
Lecture 2 Notes (February 3, 2025)
Sam Westrick

s.westrick@nyu.edu

The Work-Span Cost Model: A Formal Notion of Parallelism
We previously defined the DAG model, which represents the history of a com-
putation in terms of a directed acyclic graph. Vertices in this graph represent
instructions that were executed, and (directed) edges indicate sequential depen-
dencies. Scheduling a program, then, corresponds to traversing the graph under
the constraint that, for every edge u → v, the vertex v cannot be visited until
after u.

We have also seen—both in theory, and in practice—that not all computations
achieve perfect speedup. In theory, even the best possible schedule of a computa-
tion might not be able to achieve perfect speedup, due to insufficient parallelism.
In practice, if we plot speedup(P) = T (1)/T (P), we typically see a curve with
a horizontal asymptote. This horizontal asymptote is an upper bound on the
speedup on the computation. The question is: where is this asymptote? And,
how can we predict where it will be?

Figure 1: As the number of processors increases, the speedup approaches a limit.

To answer these questions, we can define two useful quantities.

1

Define Work: the number of vertices in the dag.

Define Span: the length of the longest path in the dag.

You can equivalently think about the work as the amount of time it takes to
execute the computation on a single processor. The span is, in theory, the
minimum possible execution time, assuming an unbounded number of processors.
We often refer to the longest path in the dag as the critical path. Note that
there can be multiple critical paths, i.e., multiple longest paths through the dag
that all have the same length.

From these two quantities, we can immediately determine where a horizontal
asymptote will be in our speedup plots. Let W be the work and S be the span.
We have T (1) = W . We know T (P) ≥ S, regardless of P , because no schedule
can possibly do better than walk the critical path sequentially.

Therefore speedup(P) = T (1)/T (P) ≤ W/S.

This quantity, W/S, is defined as the parallelism of a computation. Intuitively,
in theory, it is the maximum possible speedup.

Define Parallelism as the ratio W/S, where W is the work and S
is the span.

Greedy Scheduling is Nearly Optimal
Recall the greedy scheduling principle:

Greedy scheduling principle. If a vertex is ready to be assigned,
then no processor should be idle.

Greedy schedulers minimize idleness at every moment. It turns out that greedy
scheduling alone is enough to guarantee nearly optimal performance in practice.

The key theorem (with multiple interesting proofs by a variety of authors) is as
follows.

Theorem [Brent] [Arora, Blumofe, Plaxton]. For a computa-
tion with work W and span S, greedy scheduling on P processors
guarantees T (P) ≤ W/P + S.

This upper-bound on T (P) is nearly optimal, and the proof is actually quite short.
Let opt(P) be the optimal (best possible) P -procesor schedule of a computation
that has work W and span S. We know that opt(P) ≥ W/P , because no schedule
can possibly do better than perfectly dividing up the work amongst the available
processors. We also know opt(P) ≥ S, because no schedule can do better
than executing the critical path sequentially. Therefore opt(P) ≥ max(W/P, S).
Combining this with the greedy scheduling theorem above, we have

max(W/P, S) ≤ opt(P) ≤ T (P) ≤ W/P + S

2

Finally, note that W/P + S ≤ 2 max(W/P, S), and therefore both opt(P) and
T (P) lie within the range of max(W/P, S) and 2 max(W/P, S). Hence T (P) is
at most a factor of two larger than opt(P).

This result is quite powerful: it shows us that we can efficiently execute a parallel
program by greedily assigning tasks to processors as they become available, and
we will be guaranteed that the overall performance is nearly optimal.

As a final note, it is helpful to plot the idealized curve W/(W/P +S) for different
values of P . This curve is a decent estimate of the speedup you could hope to
achieve in practice using a greedy scheduler. As P → ∞, indeed, we see that this
curve approaches a limit at W/S, i.e., the parallelism. And, for small values of
P , assuming W ≫ S, the curve is mostly linear; this is because (for sufficiently
small P) we have W/P ≫ S and therefore the speedup W/(W/P + S) simplifies
to approximately P .

A Language-Based Work-Span Cost Model
The above approach relies on constructing (in your head) a computation graph.
Alternatively, we can define the work and span of a computation directly on the
program itself.

Here, we define two functions W (e) and S(e) for the work and span of executing
e, where e is an expression in our programming language.

For example,

W (let val () = e1 in e2 end) = W (e1) + W (e2)

S(let val () = e1 in e2 end) = S(e1) + S(e2)

This says that if we execute the expression e1 and then execute the expression e2,
then both the work and span overall are additive. This is known as sequential
composition.

All expressions in the language are sequential by default. The only parallel form
of expression is the function par, which executes two functions (logically) in
parallel.

W (par(f,g)) = 1 + W (f()) + W (g())

S(par(f,g)) = 1 + max(S(f()), S(g()))

Here, the work is additive, but the span has to consider which of the two branches
(f() or g()) has a longer span. The overall span is the max of the two. The +1
is important for accounting for the cost of par itself.

