½`C� � ?� 	 , forU �T-/���'�+*0*+*��!$ . Let ��?2�S�B	 and �=?!AC&/�R��	 be slicing rays with angular directions 3{�¾� ?� 	�:¿� and 3{�}� ?!AC&� 	�:¿�
and respective origins %�? and %4?!AC& . Suppose that the two rays intersect, and let their intersection be the
point À¡? . Let ± %4?+%4?!AC&|±/� Á°? , and let c�? be the angular direction of the outward normal to %�?+%4?!AB& . Then by
the law of sines, ± % ? À ? ±/� Â�Ã¦qÄ Å � § ÃSÆÈÇ £ § Ã   � htÉ
�Rc ? r � ( r�3 ?!AC& r��B	 , and the area of the slicing triangle is

���������b¶[% ? % ?!AC& À ? 	�� �bÁ ? 	 (� � hiÉ
�q30?!AC&Or�30?0	 �+�2� �Rc ? r�3 ?!AC& r���	 �=�|� �Rc ? r�3 ? r���	�*
Theorem 1 says that for some � ,¬ ? �SÁ°?�	 (� � htÉ9�R3 ?!AC& r�3 ? 	 �=�|� �qc�?Or�30?!AC&Êr��B	 �=�2� �qc�?Or�30?�r���	Ê®z�s���4��� � 	�*

Passing to the limit gives the formulation: For some � ,� �=�|� ( �qcd�Sa�	�r�3{�Sa�	�r���	� � §� o � a·®]�°*
Proof of Corollary 3 (Sketch). Corollary 3 is little more than an application of Corollary 2 in the limit.
The restriction to positive lengths is a consequence of the actual covering argument given for Theorem 2,
which establishes that every point Ë�Ì � will be covered by some slicing triangle �F¶[%)?+%4?!AC&=À¡?4	 
!��� whose
base r�µ% ? % ?!AC& has a counterclockwise orientation with respect to Ë .
Proof of Corollary 4. Similarly, Corollary 4 is just an analytic interpretation of Theorem 1, since each
term &Í " (? �+�)­ � § Ã( 	 is the largest possible area that a triangle with a base length of Î ? and an opposing vertex
angle of 3 ? can have.

However, if some angle 3 ? exceeds � , then the corresponding area term is negative, and additional
justification is necessary. For specificity, let the reflex angle be 3 � . Let

�
be an $ -gon that is inscribed

in a circle and has side lengths "=? , for
U �Ï-/���'�0*+*+*+��$ , and let its vertices be %|&��!%)()�0*+*+*0��% � . Let Ð be

the �R$[:Ñ-4	 -gon resulting from adjoining
�

with the exterior isosceles triangle ¶[% � %2&�% � , where vertex % �
satisfies ¸ %2&�% � % � �¢�)�[r�3 � .

Let ��&�� rpµ%2&�% � , and define �4(/���0Ò2�+*0*+*0��� � so that �=? and �=?!AC& intersect at an angle of 34? . By construction,� � � r�µ% � % � . Theorem 2 as stated below and its mild extension in Corollary 5 guarantee that� £ &¬?!LC& -�d" (? �+�)­ � 30?� 	Ê®z�s���4���bÐ°	�*
It follows that � £ &¬?!LC& -�d" (? �=�/­ � 3+?� 	Ór��s�������b¶[% � % & % � 	Ê®]��������� � 	=*
Theorem 1 combined with Corollary 1b establish the circumstances where equality can hold.
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3 Proof of main theorem

Theorem 1 follows from the special case described next.

Theorem 2
Let
�

be an $ -gon with consecutive vertices % & �!% ( �0*+*0*=��% � that sequence counterclockwise about
�

, and
let ��&)���4()�+*0*+*0��� � be a monotone slicing for

�
with associated angles 3|&)��3�(/�+*+*0*=��3 � , and associated slicing

triangles J4>b?�K �?!LB& . Suppose that �)&°� r�µ%2&�% � , � � � r�µ% � %2& , and let %2& and % � be on the Ë axis with %|& to the
right of % � , so that �4(2���0Ò2�+*0*+*«� � £ & point downward. Let Ô be the upper halfplane.

