
Lecture 3 Notes (February 10, 2025)
Sam Westrick

s.westrick@nyu.edu

Sequences
A sequence is an ordered collection of elements indexed by natural numbers
between 0 and n − 1 where n is the length. We can define a few useful notational
conveniences and a cost model. All work and span quantities in the following
table are asymptotic, e.g., 1 means O(1) and n means O(n).

Syntactic Sugar Code Work W Span S

|s| length s 1 1
s[i] nth s i 1 1
s[i..j] subseq s (i, j-i) 1 1
⟨⟩ empty() 1 1
⟨x⟩ singleton x 1 1
⟨ei : lo ≤ i < hi⟩ tabulate (lo, hi)

(fn i => e_i)

∑hi
i=lo W (ei) log(hi-lo)+

maxi S(ei)
⟨f(x) : x ∈ s⟩ map f s

∑
x W (f(x)) log |s| +

maxx S(f(x))
s1 ▷◁ s2 append (s1, s2) |s1| + |s2| log(|s1| +

|s2|)

This particular cost model assumes sequences that are represented as arrays.
More generally, it is helpful to think of a sequence as an abstract data type
which could have many different representations. For example, another common
representation is as a (balanced) tree, with elements stored at nodes, where the
in-order traversal of the tree implicitly represents the ordering of the elements
in the sequence.

Parallel Prefix “Sums”
Perhaps the single most important primitive in parallel computing is an algorithm
for computing prefix sums in parallel. This core building block can be used to
parallelized computations that may at first appear to be sequential.

Given a sequence of integers s, suppose we wanted to know the sum of every
prefix of s. On input of length n, the output will be length n + 1, as there are
n + 1 prefixes (including the initial zero-length prefix).

1

s prefix sums of s

⟨1, 2, 3, 4⟩ ⟨0, 1, 3, 6, 10⟩
⟨1, 0, 0, 1, 0, 1⟩ ⟨0, 1, 1, 1, 2, 2, 3⟩
⟨⟩ ⟨0⟩

Sequentially, we could clearly compute all prefix sums by walking left-to-right
across the input and keeping track of a running sum. At each element, we write
down the current running sum to the output, and then update the running sum
with the next element. This has O(n) work but is entirely sequential.

It turns out that it is possible to compute all prefix sums in parallel, with only
O(n) work and O(log n) span. Before we get there, let’s see a few examples of
how we could compute prefix sums in parallel, but less efficiently.

Work-inefficient Parallel Prefix Sums #1

The most obvious way we could compute prefix sums in parallel would be to
perform one sum for every prefix:〈

reduce (op+) 0 s[0..i] : 0 ≤ i ≤ |s|
〉

This solution has O(n2) work and O(log n) span for an input of size n. This is
a significant amount of parallelism, but it is work-inefficient: this approach
requires asymptotically more work than the best sequential solution.

To see that the solution above requires O(n2) work, consider that we have pay
O(i) work for each prefix of length i, which comes out to O(

∑
i i) = O(n2) work

in total.

Work-inefficient Parallel Prefix Sums #2

Another possibility would be to compute prefix sums with a divide-and-conquer
approach.

fun dc_prefix_sums (s: int Seq.t) =
if Seq.length s = 0 then

Seq.singleton 0
else if Seq.length s = 1 then

Seq.fromList [0, Seq.nth s 0]
else

let
val n1 = Seq.length s div 2
val n2 = Seq.length s - n1
val s1 = Seq.subseq s (0, n1)
val s2 = Seq.subseq s (n1, n2)
val (p1, p2) = ForkJoin.par (fn () => dc_prefix_sums s1,

fn () => dc_prefix_sums s2)

2

val t1 = Seq.nth p1 n1 (* total sum of the left-hand side *)
in

Seq.append (Seq.subseq p1 (0, n1), Seq.map (fn x => t1 + x) p2)
end

This divide-and-conquer solution admits the following work and span recurrences.

W (n) = 2W (n/2) + O(n) = O(n log n)

S(n) = S(n/2) + O(log n) = O(log2 n)

We see that this approach is closer to work-efficient, but still off by a logarithmic
factor. The problem is that, after solving the recursive instances, we still have
to pay a linear cost to update the results of the right-hand side (by adding the
total from the left-hand side).

