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Graphs
Graphs are commonly used to model relationships between people, objects, places, etc.

A few examples:

• Friend graph (social network): vertices represent people, and edges indicate that two
people are friends. This is an example of a symmetric relationship, commonly modeled by an
“undirected” edge.

• Follower graph (social network): vertices represent people, and an edge p1 → p2 indicates
that person p1 follows p2, e.g., on social media. This is an example of an asymmetric relationship,
commonly modeled by a “directed” edge.

• Road network: vertices represent places, and edges represent roads. Depending on the
circumstances, the edges might be either undirected or directed.

Depending on the specific relationship being modeled, we might also associate weights with vertices
and/or edges. For example, an edge that represents a road might be annotated with a distance; a
vertex that represents a city might be annotated with its population.

You are likely familiar with a variety of sequential algorithms on graphs, such as sequential breadth-first
and depth-first search, Kruskal’s minimum spanning tree algorithm, Dijkstra’s shortest path algorithm,
A* search, etc.

These algorithms can be used to implement a variety of interesting queries. For example, on a follower
graph, we might be interested in identifying tight-knit groups of people where every person in the
group both (1) follows someone else in the group, and (2) is followed-by someone else in the group.
Such groups are commonly called strongly connected components and these can easily be identified
with a particular flavor of depth-first search.

Many real-world graphs are quite large, however, which make sequential computation impractically
slow. In this lecture, we will discuss techniques for implementing parallel graph algorithms.

Efficient Memory Representations for Graphs
Perhaps the simplest representation for a graph is an adjacency matrix. This is a square matrix,
with one row and one column for every vertex. An element at position (i, j) in the matrix encodes
information about an edge between vertices i and j. This could be a boolean (indicating the presence
or lack of an edge), or a weight, etc.

For a graph with N vertices, adjacency matrices require O(N2) space to store in memory.

However, in practice, many real-world graphs are highly sparse, meaning that the total number of
edges in the graph is relatively small. For example, in a friendship graph, each individual person might
be friends with a few hundred (or even a few thousand) people, but this is approximately 7 orders of
magnitude smaller than the total number of people in the world (8.2 billion, as of March 2025).

Let M be the number of edges, and N the number of vertices. Often, we say that a graph is sparse if
M ≤ c · N for some reasonably small constant c. For sparse graphs, adjacency matrices are incredibly
wasteful representations, requiring O(N2) space instead of O(N).
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Therefore, we often use sparse representations to store graphs in memory. Such representations
only require O(N + M) space.

One such sparse representation is the adjacency list or adjacency sequence, where for each vertex
we only store its immediate neighbors. (If there is an edge between u and v, we say that u and v are
neighbors.)

Vertices are commonly given the names 0 to N − 1, and then we can store the adjacency sequence
simply as a (jagged) 2-dimensional sequence. For example, the adjacency sequence ⟨⟨1, 2⟩, ⟨3⟩, ⟨⟩, ⟨0, 2⟩⟩
represents a graph with 4 vertices (numbered 0 through 3) with the following directed edges: 0 →
1, 0 → 2, 1 → 3, 3 → 2, 3 → 0, 3 → 2.

Figure 1: Example graph

Adjacency sequences have an outer sequence of length N , and the sum of the lengths of the inner
sequences comes out to M in total, so the total space requirement is O(N + M). Also, notice that we
can query the neighbors of any vertex in constant time.

Compressed Sparse Rows (or Columns)
Another common representation for graphs is called the compressed sparse row representation,
or sometimes compressed sparse column. (The analogy to rows and columns comes from the
adjacency matrix interpretation.) These are abbreviated CSR and CSC.

Essentially, the CSR representation is the same as the adjacency sequence, except the (inner) neighbor
sequences have been flattened into a single 1D sequence of length M . This is called the edge array, or
neighbor array. We then separately store the offset of where the neighbors for each vertex begin. This
offsets array is length N (or sometimes N + 1, i.e., all prefix sums over the neighbor lengths, which is
convenient for computing the degrees of vertices).

For example, the adjacency sequence ⟨⟨1, 2⟩, ⟨3⟩, ⟨⟩, ⟨0, 2⟩⟩ can be compressed into the following CSR
representation. Here we store N + 1 offsets; notice that the last offset value is equal to the number of
edges.

edges: ⟨1, 2, 3, 0, 2⟩

offsets: ⟨0, 2, 3, 3, 5⟩

In this representation, we can still query the neighbors of a vertex in constant time: the neighbors of a
vertex v are just the subsequence edges[i...j] where i = offsets[v] and j = offsets[v + 1].