Then � 
!��� D;Ô Zz\ � £ &?!LC& >b?/*
Notice that > � is not used to cover

� 
!��� D�Ô . This sug-
gests that Theorem 1 might be established by locating a line
that partitions

�°
����
—convex or otherwise—in a way where

Theorem 2 can be applied to each piece.

Figure 6

Proof of Theorem 2: Suppose that
�G
���� D�Ô is not contained in

\ � £ &?!LC& > ? . Then there is a point Ð8Ì �°
!��� D�Ô
that is in general position and does not belong to

\ � £ &?!LC& >b? . In particular, Ð can be selected so that none of
the lines from Ð through the vertices of

�
is parallel to any of the rays � & ��� ( �+*0*+*0��� � .

Let the boundary of
�

be parameterized in polar coordinates with respect to the origin Ð , and let�bÕ��R>�	����'�R>�	�	 define the boundary curve, for >�ÌÖ� ���+-+× . Let �bÕ��S�2	��!�'�R�2	!	O�º% & , and let this parameterization
traverse the boundary with a counterclockwise rotation.

Draw a horizontal line " through Ð . By hypothesis, " lies above % & % � . We can assume that the line does
not intersect any of the vertices. A polar representation is used to select a subset of edges that all rotate
counterclockwise about Ð , and that define a figure with the following properties. The polygonal figure
should intersect Ð , lie in the closed upper halfplane defined by " , and be star-convex with respect to Ð . See
the shaded region in Figure 7. Formally, we find a sequence > � �!>!&��0*+*+*0��>�Ø where

Q

Figure 7

a) �Ywz> � 5 >!& 5Ñ707+7�5 >�ØGwº- ,
b) Õ��R> � 	 5 � 5 Õ��R> & 	 5º7+707�5 Õ��R> Ø 	 5 � 5 Õ��q> Ø�AC& 	 ,
c) Õ��q>«1 AC& 	�r�Õ��q>«1F	 5 � ,

d)
�

contains an edge that begins at �bÕ��q>@?4	��!�'�q>b?�	!	 , has a counterclockwise orientation
with respect to Ð , and terminates at some location �FÕ��qÀE?�	=���'�qÀ¡?�	!	 where Õ��RÀ¡?�	6®Õ��q>b?!AC&+	 , for

U � ���+-2�W���+*+*0*��WÙ .
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Q

Q

selected selected
selectedthen discardededge

not

The existence of these edges follows from the fact that the boundary
has a winding number of 1 about any interior point. An argument
that appears to lie within Euclidean geometry is illustrated in Figure
8, and is sketched as follows. The horizontal line " partitions the
boundary into a finite number of pieces. Make each piece a closed
curve by drawing a line segment between its two endpoints. Of
the pieces that are in the upper halfplane, there will be one whose
new edge contains Ð and is of minimal length. Let this portion
of the boundary be called ` . Let us walk along the edges of ` in
a counterclockwise direction with respect to the interior of ` , and
monitor the polar angle for the endpoints of each edge. Every time
a new maximum is reached in the polar angle, the current edge is
selected regardless of whether it can be seen from Ð . This selected
subset is then postprocessed by discarding any edge that cannot be
seen from Ð , because of other edges in the selected subset.

Figure 8

A more precise formulation is the following. Let �2&��W�4(/�+*0*+*+�W��Ú be the edges of ` in consecutive order,
beginning with the edge that intersects " to the right of Ð . A suitable set of edges can be selected for
subsequent postprocessing as follows.

Create the empty set ¯ ;ÕÑÛÜ��Ý
for
U ÛÞ- to ß do

Assign the maximum of the polar angle values for the endpoints of � ? to � ;
if �Öà]Õ then JÊ� is a new maximum angle KÕ¢ÛÜ� ; J Remember the new maximum K

Include �+? in ¯
endif

endfor.

The postprocessing is equally direct; the interested reader may wish to consider how to design an elegant
solution.

Q

Figure 9

Let each of the resulting edges (after postprocessing) be trimmed so that consecutive
segments have an endpoint on a common radial line as shown. It is convenient to use
a trimming procedure that uses radial lines through vertices of

�
. Similarly, let the

first and last segment in the sequence penetrate below " as illustrated in Figure 9. Leta & ��a ( �+*0*+*+��a Ø be the sequence of segments. The desired set of angles J�Õ��R>W1S	�K is defined
by the angles of the radial lines through the endpoints of these segments.

