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Sequential BSTs and Path Copying

The traditional “sequential” interface to a binary search tree structure typically
consists of functions such as insert, remove, and lookup, for example as follows.

type key

val key_compare: key * key -> order (* LESS, EQUAL, or GREATER *)
datatype tree = Leaf | Node of tree * key * tree

val insert: tree * key —> tree

val remove: tree * key —> tree

val lookup: tree * key -> bool (* 4is the key in the tree? *)

Path Copying By Default

In this particular presentation, updates on the tree return “new” trees as output,
and the original tree is left unmodified. The actual mechanism we’ll use to
accomplish this is known as path copying, which falls out naturally from a
purely functional programming style. All of the algorithms we develop in this
lecture are based on this idea.

To illustrate, here an implementation of insert which (for now) completely
ignores tree balance.

(* Note: this implementation tgnores rebalancing *)
fun insert (t, x) =
case t of
Leaf => Node (Leaf, x, Leaf)
| Node (1, k, r) =>
case key_compare (x, k) of
LESS => Node (insert (1, x), k, r)
| EQUAL => ¢t
| GREATER => Node (1, k, insert (r, x))

This implementation walks down the tree to find a good place to insert a node,
and then makes new Nodes on its way back out. These new nodes are the “copied
path”, which mirrors the path that was traversed for the insertion.

For example, see the figure below. The initial tree, T, is drawn in black. Note
that we don’t draw the Leaf elements, only the Node, and we label each node
with the key stored at that node. The keys in this case are integers. We then call
insert(T,5), and the new tree is drawn in red. The original tree T is preserved,
and the new tree shares many of its nodes with T'. For a tree of height h, the
cost of this insertion is only O(h).






Sequential Bulk Operations

With functions such as insert, remove, and lookup, we can easily implement
“bulk” operations such “union”, “intersection”, and “difference”. The terminology
is taken from sets, where we think of binary search trees as implementing a set
of keys.

Below are sequential implementations of union, intersection, and difference. Each
of these is implemented by walking through one tree and accumulating an output
tree. Specifically, we use a sequential function, iterate, which walks through a
tree and applies a function at each key to accumulate a final value.

fun sequential_union(tl, t2) =
iterate t1 t2 (fn (tu, x) => insert (tu, x))
fun sequential_intersection(tl, t2) =
iterate t1 Leaf (fn (ti, x) =>
if lookup (t2, x) then insert (ti, x) else ti)
fun sequential_difference(tl, t2) =
iterate t1 t1 (fn (td, x) =>
if lookup (t2, x) then remove (td, x) else td)

(* sequential "iterator” over a tree t, with accumulator a *)
fun iterate (t: tree) (a: 'a) (f: 'a * key -> 'a) =

case t of
Leaf => a
| Node (1, k, r) =>
let
val a' = iterate 1 a f
val a'' = f(a', k)
val a''' = iterate r a'' f
in
a.Ill
end

These implementations are not parallel, and also not particularly work efficient:
even with implementations of insert and remove which maintain balance, the
total work for each of these implementations will be O(mlogn) for two trees of
size n and m where n > m. (You can always choose to iterate over the smaller
tree, and perform lookups/insertions/removals on the larger tree.)

In this lecture, we will develop parallel versions of these bulk operations. The
parallel code happens to also perform asymptotically less work than the sequential
code described above.

Splitting Trees

Many parallel algorithms are based on the idea of splitting something in half, to
process two halves in parallel. In order to apply this idea to binary search trees,



we need a way to split a tree.

Of course, the Nodes of a tree automatically suggest reasonable places to split.
The balancing strategy for the tree will ensure that the height of the tree is
asymptotically logarithmic, so if we simply process the two children of a Node in
parallel, we end up with parallel traversals that are highly parallel: linear work
(to touch a linear number of nodes), and logarithmic span.

For example, we could perform a parallel reduction over the tree. Here, we
supply a function £ which is applied to each key to produce one element of the
reduction, and then these elements are combined via the associative function g.

(* Parallel reduction over a tree. Assuming the tree is balanced,
* and that the work and span of "f° and "g  are constant, this
* requires O(n) work and O(log n) span, where n is the number of keys.

*)

fun reduce (g: 'a * 'a -> 'a) (z: 'a) (f: key -> 'a) (t: tree) : 'a =
case t of
Leaf => z
| Node (1, k, r) =>
let

val (x, y) = ForkJoin.par (fn () => reduce g z f t,
fn () => reduce g z £ t)

valm = f k
in

g(g(x,m),y)
end

An attempt at parallel union. Let’s run with the idea of taking advantage
of natural splits in the tree to attempt to implement a bulk operation over two
trees. Specifically, let’s try union.

In the previous lecture, we saw an algorithm for divide-and-conquer merge of
two sorted sequences. If we think of the in-order traversal of a binary search tree
as implicitly defining a sorted sequence, perhaps we can reuse this algorithm to
union two binary search trees in parallel.