Work-efficient Parallel Prefix Sums: Upsweep-Downsweep

To achieve O(n) work, we can use the following idea. Notice that in the divide-
and-conquer solution above, to generate the right-hand-side results, we needed
to know the total sum on the left. So, why not just precompute all of these total
sums?

The first phase of our work-efficient algorithm will do just this. We call this
an upsweep. It is similar to a parallel divide-and-conquer summation, but we
also write down all of the intermediate results. These intermediate results
can be organized into a balanced binary tree, mirroring the structure of the
divide-and-conquer recursion.

The second phase of the algorithm is called the downsweep. We walk down the
tree in parallel, maintaining an “accumulator” value (initially 0 at the root).
Every time we walk to a left child, the accumulator stays the same. Every time
we walk to a right child, we update the accumulator by adding the total sum of
the left child.

When this traversal hits a leaf, the current value of the accumulator will be the
prefix sum at that position.

Here is code that implements this solution. In the downsweep, we write directly
to an array, and keep track of our current position (offset) and the number of
elements that need to be written (n).

datatype tree = Leaf of int | Node of int * tree * tree
fun sum_of(t) = case t of Leaf x => x | Node (x, _, _) => x

fun upsweep(s: int Seq.t) =
if Seq.length s = 1 then Leaf (Seq.nth s 0) else
let val half = Seq.length s div 2

val (t1, t2) = ForkJoin.par (fn () => upsweep (Seq.take s half),
fn () => upsweep (Seq.drop s half))

3

Figure 1: Upsweep-downsweep prefix sums

4

in Node (sum_of t1 + sum_of t2, t1, t2)
end

fun downsweep(t, acc, output, offset, n) =
case t of

Leaf _ => Array.update(output, offset, acc)
| Node(_, t1, t2) =>

let val half = n div 2
in ForkJoin.par (fn () => downsweep(t1, acc, output,

offset, half),
fn () => downsweep(t2, sum_of t1 + acc, output,

offset + half, n - half));
()

end

fun up_down_prefix_sums(s: int Seq.t) =
if Seq.length s = 0 then Seq.singleton 0 else
let

val n = Seq.length s
val t = upsweep s
val output = ForkJoin.alloc(n + 1)

in
downsweep(t, 0, output, 0, n);
Array.update(output, n, sum_of t);

(* In actual MaPLe, this converts an array to a sequence; at this
* point, the programmer needs to be careful to never mutate the
* underlying array.
*)

ArraySlice.full(output)
end

This solution has two phases (the upsweep, and the downsweep), so the overall
work and span is just the sum of the two phases:

W (n) = Wupsweep(n) + Wdownsweep(n)

S(n) = Supsweep(n) + Sdownsweep(n)

Each phase has a simple work and span recurrence:

Wupsweep(n) = 2Wupsweep(n/2) + O(1) = O(n)

Supsweep(n) = Supsweep(n/2) + O(1) = O(log n)

Wdownsweep(n) = 2Wdownsweep(n/2) + O(1) = O(n)

Sdownsweep(n) = Sdownsweep(n/2) + O(1) = O(log n)

Overall, therefore, we have O(n) work and O(log n) span. This algorithm is

5

work-efficient (it asymptotically matches the best sequential solution), yet still
has ample parallelism.

Another work-efficient Prefix Sum Algorithm: Contraction

Another idea would be to allow for the tree of partial results to be implicit by
working level-by-level instead of constructing the tree explicitly.

The initial level is the input sequence, and the next level in the tree can be
obtained by contracting: combining adjacent elements, pairwise, to produce a
sequence of half the length. We can then recursively compute the prefix sums
across the contracted level. Finally, the overall prefix sums can be computed
by expanding the result (filling in the missing elements). This sometimes also
called a three-phase scan.

Figure 2: Contraction-based Prefix Sums

Code for this solution is as follows. Here, for simplicity, we assume the input
length is a power of 2.

(* Note: assumes the input is power-of-two length *)
fun contraction_prefix_sums(s: int Seq.t) =

if Seq.length s = 0 then Seq.singleton 0
else if Seq.length s = 1 then

Seq.fromList [0, Seq.nth s 0]
else

let
val n = Seq.length s
val contracted =

Seq.tabulate (fn i => Seq.nth s (2*i) + Seq.nth s (2*i + 1)) (n div 2)
val recursive_sums =

contraction_prefix_sums(contracted)

6

fun expanded_elem(i) =
if i mod 2 = 0 then Seq.nth recursive_sums (i div 2)
else Seq.nth recursive_sums (i div 2) + Seq.nth s (i-1)

in
Seq.tabulate expanded_elem (n+1)

end

Note that this approach only has a single recursive call, yielding the following
work and span recurrences:

W (n) = W (n/2) + O(n)

S(n) = S(n/2) + O(log n)

The span recurrence we have seen before; this solves to O(log2 n). The work
recurrence can be solved by noticing that it forms a geometrically decreasing
series. We can use the fact that

∑∞
i=0 1/2i = 2 to see that this comes out to a

total of linear work.