Each a41 , for
, �á-/���'�+*0*+*���Ù will be assigned two slicing rays. Let a�1 be a trimmed version of the

edge �+? , Then each endpoint of a 1 will have an emanating slicing ray that is parallel to the ray from the
corresponding endpoint of �0? .

Since a 1 has rays that are parallel to the rays of its corresponding untrimmed edge, the slicing triangle
formed from any a 1 and its rays must be contained within the corresponding slicing triangle for

�
. Thus, it

suffices to show that Ð is contained in the slicing triangle formed from some a 1 and its associated rays.
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Q

Since none of the original slicing rays was parallel to any of the lines from Ð
through the vertices of

�
, none of the slicing rays associated with the a)1 will

pass through Ð . Let a slicing ray be called right-oriented if it begins above " and
intersects " to the right of Ð . Similarly, a ray is left-oriented if it begins above "
and intersects " to the left of Ð .

Figure 10

Q

For any edge a 1 , let its two endpoints be denoted by the forward endpoint and
the rear endpoint, where the polar angle for the forward endpoint has a larger
value than that of the rear. Similarly, each radial line will have two incident
edges, which are identified as forward and rear. As shown in Figure 11, the
edges a & �Wa ( �0*+*0*=�Wa Ø have a natural order that begins with an edge that intersects" on the right, and proceeds in counterclockwise order through to the last edge,
which intersects " on the left.

Figure 11

QQ

Remark: as Figure 12 shows, if the ray emanating from the forward endpoint
of a radial line’s rear incident edge is right-oriented, then so is the ray that em-
anates from the rear vertex of the radial line’s forward edge. This property is
just a straightforward consequence of the monotone rotational increment in the
direction of consecutive slicing rays. Of course, the analogous fact holds when
the words left and right are exchanged, along with the notions forward and rear.

Figure 12

To locate a slicing triangle that covers Ð , let these edges be searched in sequential polar order for the
first associated ray that is left-oriented. In view of the preceding remark, this ray, if it exists, must emanate
from the forward endpoint of its associated segment. There are three cases.

x

f

r

Q

Case 1: The sought ray is associated with a segment that lies entirely above " . Let the
segment’s rear ray be â� , and let the forward ray be âã . In this situation, Ð is trapped
between âã and â� . Let â� intersect " at Ë . Draw a ray at Ë that is parallel to âã . These two
rays define a half infinite strip that â� must enter at Ë (due to monotonicity). Consequently,âã and â� must intersect below " to form a slicing triangle that contains Ð .

Figure 13

x Q

Figure 14

Case 2: All segments that lie entirely above " have emanating rays that are right-
oriented. In this circumstance, the reasoning of Case 1 applies to segment a Ø , which
has a forward endpoint Ë that lies below " . Notice that the associated ray emanating
from Ë must lie in the cone that has its vertex at Ë , one side parallel to the ray associ-
ated with the rear of a�Ø (due to monotonicity) and the other parallel to " and pointing
the right (since no ray can be rising).

Case 3: All segments that lie entirely above " have emanating rays that are left-
oriented. This circumstance is, mutatis mutandis, the same as case 2 with all notions of left and right
exchanged.

To ensure correctness, we are obliged to discuss a case that cannot occur. The underlying question is
why the above argument fails to hold for the portion of the polygon that lies below the Ë axis. The answer
is that such points Ð will not be trapped by either � & or � � , and therefore might not be caught between any
pair of intermediate rays. Moreover, the monotonicity argument as illustrated in Figure 12 would not hold
if % � % & were an intermediate (and omitted) edge that belonged to the portion of boundary named ` . But
this event cannot occur since ` lies above " .

The proof is now complete.
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Two mild extensions of Theorem 2 are needed to complete the proof of Theorem 1.

Corollary 5. Let
�

be an $ -gon with consecutive vertices %È&)��%)(/�+*0*+*+�!% � , and let ��&)���4(/�0*+*+*+��� � be a mono-
tone slicing for

�
with associated angles 3|&��!3�()�+*0*+*0��3 � , and associated slicing triangles J0>@?�K �?!LC& . Let %|&

and % � be on the Ë axis, with %|& to the right of % � . Let Ô be the upper halfplane.