The high-level algorithm for parallel merging was to use the median element of
one sequence to split the other sequence; this makes it possible to perform two
merges in parallel.

We can start running with a similar idea for tree union, but we immediately get
stuck.

fun union(tl, t2) =
case (t1, t2) of
(Leaf, _) => t2
| (_, Leaf) => t1
| (Node (11, k, r1), ) =>
let



(* Problem 1: what do we do here? Split t2 at key k? *)
val (12, r2) = 777
val (1, r) =
ForkJoin.par (fn () => union (11, 12),
fn () => union (r1, r2))
in
(* Problem 2: what about rebalancing? *)
Node (1, k, 1)
end

There are two problems to solve:

1. We’d like to split t2 into two pieces (12, r2) such that the key k lies
between 12 and r2 in the sorted order. This would make it possible to
perform two unions in parallel. However, there’s no guarantee that the
root of t2 is equal to k. Perhaps the key k is buried deep in a subtree of
t2, or perhaps it is not present in the tree at all.

2. After performing the unions in parallel, how do we stitch the results
together? Creating Node(l,k,r) is correct in terms of preserving the
“left-to-right” invariant of the binary search tree, but this result may not
be balanced.

Split and Join

The solution to our problems will be two key functions, named split and join,
which are inverses of each other. The former lets us pull trees apart, and the
second puts them back together again.

Let’s begin with split. The function split(t,k) splits a tree t “at” a key k.
It returns a tuple (1,b,r), where:

e 1 is a tree containing all keys less than k
¢ b is a boolean indicating whether or not k was in the tree
e r is a tree containing all keys greater than k

Ignoring balance for a moment, let’s implement this function.

fun split_no_rebalancing(t, k) =
case t of
Leaf => (Leaf, false, Leaf)
| Node(l, k', r) =>
case key_compare (k, k') of
EQUAL => (1, true, 1)
| LESS =>
let val (11, b, 1lr) = split_no_rebalancing(l, k)
in (11, b, Node(lr, k', 1))
end
| GREATER =>
let val (rl, b, rr) = split_no_rebalancing(r, k)



in (Node(l, k', rl), b, rr)
end

The code is remarkably similar to insertion, except we keep track of which
elements were less and greater than the key k. Again, we utilize the path copying
idea to construct new nodes on the way back out. For a tree of height h, this
requires at most O(h) work.

It will be helpful to visualize an execution on an actual tree. The figure below
shows the before and after of splitting a tree T at key 6.

(L, o, B) = split(T,¢)
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Figure 2: Example split (before and after)

Restoring Balance with Join

The above code for splitting does not attempt to restore balance of the output
trees. This can be remedied with a corresponding function called join which
stitches two balanced trees together, ensuring that the final tree is also balanced.

join: tree * key * tree -> tree
When we call join(l,k,r), we have a few requirements:

1. Balance requirement: 1 and r must each be already balanced.
2. Order requirement: the maximum key of 1 must be smaller than k, and
minimum key of r must be greater than k, i.e., max(1) < k < min(r).

Assuming these requirements are met of the input, join will guarantee that the
output is balanced, with keys that are appropriately ordered.

For the implementation of join, we refer the reader to the paper Just Join
for Parallel Ordered Sets which describes four possible implementations, based


https://dl.acm.org/doi/10.1145/2935764.2935768
https://dl.acm.org/doi/10.1145/2935764.2935768

on four popular balancing criteria: red-black, AVL, weight-balanced trees, and
treaps.

The surprising result from this paper is that the cost of join is (essentially)
O(logn — logm), where n is the size (number of keys) of the bigger tree and m
is the size of the smaller tree.

(The specifics are a bit trickier than this, in particular requiring a criterion-
specific notion of “rank” which takes the place of the logarithm in this bound.
The rank of a tree is closely related to its height, but the specifics differ across
balancing criteria.)

Using join, we can implement split in a way that guarantees that the results
are balanced. Essentially, we just replace each Node constructor with a call to
join.
fun split(t, k) =
case t of
Leaf => (Leaf, false, Leaf)
| Node (1, k', r) =>
case key_compare (k, k') of
EQUAL => (1, true, 1)
| LESS =>
let val (11, b, 1lr) = split(1l, k)
in (11, b, join(lr, k', 1))
end
| GREATER =>
let val (rl, b, rr) = split(r, k)
in (join(l, k', rl), b, rr)
end

In the Just Join paper, they prove that this particular implementation of split
requires at most O(logn) work and span for all of the balancing criteria consid-
ered.

With split and join, we can easily implement our previous “sequential” inter-
face, all with O(logn) work and span.

fun lookup(t,k) =
let val (_, b, _)

fun insert(t,k) =
let val (1, _, r)

fun remove(t,k) =
let val (1, _, r)

split(t,k) in b end

split(t,k) in join(l,k,r) end

split(t,k) in join2(1l,r) end


https://dl.acm.org/doi/10.1145/2935764.2935768

Parallel Union, Intersection, and Difference with Split and
Join

With split and join, we are now ready to finish implementing the union
function. We can also similarly implement intersection and difference,
which utilize a variant of join(1l,k,r) called join2(1,r) which does not require
a key in the middle (see the Just Join paper for more details.)

