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Filtering

In last lecture, we discussed scan, a primitive for parallel prefix sums. An
immediate application of this function is to efficiently filter a sequence in parallel,
removing some elements which do not satisfy a predicate.

filter: ('a -> bool) -> 'a seq -> 'a seq
(For example:) filter is_even (1,1,2,3,3,4,4,5,6,7) = (2,4,4,6)

The challenge is how to implement filter with O(n) work and O(polylog(n))
span for an input of length n, and assuming the predicate costs O(1).

A solution in terms of scan is as follows. The idea is to compute, for every
element, how many elements to the left of that element satisfy the predicate.
This is the element’s offset in the output. We can compute these offsets by
mapping each element to 1 or 0 (depending on whether or not it satisfied the
predicate) and then perform a plus-scan. We can then do one more pass over
the data and write out the elements which satisfy the predicate.

fun filter p s =
let
val n = Seq.length s
val offsets = Parallel.scan (op+) O (0, n) (fn i =>
if p (Seq.nth s i) then 1 else 0)
val output = ForkJoin.alloc (Seq.nth offsets n)
in
Parallel.parfor (0, n) (fn i =>
if Seq.nth offsets i <> Seq.nth offsets (i+1) then
(* If two adjacent offset values differ, then we know
* this element must have satisfied the predicate.
* Alternatively, we could just evaluate the predicate
* a second time.
*)
Array.update (output, Seq.nth offsets i, Seq.nth s i)
else
0);
Seq.fromArray output
end

On the previous example, filter is_even (1,1,2,3,3,4,4,5,6,7), we would
have the following. Note in particular, if we look only at the offsets that line up



with elements satisfying the predicate, we see the values 0,1,2,3,... These are
the indices of those elements in the output.

input 1 1 2 3 3 4 4 5 6 7

offsets 0 0 O 1 1 1 2 3 3 4 4

output 2 4 4 6
Flattening

A similar problem that often arises in practice is the need to concatenate many
sequences together into one “flat” result.

flatten: 'a seq seq -> 'a seq
(For example:) flatten ((1,2), (), (3), (4,5,6), (7)) = (1,2,3,4,5,6,7)

Using a very similar approach to filtering with a scan, we can perform a flatten
with a scan to compute the starting offset of every inner sequence.

fun flatten s =
let
val n = Seq.length s
val offsets = Parallel.scan (op+) O (0, n) (fn i =>
Seq.length (Seq.nth s 1))
val output = ForkJoin.alloc (Seq.nth offsets n)
in
Parallel.parfor (0, n) (fn i =>
let
val si = Seq.nth s i
val offset = Seq.nth offsets i
in
Parallel.parfor (0, Seq.length si) (fn j =>
Array.update (output, offset + i, Seq.nth si j))
end) ;
Seq.fromArray output
end

For example, on the input considered above:

input (1,2) 0 (3) (4,5,6)  (7)
offsets 0 2 2 3 6 7

This solution has linear work and polylogarithmic span. In particular, on an
input s:

Work: O(|s| + >, |s[i]])
Span: O(log|s| + max; log |s[i]|)



A nice example: filtering with flattening

The implementations of filter and flatten are remarkably similar. The
connection between the two becomes especially clear if we consider implementing
filter in terms of flatten:

(* alternative implementation of filter, in terms of flatten *)
fun filter p s =
flatten (Parallel.tabulate (0, Seq.length s) (fn i =>
if p (Seq.nth s i) then
Seq.singleton (Seq.nth s i)
else
Seq.empty()))

This solution has the same asymptotic cost bounds as before (although it will not
be as efficient in practice, due to the need to construct intermediate sequences.)

Parallel Quicksort with Filter

The classic quicksort algorithm is traditionally presented as a sequential algorithm.
However, it can easily be made parallel by making two observations: (1) the
pivoting step is essentially just filtering the input into three subsequences, and
(2) the two recursive calls can proceed in parallel. An implementation along
these lines is as follows.

(* The argument “cmp” is a comparison function for elements of
* type 'a.

cmp (z,y) returns one of: LESS, EQUAL, GREATER
This allows our quicksort implementation to be polymorphic
* for any element type.

]

* %

*)
fun quicksort (cmp: 'a * 'a -> order) (s: 'a seq) : 'a seq =
if Seq.length s <= 1 then
s
else
let
(* pick a random pivot element *)
val pivot = Seq.nth s (random_int (0O, Seq.length s))
val L = Seq.filter (fn x => cmp (x, pivot) = LESS) s
val E = Seq.filter (fn x => cmp (x, pivot) = EQUAL) s
val G = Seq.filter (fn x => cmp (x, pivot) = GREATER) s
val (SL, SR) =
ForkJoin.par (fn () => quicksort L, fn () => quicksort R)
in
Seq.append (Seq.append (SL, E), SR)
end



Tree Flattening

We can generalize the notion of flattening to any tree data structure. In particular,
suppose you had a binary tree with elements at the leaves, and you want to
“flatten” this tree by storing the in-order traversal into an output sequence.