5a) Suppose that ��& and � � intersect, and the intersection point lies below the Ë -axis.
Then � 
���� D;Ô Z]\ � £ &?!LC& >b?/*

5b) Suppose that ��& points at % � , % � £ & lies in the upper halfplane, and � � £ & intersects the Ë -axis at or to
the left of % � . Then � 
���� D;Ô Z]\ � £ &?!LC& > ? *

Proof: For both 5a and 5b, the rays � ( �+*0*+*0��� � £ & are constrained to point downward. Moreover, if � & and� � are replaced by rays that point at at each other, then the slicing rays would still be monotone and satisfy
the conditions of Theorem 2.

For 5a, this change only affects three slicing triangles, which each might lose coverage below the Ë -axis
but are otherwise unaffected.

r

vn−1

1v
n

nv

Figure 15

For 5b, only triangles > � £ & and > � could possibly be affected by the change in� � . However, > � will remain fixed (as a segment with zero area), and > � £ & will
not exist for either direction of � � , due to the errant pointing of � � £ & , unless it
points at % � , in which case > � will also be a degenerate triangle. So the coverage
will be the same.

The intended application for part 5b is instances where � � points upward as shown.

Proof of Theorem 1: Let, for
U �.-2�+*0*+*=�!$ , angle ä{? satisfy ä'?·��3+?!AB&Or�30? . Intuitively, ä�? is associated

with edge %4?+%4?!AC& . Suppose, for the moment, that ä{? 5 � , for all
U
.

Given an edge and its associated angle ä , a suitable interpolation scheme is needed to compute the
appropriate portion of ä to associate with a given portion of the edge. The interpolation, it turns out, will
only be needed for edges that are intersected by a transversal.

j
β

v
inside

v

j+1

j

v w
Let the transversal " intersect the edge %�?+%4?!AC& at the point % , and suppose
that one side of %�?+%4?!AC& is designated as the inside. Let À be a point on" that is on the inside half of " as defined by the designation for %)?+%4?!AC& ,
and suppose that ¸ %4?+À�%4?!AB&<�åä'? . Then interpolation rule associates¸ %|À�%4?!AC& with the segment %|%4?!AB& , and ¸ %4?+Às% with the segment %�?0% .

Figure 16

The interpolation procedure introduces % as an artificial vertex on %)?0%4?!AC& . The vertex will also need an
associated slicing ray �4æ . Let �0æ emanate from % with an angular direction of 3/æeçg3+?Ê:º¸ %4?+Às% .

Now let " be a horizontal line that lies above
�

, and let " be translated downward in a continuous motion,
so that " will eventually intersect

�
and will eventually wind up below the polygon. We can suppose that "

is not parallel to any of the lines defined by pairs of vertices of
�

. Let this family of sweep lines be denoted
by "/�RèÈ	 , where è ranges from 0 to 1.

Let � & �qè'	 be the rightmost intersection of "/�RèÈ	 with the boundary of
�

, and let � ( �qè'	 be the leftmost
such point. For transversals of interest, �9&)�qè'	 and ��(2�qè'	 will split the boundary of

�
into two pieces, which

we name the upper and lower boundaries.

Let ép&/�qè'	 and é{(|�qè'	 be the sums of the angles associated with the segments belonging to, respectively,
the upper and lower boundaries of

�
. If �9&)�qè'	 or �p(/�RèÈ	 are not vertices, the interpolation rule is used to

apportion a fraction of the relevant angle(s) to each sum.

Ideally, there ought to be a è and transversal "/�qè'	 where éd&/�qè'	E��é{(2�qè'	Ê�º� . While this would would
be evident if éÓ�RèÈ	 were continuous, the function can have jumps when " intersects a vertex. We defer,
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momentarily, an analysis of the discontinuous case, which includes the possibility that the interpolation
procedure might fail.

So suppose that there is a è � where é�&)�Rè � 	s�8é{(|�qè � 	s�I� . Then the conditions of Theorem 2 can be
satisfied as follows. First, interpolation is used to create artificial vertices and associated rays as needed
at �d&��Rè � 	 and �p(/�Rè � 	 . Let � be the angle between the ray emanating from �
&��qè � 	 and a ray pointing from��&)�qè � 	 to �p(/�Rè � 	 . Then a rotation of the slicing rays by � will force the ray emanating from �C&��Rè � 	 to point
at ��(2�qè � 	 . Similarly, the ray emanating from ��( will point at ��&)�qè � 	 .