To fully define the work and span this way, we still need to evaluate the expres-
sions. For example, the work (and span) of a conditional expression would need
to know the value of the resulting boolean:

W (if eb then e1 else e2) = W (eb) + W (e1), if eb ⇝ true.

3

W (if eb then e1 else e2) = W (eb) + W (e2), if eb ⇝ false.

In the above definitions, the syntax e ⇝ v means that the expression e, when
evaluated fully, results in a value v.

(For those familiar with techniques for defining the semantics of programming
languages, this corresponds to the notion of a “big-step” operational semantics.)

Introduction to Work and Span Recurrences
Recall the code for a parallel sum from the previous lecture.

fun parallel_sum(lo, hi, f) =
if lo >= hi then

0
else if lo + 1 = hi then

f(lo)
else

let
val mid = lo + (hi - lo) div 2
val (left, right) =

ForkJoin.par (fn () => parallel_sum(lo, mid, f),
fn () => parallel_sum(mid, hi, f))

in
left + right

end

We can analyze the work and span of this code, under some reasonable assump-
tions.

First, assume W (f(i)) = S(f(i)) = O(1), i.e., constant, regardless of
the index i. Under this assumption, the asymptotic work and span of
parallel_sum(lo,hi,f) depends only on the size of the range n = hi-lo. We
can then define W (n) and S(n) as the work and span for a range of size n.

Following the definitions we have the following. These recurrences are derived
directly from the code; each recursive call corresponds to a recursive instance of
W (−) or S(−) on the right-hand side, with an appropriate size.

W (n) = 2W (n/2) + O(1), if n > 1.

S(n) = S(n/2) + O(1), if n > 1.

W (n) = S(n) = O(1), if n ≤ 1.

We can then solve these recurrences to see that W (n) = O(n), i.e., the work of
the code is linear, and S(n) = O(log n), i.e., the span is logarithmic. The code
therefore has O(n/ log n) parallelism, which asymptotically increases with the
size of the range, n. In other words, the amount of parallelism (and therefore
the maximum possible speedup) increases with the problem size.

4

Generalized Divide-and-Conquer: Parallel Reduction
The above code for parallel_sum can easily be generalized to compute a variety
of things beyond just a summation. The general notion is called reduce and is
known as a parallel reduction.

The code for a reduction looks as follows:

fun reduce g z (lo, hi) f =
if lo >= hi then

z (* user-specified: "zero" element *)
else if lo + 1 = hi then

f(lo) (* user-specified: one element of the reduction *)
else

let
val mid = lo + (hi - lo) div 2
val (left, right) =

ForkJoin.par (fn () => reduce g z (lo, mid) f,
fn () => reduce g z (mid, hi) f)

in
(* user-specified: arbitrary combination of the two results *)
g (left, right)

end

A few immediate examples:

(* compute the product of a sequence of integers *)
val p = reduce (fn (a, b) => a*b) 1 (0, n) (fn i => ...)
(* compute the max of a sequence of integers *)
val m = reduce Int.max (valOf Int.minInt) (0, n) (fn i => ...)
(* concatenate many strings in parallel *)
val s = reduce (fn (a, b) => aˆb) "" (0, n) (fn i => Int.toString(i))

In general, although any function g could be passed to combine the elements, it
is helpful to only consider functions are are associative.

Function g is associative if ∀a, b, c : g(g(a, b), c) = g(a, g(b, c))

Associativity ensures that the application order does not matter. This means
that the behavior of the reduction does not depend on where exactly the midpoint
is, when (in the parallel case) we split the index range in half.

Similarly, it is helpful to think of the element z as being an identity element
for g.

An element z is an identity of function g if ∀x : g(x, z) = g(z, x) = x.

This gives an algebraic interpretation to the meaning of a reduce. In particular,
reduce can be used to compute a generalized sum of elements drawn from any
monoid.

5

https://en.wikipedia.org/wiki/Monoid

Strengthened Divide-and-Conquer
Divide-and-conquer is a general strategy that can be used to compute a surprising
number of interesting things. Here we will explore a few examples.

First, as we have seen, we can easily compute the total sum of a sequence of
numbers: split the input in half, recursively compute the sum of the halves, and
the add up the results.

Suppose we wanted to compute the maximum prefix sum of a sequence of
numbers. For example, given the sequence ⟨1, −2, 0, 3, −1, 0, 2, −3⟩, the maximum
prefix sum is 3, corresponding to sum of the prefix ⟨1, −2, 0, 3, −1, 0, 2⟩ which
excludes the last element.