One warning: the difference between CSR and CSC is not important conceptually, but sometimes in
practice these are accidentally used interchangeably, which is a common source of bugs. Getting the
two mixed up might result in accidentally swapping the direction of all of the edges in a directed graph.
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Edge List (a.k.a. Edge Set)
It is important to mention one more sparse graph representation that you might commonly see in
practice: the edge list or edge set. The idea is simply to write down a list of all of the edges. This
might be sorted or unsorted. Clearly, this representation requires only O(M) space.

Including Weights
In edge-weighted graphs (where each edge is annotated with a weight), we can replace every edge with
a tuple that includes the weight.

Summary of Sparse Representations
Here are a few possible sparse representations that you might commonly see or might like to use in
practice.

Unweighted Weighted
adjacency
sequence

type v = int (* vertices *)
type graph = v seq seq

type v = int (* vertices *)
type w = ... (* weights *)
type graph = (v * w) seq seq

CSR/CSC type v = int (* vertices *)
type graph = v seq * int seq

type v = int (* vertices *)
type w = ... (* weights *)
type graph = (v * w) seq * int seq

edge set type v = ... (* vertices *)
type graph = (v * v) seq

type v = ... (* vertices *)
type w = ... (* weights *)
type graph = (v * v * w) seq

Connections between Matrices and Graphs
Often, algorithms on graph can be re-interpreted as algorithms on matrices, and vice-versa. The idea
is to imagine the graph as an adjacency matrix, regardless of whether or not the graph is physically
stored as one.

For example, in a directed weighted graph, suppose we wanted to compute the average weight of every
vertex’s neighbors.

Here is one possible graph-based implementation, with a graph represented as an adjacency sequence.

type vertex = int
type weight = real
type graph = (vertex *real) seq seq (* adjacency sequence *)

fun average_neighbor_weights (G: graph) : real seq =
Parallel.tabulate (0, Seq.length G) (fn u =>

let
val u_nbrs = Seq.nth G u
val w_total = Seq.reduce (op+) 0.0 (Seq.map (fn (v, w) => w) u_nbrs)

in
w_total / Real.fromInt (Seq.length u_nbrs)

end)
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But we could have equivalently computed the same result by converting the graph G to a matrix MG

where

MG[u, v] =
{

weight(u, v) if (u, v) is an edge in G

0 otherwise

and then multiplying MT
G with a vector d−1 where d−1[v] = 1/degree(v), where the degree of a vertex

is its number of neighbors.

Parallel Breadth-First Search
Let’s now develop a particular parallel algorithm, specifically a parallel implementation of breadth-first
search.

You may already be familiar with sequential breadth-first search using a queue, where we iteratively (1)
dequeue a vertex v, (2) check if v has already been visited, and if not, (3) “visit” v and then enqueue
all of its neighbors. This algorithm is entirely sequential.

A parallel breadth-first search can visit many vertices all at the same time. The idea is, on round i, to
visit all vertices that are i edge-hops away from the source vertex.

An implementation is shown below. This particular implementation outputs a sequence of “parents”,
where we keep track of which edge was used to visit each vertex. In particular, if edge (u, v) is used to
visit v, then we set the parent of v to be u. Note that there can be many possible parents of a vertex;
this implementation picks one arbitrarily.

The code operates in rounds by calling the recursive function loop(P,F), where:

• P is the current sequence of parents. We mark unvisited vertices v with P [v] = −1. All visited
vertices will have their parent set to be another vertex. Initially, all vertices are unvisited except
for the source. By convention, we’ll set the parent of the source vertex to be itself.

• F is the current “frontier” of vertices that were visited on the previous round.

The loop continues until the frontier F is empty. On each round, we begin by constructing a sequence
of “backwards edges” called BENV, where for each edge u ∈ F and each edge (u, v), we put the backwards
edge (v, u) in BENV if v has not yet been visited.

Next, we “inject” the sequence BENV into the array of parents, producing a new array of parents
P ′ for the next round. For each tuple (v, u) in BENV, this updates P [v] with the value u. (In other
words, “inject” is just a bulk update on a sequence.) This effectively selects a parent for each vertex v,
choosing arbitrarily if there are multiple choices (v, u1) and (v, u2) in BENV. Details of the Seq.inject
function are described in more detail below.