In this case, Theorem 2 shows that the coverage is complete for both halves of
��
!���

as determined by"/�qè � 	 . Moreover, the interpolation rule ensures that the artificial rays are unnecessary, since any such ray
and its two neighboring rays intersect at a common point as illustrated in Figure 16.

However, the interpolation process might fail for two reasons.

p
2

p
1

x
w

First, suppose that "/�qè'	 intersects a vertex Ë that has both of its connecting edges on
the same side of the transversal, and suppose that Ë equals �C&��qè'	 or �p(/�RèÈ	 . For speci-
ficity, let Ë<�T�p(/�RèÈ	 , and let the edges connecting ��(2�qè'	 lie in the lower halfplane
bounded by "/�RèÈ	 . Let À be, in this case, the next-to-the-leftmost intersection of "/�RèÈ	
and the boundary of

�
(i.e., the leftmost intersection that is to the right of �9(2�qè'	 ). By

the choice of " , À cannot be a vertex of
�

and must therefore belong to some edge
that actually crosses " .

Figure 17

In this circumstance, it is possible that ép(2�qè'	 might jump from a value greater than �¿: ê to a value
that is less than �xr�ê as the transversal descends to Ë . This jump is harmless, since the covering problem
for the upper and lower halves of

�
can be treated separately. An artificial vertex at �C&)�qè'	 is added to both

boundary portions, and the upper boundary is terminated at the artificial vertex À . The interpolation rule
determines the angular portions to assign each subsegment of a partitioned edge. Lastly, a slicing ray is
introduced at � & �RèÈ	 , along with an angular adjustment � that forces the ray at � & �RèÈ	 to point toward � ( �qè'	 .
Vertex À also gets a slicing ray.

Since neither collection of edges will have a total rotational sum that exceeds � , Corollary 5a suffices
to establish the coverage of each half.

b

e

d

a

f
c r

r
r

b

o
c

ra

Second, there is a discontinuity that can occur from a failure in the
interpolation rule. As shown in Figure 18, the transversal is horizontal.
The point ë is the current �p( , so that " does not intersect

�
to the left ofë . The rotational value ä associated with edge ë�³ is ¸ ë � ³ . The possible

locations for vertex � as used in the interpolation procedure is shown

as the circular arc ìë � ³ . Line � ã is tangent to ìë � ³ at ë .
Figure 18

Suppose that the rays have been rotated so that the ray at �
& , which is not shown, points at ��( . In this
case, the ray ��í , which emanates from ��( , has an associated angle 3/íE�yé{(Ê:Ö� that is a little less than the
necessary ��� . The ray � © is the slicing ray for vertex ³ , and has an associated angle equal to 3|íB:Ñ¸ ë � ³ .

Because ��í points downward from ��( (and the ideal direction is to point at �9& ), the descent of " should,
in principle, be continued. Such a change would cause additional rotation to occur from the relocation of
both �d& and �p( . The difficulty is that in the illustration, the interpolated contribution from ëF�9(/�RèÈ	 , once "/�RèÈ	
partitions ë=³ , has a discontinuous jump.

It is easy to see that the interpolation rule will be jump-free at a vertex ë if and only if the line that is

parallel to " and contains ë also intersects the interior of arc ìë � ³ or is tangent at ë .
However, when this criterion fails, as illustrated in Figure 18, descending " from ë introduces a jump
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3)î in the interpolated angle, which equals the angle between the tangent
µë ã and the rightward pointing

transversal from ë .3 To resolve this case, it suffices to use the transversal through ë . The upper boundary
will have monotone slicing rays that begin with one pointing from �C& toward ��( , and end with ��í , which
has some kind of downward direction. Corollary 5a addresses this case.