We could attempt to split the sequence in half, recursively compute the maximum
prefix sums of the halves, and then combine the results somehow. But how do
we combine the results? The best overall prefix might cross the midpoint, and
we have no way of combining the results of our two recursive calls to compute
the overall best prefix. We are stuck.

fun max_prefix_sum(lo, hi, f) =
if lo >= hi then

0
else if lo + 1 = hi then

(* if the single element here is negative, then the best prefix sum
* is 0, i.e., we should take the empty prefix.
*)

Int.max (f(lo), 0)
else

let
val mid = lo + (hi - lo) div 2
val (left_prefix, right_prefix) =

ForkJoin.par (fn () => max_prefix_sum(lo, mid, f),
fn () => max_prefix_sum(mid, hi, f))

in
(* What do we do here?? What if the best prefix crosses the midpoint?? *)
...

end

To combine the results, we need to know more than just the best prefix sum.
The case where the best overall prefix sum crosses the midpoint can be handled
by also keeping track of the total sum of the left-hand side.

fun max_prefix_sum_and_total(lo, hi, f) =
if lo >= hi then

(* best prefix sum is 0, total sum is 0 *)
(0, 0)

else if lo + 1 = hi then
let

6

val x = f(lo)
val best_prefix_here = Int.max (x, 0)
val total_sum_here = x

in
(best_prefix_here, total_sum_here)

end
else

let
val mid = lo + (hi - lo) div 2
val ((p1, t1), (p2, t2)) =

ForkJoin.par (fn () => max_prefix_sum_and_total(lo, mid, f),
fn () => max_prefix_sum_and_total(mid, hi, f))

in
(* Now we can handle the case that the prefix sum crosses the midpoint.
* If it does, the best overall prefix sum would be t1+p2, i.e., the
* total sum on the left plus the best prefix on the right.
*)

(Int.max (p1, t1+p2), t1+t2)
end

(* Now we can compute the original problem by running the strengthened
* divide-and-conquer and then throwing away the overall total sum
*)

fun max_prefix_sum(lo, hi, f) =
let val (p, _) = max_prefix_sum_and_total(lo, hi, f)
in p
end

This idea, of seemingly computing more than what you originally thought
you needed to, is called strengthening. It is analogous to strengthening the
inductive hypothesis of an inductive proof.

Note also that we can simplify the above code by just calling reduce:

fun max_prefix_sum(lo, hi, f) =
let

fun g ((p1, t1), (p2, t2)) = (Int.max (p1, t1+p2), t1+t2)
val z = (0, 0)
val (p, _) =

reduce g z (lo, hi) (fn i =>
let val x = f(i)
in (Int.max (x, 0), x)
end)

in
p

end

7

A Larger Example: Maximum Contiguous Subsequence
Sum
Using a similar idea as above, an interesting problem is to compute the maximum
contiguous subsequence sum (MCSS), i.e., the largest sum of a contiguous slice
of the input sequence. For example, on the input ⟨1, −2, 0, 3, −1, 0, 2, −3⟩, the
MCSS is 4; this corresponds to the contiguous subsequence ⟨3, −1, 0, 2⟩ in the
middle.

Our solution will use a 4-tuple:

(p (* the best prefix sum *)
, t (* the total sum *)
, s (* the best suffix sum *)
, b (* the best overall solution found so far *)
)

We have already see that both the total sum and maximum prefix sum can be
computed efficiently. The maximum suffix sum is symmetric to the prefix sum,
and the solution is nearly identical, but with everything symmetrically reversed
(i.e., we consider the total sum on the right instead of the left).

The best overall solution then only needs to additionally consider a contiguous
subsequence which crosses the midpoint. If s1 is the best suffix on the left and
p2 is the best prefix on the right, then the best candidate which crosses the
midpoint would have the sum s1 + p2.

Altogether, this gives us the following combination function:

fun combine ((p1, b1, t1, s1), (p2, b2, t2, s2)) =
let

val p = Int.max (p1, t1+p2)
val t = t1+t2
val s = Int.max (s1+t2, s2)
val b = Int.max (s1+p2, Int.max (b1, b2))

in
(p, t, s, b)

end

The complete solution (written simplified in terms of reduce) is as follows:

fun mcss(lo, hi, f) =
let

val z = (0, 0, 0, 0)
val g = combine (* as defined above *)
val (_, _, _, b) =

reduce g z (lo, hi) (fn i =>
let

(* for the singleton element x, we need to know the best
* prefix, suffix, solution, total sum, etc.

8

*)
val x = f(i)
val v = Int.max (x, 0)

in
(v, x, v, v)

end)
in

b
end

9

	Lecture 2 Notes (February 3, 2025)
	The Work-Span Cost Model: A Formal Notion of Parallelism
	Greedy Scheduling is Nearly Optimal
	A Language-Based Work-Span Cost Model
	Introduction to Work and Span Recurrences
	Generalized Divide-and-Conquer: Parallel Reduction
	Strengthened Divide-and-Conquer
	A Larger Example: Maximum Contiguous Subsequence Sum