A key result from the Just Join paper is that all of the following
implementations have O(mlog(l+ n/m)) work and O(lognlogm) span,
where n is the size of the larger tree and m is the size of the smaller
tree. Note that the work is asymptotically smaller than the sequential algorithms
we described at the beginning of lecture.


https://dl.acm.org/doi/10.1145/2935764.2935768

fun union(tl, t2) =
case (t1, t2) of
(Leaf, ) => t2
| (_, Leaf) => t1
| (Node (11, k, r1), ) =>

let
val (12, _, r2) = split(t2, k)
val (1, r) =
ForkJoin.par (fn () => union(11, 12),
fn () => union(rl, r2))
in
join(1, k, r)
end

fun intersection(tl, t2) =
case (t1, t2) of
(Leaf, _) => Leaf
| (_, Leaf) => Leaf
| (Node (11, k, rl), ) =>
let
val (12, b, r2) = split(t2, k)
val (1, r) =
ForkJoin.par (fn () => intersection(ll, 12),
fn () => intersection(rl, r2))
in
if b then join(l, k, r) else join2(1l, r)
end

fun difference(tl, t2) =
case (t1, t2) of
(Leaf, _) => Leaf
| (_, Leaf) => t1
| (Node (11, k, rl1), _) =>
let
val (12, b, r2) = split(t2, k)
val (1, r) =
ForkJoin.par (fn () => difference(1l1, 12),
fn () => difference(ril, r2))
in
if b then join2(1l, r) else join(l, k, r)
end



Key-Value Maps

Often, rather than storing only a key at each node, we also want to associate a
value with each key. This is straightforward: we just store the values in each
node. Lookup on such a structure typically returns the value associated with
a key. Similarly, split(t,k) can return the value associated with key k. To
handle the cases where the key is not in the tree, we can use the option type.

type key
type value
type tree = Leaf | Node of tree * key * value * tree

val lookup: tree * key —> value option

val split: tree * key -> tree * (value option) * tree
val join: tree * key * value * tree -> tree

val join2: tree * tree -> tree

As an excercise, we recommend adapting algorithms such as union,
intersection, and difference to key-value maps. (An interesting question
is what exactly to do with the values, and there are many options here in the
design space.)

Augmentation

We’ve seen before that it easy to store information about every subtree within
nodes, such as (for example) the size of the subtree. The idea is to be careful to
correctly compute the size at the moment a Node is constructed:

datatype tree = Leaf | Node of int * tree * key * tree
fun size Leaf = 0
| size (Node (m, _, _, _)) =n

(* Instead of using “Node  directly, call this instead, and the
* sizes wtll always be correct. *)

fun make_node(l,k,r) =
Node(size 1 + size r + 1, 1, k, 1)

We can take this idea further to store all kinds of interesting data at each node.
In particular, we can augment the tree with an associative combining function,
g, similar to the combining function of a parallel reduction, and use this function
to compute arbitrary interesting properties of all subtrees.

type key
type value
type avalue (* augmented values *)

val f: (key * value) -> avalue (* singleton avalues, from key-value pairs *)
val g: avalue * avalue -> avalue (* associative combining *)
val z: avalue (* identity for g *)
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datatype tree = Leaf | Node of tree * key * value * avalue * tree

fun aval Leaf Z
| aval (Node (_, _, _, a, _J)) = a

(* Instead of using “Node  directly, call this instead, and the
* gugmented values will always be correct. *)
fun make_node(l,k,v,r) =

let val a = g(g(aval(l), f(k,v)), aval(r))

in Node(l, k, v, a, r)

end

For example, we can augment nodes with the largest value within each subtree:

type value = int

type avalue = int

fun f(k, v) = v

fun g(al, a2) = Int.max (al, a2)
val z = valOf Int.minInt

Now, imagine we reimplement all of our tree algorithms described earlier in
lecture, using this augmentation. Now we can efficiently query the augmented
value for ranges of keys:

(* compute the augmented value only for keys k in the range k1 < k < k2 *)
fun query_range(t, ki, k2) =

let
val (_, _, t') = split(t, k1)
val (t'', _, _) = split(t', k2)
in
aval(t'"')
end

This would tell us the maximum value v across all (k,v) pairs where k1 < k < k.
The cost of the query is only two splits, which comes out to only O(logn) work
and span. Many such queries can be safely executed in parallel.

As long as the functions f: key * value -> avalue and g: avalue *
avalue -> avalue require only O(1) work and span, then augmentation
has no affect on the asymptotic cost of any purely functional tree
algorithm. Intuitively, augmentation only slightly increases the (constant) cost
of constructing a node.
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