As for the lower half, Corollary 5b will apply if � © , which is the next-to-the-last slicing ray for the lower
half of

�
(as viewed from a mirrored perspective for Corollary 5), intersects " at or to the left of � ( as

illustrated. To prove that � © satisfies this condition, let � � be collinear with ë�³ and point upward from ë .
Then the angle between � � and the tangent

µë ã is precisely ¸ ë � ³ . Failure will occur only if ��í lies within

the cone bounded by
µë ã and � � , since ��í must point downward, and the smallest interpolated angle that can

be constructed from ¸ ë � ³ must be too large. Consequently, a rotation of ��í by 3)î will cause it to become
rising, and a rotation by ¸ ë � ³ will cause it to pass � � . But the rotation by ¸ ë � ³ gives a ray emanating fromë that is parallel to � © . Consequently, � © has a direction that comprises a positive rotation of

µ³+ë with respect
to ³ , and a rotation of the falling � í by an angle equal to ¸ ë � ³ 5 � . It follows that � © rises to intersect " at
or to the left of ë , which ensures that Corollary 5b is applicable.

P
e

s

s

e
P

Figure 19

Lastly, suppose that some edge � has an associated angle of size � or more. We show
that such an occurrence is harmless; in fact, � ’s slicing triangle is not needed to cover�·
!���

.

Let a be a longest segment that belongs to the convex hull of
�

and either contains� or seals off � inside of the region enclosed by
� \ a . Let

�
be redefined to include

the enclosed pocket, and let the angle associated with a equal the sum of the angles
associated with the edges that no longer belong to

�
, including � . Thus, the associated

angle is at least � . Let the extension of a be the transversal " , so that the endpoints of a
are �d& and �p( .
Let the rays be rotated so that the ray from �9& points at ��( . Then each slicing ray

will intersect " , and Corollary 5a shows that the coverage is complete.

4 Minor extensions

For completeness, we give a reduction to show that Corollary 1b follows from Corollary 1a.

Corollary 1b. Let ^ be a simple polygon in the plane, and let ¯ be a polygon that is inscribed in a circle,
and which has edges with the same lengths as those of ^ . Suppose that ¯ 
���� does not contain the center of
its circumscribing circle.

Then the area of ¯ is at least as large as that of ^ .

Figure 20
3Notice that ï must lie below ð as otherwise the discontinuity must be of the first type associated with Figure 17. Because ï lies

below ð , segment ñ@ï induces no comparable jump at ï . Similarly, the segment would not induce a jump at ñ if òñ@ï were to point down
and to the right, rather than down and to the left, because the upper side of ñ@ï would then be designated as the inside.
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Proof (Sketch):
One way to see that this is so to use reflection and other simple local improvements to expose the longest
edge so that its extension as an infinite line will not have any additional intersections with

�
. Then a rotated

copy of the improved figure can be combined with a (virtual) rectangular filler to build a new figure that will
have the same size circumscribing circle as shown, and that meets the conditions of Corollary 1a. If

�
has$ edges, then the composite figures will have �)$ edges. In particular, each edge in

�
, apart from the largest,

will have two comparable edges in the composite. The last two edges in the composite will represent the
top and bottom edges of the filler rectangle. By construction, the filler rectangle in the modified polygon
and the rectangle inscribed in the circle have side lengths equal to the length of the longest edge in

�
, and

twice the distance from the longest edge of the inscribed polygon to the center of its circumcircle.

Lastly, we conclude this section by outlining extensions of Theorem 2 to cases where the rays �|& and� � do not point at each other. While Corollary 5 addressed this case, it was somewhat weak.

Theorem 3. Let
�

be an $ -gon with consecutive vertices % & ��% ( �+*+*0*+�!% � that sequence counterclockwise
about

�
, and let � & �!� ( �+*+*0*=��� � be a monotone slicing for

�
with associated angles 3 & ��3 ( �0*+*0*+��3 � , and

associated slicing triangles J0> ? K �?!LC& . Let % & and % � be on the Ë axis with % & to the right of % � , and suppose
that � & and � � intersect at a unique point � & .

C

C

DD

p
1

1
p

v

v1
vn

v1n

Define ´� & to be the ray that emanates from � &
and is parallel to (and coincides with) �)& . Let ´� �
be the ray that emanates from �d& and is parallel
to (and coincides with) � � . Let v be the cone
defined by the boundary ´�)& \ ´� � .
a) If �d& lies above the line rpµÛór%2&=% � , let Ôô� v .

b) If ��& lies below rpµÛór%2&�% � , let Ô comprise�RQ (¡õ v·	 \ ´� & \ ´� � .
Then in cases 1) and 2):� 
!��� D;Ô Z]\ � £ &?!LB& >b?/*

Figure 21

Proof (Sketch):
The basic reasoning is the same as that of Theorem 2.