W (n) = O(n + n/2 + n/4 + . . .) = O(n
∑

i 1/2i) = O(n)

Generalization: Scan
Above, we have focused on prefix sums, specifically for performing a summation
(with addition of integers).

But, similar to reduce, we can generalize the algorithm to compute a “sum”
of any associative binary operation. Anywhere above where we combine two
numbers with addition, we can instead compute an arbitrary function, g.

The general form is written Seq.scan g z s for computing all the prefix “sums”
(w.r.t. function g) of the sequence s. Alternatively, in MaPLe, we can write
Parallel.scan g z (lo, hi) f to compute prefix sums over the implicit se-
quence f(lo), ..., f(hi-1).

From this we can compute a variety of interesting functions. Here are two
especially interesting and powerful examples:

• Solutions to linear recurrences of the form r(i) = ai · r(i − 1) + bi can be
computed using the associative operation g((a1, b1), (a2, b2)) = (a1 · a2, b1 ·
a2 + b2) and corresponding identity z = (1, 0), over the elements (ai, bi).
(Note that this function g is associative!)

• We can compute the nearest non-zero value to the left of any position in a
sequence using the function copy(a,b) = if b > 0 then b else a and
corresponding identity value z = 0. (Note that copy is associative!) We call
this a copy-scan, and it is a very powerful primitive in parallel computing.
For example, scan copy 0 ⟨0, 1, 0, 2, 0, 0, 0, 3, 0⟩ = ⟨0, 0, 1, 1, 2, 2, 2, 2, 3, 3⟩.

7

A Practical Consideration: Block-based Three-phase Scan
Commonly, in practice, the preferred implementation of scan is a three-phase
(contraction-based) algorithm with a small modification: rather than combine
adjacent elements pairwise, we instead break up the input in larger blocks and
contract into a much smaller recursive problem size.

Figure 3: Three-phase Blocked Scan

Note that in this approach, we sacrifice some parallelism, because the expansion
step has to walk sequentially within each block (but is parallel across the blocks).

For a block-size B, this approach admits the following work and span recurrences.

W (n) = W (n/B) + O(n) = O(n)

S(n) = S(n/B) + O(B + log n) = O(B + log2 n)

As the block size increases, this approach gets more and more sequential. But
as long as n ≫ B, this solution still has ample parallelism.

But, a question we haven’t answered: why? Why would you want to increase
the block size and sacrifice parallelism?

The reason is work efficiency. Let’s consider the following recurrence, u, which
is similar to the work recurrence above but is no longer asymptotic. This function
is counting (approximately) the number of array updates performed within the
block-based scan, which is a good estimate of its performance in practice. The
question is, how does this function behave as we change the block size?

u(n) = u(n/B) + n + n/B = u(n/B) + n B+1
B

We can upper bound this recurrence by a geometric series:

u(n) ≤ n B+1
B

∑∞
i=0

1
Bi = n B+1

B
B

B−1 = n B+1
B−1

And actually, for sufficiently large n, we will have u(n) ≈ n B+1
B−1 .

8

For B = 2, we have u(n) ≈ 3n, and as we increase B, this function decreases; at
the limit as B → ∞, we have that u(n) approximately approaches n.

In other words, as we increase the block size, the work-efficiency of the
algorithm improves.

In practice, we typically use a block size such as B = 100 or B = 1000 which
guarantees that u(n) is within a few percent of n while still exposing ample
parallelism for large n.

9

	Lecture 3 Notes (February 10, 2025)
	Sequences
	Parallel Prefix “Sums”
	Work-inefficient Parallel Prefix Sums #1
	Work-inefficient Parallel Prefix Sums #2
	Work-efficient Parallel Prefix Sums: Upsweep-Downsweep
	Another work-efficient Prefix Sum Algorithm: Contraction

	Generalization: Scan
	A Practical Consideration: Block-based Three-phase Scan