Finally, we do one more pass over BENV to produce a sequence of vertices v which were vis-
ited on this round; this is the next frontier. Note that on this step, we could have just done
Seq.map (fn (v, u) => v) BENV, but this would result in duplicates if there are multiple backwards
edges (v, u1) and (v, u2) for the same vertex v. Instead, we first filter the sequence to select only the
backwards edges that were implicitly selected by the injection. That is, we keep (v, u) if P ′[v] = u.
This will ensure that the new frontier has no duplicates.

type vertex = int
type graph = vertex seq seq

(* breadth-first search of G starting with source vertex s *)
fun bfs(G: graph, s: vertex) : vertex seq =
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let
fun loop(P: vertex seq, F: vertex seq) =

if Seq.length F = 0 then P else
let

fun benv_from(u) =
Seq.map (fn v => (v, u))

(Seq.filter (fn v => Seq.nth P v = ~1) (Seq.nth G u))
val BENV: (vertex * vertex) seq =

Seq.flatten (Seq.map benv_from F)
val P' = Seq.inject BENV P
val F' = Seq.map (fn (v, _) => v)

(Seq.filter (fn (v, u) => Seq.nth P' v = u) BENV)
in

loop(P', F')
end

(* initial parents P and frontier F, for just the source vertex *)
val init_P = Parallel.tabulate (0, Seq.length G) (fn v =>

if v = s then s else ~1)
val init_F = Seq.singleton s

in
loop(init_P, initF)

end

Understanding Seq.inject

The function Seq.inject takes a sequence of tuples (i, x) and a underyling sequence S and performs
the bulk updates S[i] := x for each tuple (i,x), all in parallel. This is also sometimes called a
scatter. The updated sequence is returned as a result.

val inject: (int * 'a) -> 'a seq -> 'a seq

In implementing inject U S, there are a few interesting questions to consider:

1. How does inject handle duplicates (two elements (i, x1) and (i, x2) in U with the same index
i)?

2. Does inject modify the input S?

Let’s consider the first question. So far in this course, we have focused on deterministic parallelism,
and in particular, purely functional parallelism, where the output is always the same (regardless of
the number of processors used, etc.) However, for practical efficiency of inject, we find ourselves
in a situation where non-determinism may be desirable. We can implement inject by performing
all updates concurrently; if there are many concurrent updates at the same index, then one of these
updates will non-deterministically occur last, and this is the update that will be observable in the
output. The alternative would be to perform another pass over the tuples (i, x) to deduplicate (for
example, you could sort the tuples (i, x) by their indices i, and then deduplicate by removing adjacent
tuples that have the same index.) However, this requires an additional pass over the data. So, perhaps
the non-determinism of the more efficient implementation is acceptable.

Next let’s consider the second question. If we didn’t modify the input S, then the minimum possible
work for inject U S would be O(|S| + |U |), because we would have to copy S before updating the
copy. However, in the case of the BFS above, as we will see below, we can obtain an asymptotic
reduction in the total amount of work required for the BFS by instead directly modifying the input S
and only performing O(|U |) work, i.e., work linear in the number of updates performed.
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Note in particular that, for S' = inject U S, as long as we never access S again and only instead
access S', then modifying S in-place is safe.

For the cost analysis below, we will use the cost specification where inject U S requires O(|U |) work
and O(log |U |) span.

BFS Cost Analysis

The total work for one round of BFS is, asymptotically:

||F || ≜
∑
u∈F

1 +
∑

v∈G[u]

1


We can confirm this by stepping through the code and analyzing each of the calls to the various
sequence functions. Intuitively, a constant amount of work is required for every edge (u, v) where
u ∈ F ; additionally, a constant amount of work is required per vertex u ∈ F . The quantity defined
above, ||F ||, captures both of these costs. Note that ||F || is also an upper bound on the size of BENV,
and this is the number of updates performed by the inject. The final line of each round, which
constructs F', also performs work linear in the size of BENV. Altogether, then, we have that the cost
per round (on inputs P and F ) is bounded by O(||F ||).

If Fi is the frontier at round i, then the total cost just sums over all rounds. Next, we can use a meta
argument: we know that this implementation of BFS will “visit” every vertex at most once. In other
words, for any vertex u there exists exactly one Fi such that u ∈ Fi. From this, it is clear that:

work of BFS = O

(∑
i

||Fi||

)
= O(N + M)

.

We can similarly analyze the span. Each round of BFS requires O(polylog(||Fi||)) span, which can be
upper bounded by O(polylogM) = O(polylogN). If D is the number of rounds, then the total span is
O(D polylogN).

An important point is that this quantity D will vary significantly by graph. Some graphs (such as a
long chain) could have D ≈ N . Other graphs, such as real-world social network graphs, typically have
very small values of D. As long as D is reasonably small, this parallel implementation of BFS will
have a significant amount of parallelism.

(The value D is closely related to a concept called the diameter of a graph, which is well-studied in
graph theory.)
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