DD

n v1 1
v p

1
p

v1nv

Q

Q

The only difference is that the horizontal line "
through Ð is replaced by a pair of rays that em-
anate from Ð and are anti-parallel to ´�)& and ´� � as
shown.

Figure 22

For completeness, we observe that Theorem 3b facilitates a direct proof of Corollary 1b without any
need to transform the problem into an instance of Corollary 1a. The proof begins with a convexification
step as outined next.
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Let
�

be oriented. If the figure is not convex, let "e� Û6µ% 1 %4? , be a global support line that intersects
�

at% 1 and %�? , for
,�¼� U .

Figure 23

Suppose that
� D %/1R% ? �öJ4%)1«�!% ? K , so that %/1q%)1 seals off some pocket of�

as shown. Steiner symmetrization flips (reflects) one of the subpaths
terminating at %/1 and % ? about " to increase the area of the resulting fig-
ure while preserving the edge lengths. As a practical matter, it is sim-
pler to reverse the sequencing of these edges, which effectively rotates the
boundary portion about the midpoint of % 1 %4? (but does not reverse their
direction). While iterations of either operation lead, eventually, to a con-
vex region with increased area, the virtual rotation operation is easier to
analyze. It simply rearranges the segment ordering without changing their
directions. Since this procedure can produce no more than �R$xrg-4	�÷ such

arrangements, one of these polygons must have a maximal area. This polygon must be convex, since other-
wise this procedure could further increase the area.

At this point, the mapping between ¯ 
���� and the convexified
�

is straightforward. The radial rays of¯ should be transferred to the convexified
�

with a rotational, offset that forms > � as an isosceles triangle
exterior to the figure. It follows that ± � ±Èw � £ &¬? £ & ± > ? ±�r]± > � ±¾*
This construction resolves a question impicitly posed by Yaglom and Boltanskiı̆about the difficulty of find-
ing a geometric proof of Corollary 1 that does not rely on an intermediate isoperimetric inequality [10,
p. 56].

5 Conclusions

Theorem 1 was derived as a parallelized interpretation of a much simpler but less general divide-and-
conquer proof of the most basic isoperimetric inequality as presented in [8]. Its topological perspective
enables Corollary 1a to be proven directly without any convexifying steps or reductions to the isoperimetric
inequality for the disk. Moreover, the proof can be established as an algorithmic construction in traditional
Euclidean geometric algebra.

Construction. Let
�

be an $ -gon, and let Ð be a polygon that is inscribed in a circle and has sides
that are congruent to those of

�
. Let the vertices of

�
be % & �!% ( �0*+*+*0��% � , and be in correspondence withø & � ø ( �+*0*+*=� ø � in Ð . Let both vertex sets have the same orientation about their respective interiors. Let ø �

be the center of the circle circumscribing Ð . Suppose that % & is a corner of the convex hull of
�

.

Form the slicing triangles ´> ? ���b¶ ø ? ø � ø ?!AB& 	 
���� , for
U �ù-/���'�+*0*+*��!$ . Draw a line through the pointsø & and ø � . Let the line exit Ð 
!��� at ø Ì ø Ø ø Ø�AC& for some vertex index Ù . The proof of Theorem 1

shows that a suitable transversal " is either rpµ%2&=%/Ø , rpµ%2&�%/Ø�AB& , or r�µ%2&�% , where % , if it exists, is located so that¸ %2&=%|%/Øe�.¸ ø & ø�ø Ø , ¸ %/Ø�%|%/Ø�AC&s�8¸ ø Ø ø�ø Ø=AC& and %lÌ��F¶[%2&�%/Ø�%/Ø�AC&0	 
!��� .
In any case, the image of ´>b? is defined by %4?4%4?!AC& and the intersection (if it exists) of the slicing rays �+?

and ��?!AC& . Ray ��& emanates from %|& with an angular direction 32& that points it along " . Ray �=? emanates
from %4? and has the direction 34?��g30? £ &�:Ñ¸ ø ? £ & ø � ø ? , for

U � ���!ú��0*+*0*=��$ .

Evidently, the construction is trivial, but its proof of correctness is somewhat subtle. On the other hand,
each step of this topological approach is elementary. Yet the perspective gives a variety of related results
that are sometimes not so obvious.
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