We can do so by augmenting each node of the tree with its size, i.e., the number
of elements in that subtree. An appropriate data structure is as follows. We allow
for leaves to be “fat” in the sense that they can store more than one element if
desired. Each Node(n,1,r) records its size n and its two child subtrees, 1 and r.

datatype 'a tree =
Leaf of 'a seq
| Node of int * 'a tree * 'a tree

fun size(t) =
case t of
Leaf s => Seq.length s
| Node (n, _, ) =>n

We will be careful to ensure that the sizes of nodes are always properly recorded
by never constructing Nodes directly, and instead always using the following
make_node function.

fun make_node(l, r) =
Node(size(l) + size(xr), 1, r)

Given such a tree, we can flatten it; we’ll call this function tflatten. It takes a
tree as input and returns a flat sequence. The idea is to walk the tree, keeping
track of the starting offset of every subtree. Descending into a left subtree does
not affect the offset. Descending into a right subtree shifts the offset by the size
of the left subtree.

fun tflatten(t: 'a tree) : 'a seq =
let
val output = ForkJoin.alloc (size t)
fun walk(c: 'a tree, offset: int) =
case c of
Leaf s =>
Parallel.parfor (0, Seq.length s) (fn i =>
Array.update (output, offset + i, Seq.nth s i))
| Node (_, 1, r) =>
( ForkJoin.par (fn () => walk(l, offset),
fn () => walk(r, offset + size(1l)))
; O
in
walk(t, 0);
Seq.fromArray output
end



We can think of tflatten as a pure function from trees to sequences. This
function will be an essential building block for writing purely functional parallel
code without needing to directly write to an output array, instead relying on
tflatten to perform this duty for us, with a guarantee of no off-by-one errors
or data races. The next section develops a particular example.

Parallel Divide-and-Conquer Merge

We have considered previously a parallel mergesort:

fun mergesort (cmp: 'a * 'a -> order) (s: 'a seq) : 'a seq =
if Seq.length s <= 1 then
s
else
let

(* split the sequence in half *)

val half = Seq.length s div 2

val (1, r) = (Seq.take s half, Seq.drop s half)

val (sl, sr) = ForkJoin.par (fn () => mergesort cmp 1,

fn () => mergesort cmp r)

in

merge cmp (sl, sr)
end

The question is how to implement the merge function. Sequentially, assuming
comparisons are O(1), merging requires a linear amount of work. It turns out we
can achieve the same using a parallel divide-and-conquer approach that yields
linear work and polylogarithmic span.

The key idea is to split one of the sequences in half, and use a binary search
on the other sequence to find an appropriate split point. Here, we're taking
advantage of the sortedness of the two input sequences. (A requirement for
merge is that the two input sequences are already sorted.)

The code is as follows. We first build a tree by recursively performing the
binary-search-based split, and then finally flatten that tree.

fun merge_tree cmp (sl: 'a seq, s2: 'a seq) : 'a tree =
if Seq.length s1 = 0 then
Leaf s2
else if Seq.length s2 = 0 then
Leaf s1
else
let

val nl = Seq.length sl
val n2 = Seq.length s2
val midl = nl div 2



(* select the median element of s1 *)
val pivot = Seq.nth sl midl

(* search for the index of the pivot in s2 *)
val mid2 = binary_search cmp (s2, pivot)

(* split the two sequences by the two midpoints

* midl and mid2. We can then perform two recursive
* merges. Note that it is convenient exclude the
* pivot element from the recursive calls, and
* instead put it directly into the output. This
* gvoids the need for a separate base case handling
* the case where [s1] = 1.
*)
val 11 = Seq.take s1 midl
val rl = Seq.drop s1 (midl + 1)
val 12 = Seq.take s2 mid2
val r2 = Seq.drop s2 mid2

val middle = Leaf (Seq.singleton pivot)
val (1, r) =
ForkJoin.par (fn () => merge_tree cmp (11, 12),
fn () => merge_tree cmp (rl, r2))

in
make_node (make_node (left, middle), right)

end
fun merge cmp (sl: 'a seq, s2: 'a seq) : 'a seq =

tflatten (merge_tree cmp (sl, s2))

Work analysis

The work of this function on inputs of length n and m can succinctly be described
with the following recurrence. Here we use a variable k in the range 0 < k < m
to describe the (unknown) midpoint of the second sequence, which is discovered
by a binary search, costing O(logm). The size n of the first sequence always is
cut in half, but the size of the second sequence is split into two sequences of
sizes k and m — k, respectively.

W(n,m)=W(mn/2,k)+W(n/2,m—k)+logm (where 0 <k <m)
W(0,m) =m (base case)
W(n,0) =n (base case)

An interesting challenge (to be considered in a later lecture) is to prove that this
recurrence can be upper bounded as W(n,m) € O(n + m).
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