
Lecture 1 Notes (January 27, 2025)
Sam Westrick

s.westrick@nyu.edu

Parallel Hardware
Almost every computing device today is parallel. My iPhone has 12 cores
(Apple A18 Pro: 2 perf CPU cores, 4 efficiency cores, 6 GPU cores). You
can buy a state-of-the-art desktop multicore processor for just a few hun-
dred dollars, e.g., https://www.newegg.com/amd-ryzen-9-7900x-ryzen-9-7000-
series-raphael-zen-4-socket-am5/p/N82E16819113769. For ~$15K, you can get
a single chip with 192 cores (384 threads), such as the AMD EPYC 9965:
https://www.techpowerup.com/cpu-specs/epyc-9965.c3904.

These devices offer the potential of serious speedups, but can be difficult to
program.

Common Parallel+Concurrent Software Bugs
Parallel and concurrent software is especially prone to bugs from race condi-
tions and data races which can be difficult to identify, let alone debug. The
consequences can be severe, for example, the infamous Northeast Blackout of
2003 was due to an unintended race condition.

It is easy to write a program that exhibits race conditions in practice. For
example, see Ex.data_race_ex in the accompanying lecture code. This example
simply attempts to increment a shared counter 10 million times, in parallel.

We can run this example as follows. Note that on a single core, we always get
the same result for the final value of the counter (10000000). However, when
using multiple cores, the results are unpredictable.

$ make main

Running with a single core always returns the same result:
$./main @mpl procs 1 -- data_race -n 10000000
10000000
$./main @mpl procs 1 -- data_race -n 10000000
10000000

Running with multiple cores results in unpredictable results:
$./main @mpl procs 8 -- data_race -n 10000000
2879180
$./main @mpl procs 8 -- data_race -n 10000000
2806651
$./main @mpl procs 8 -- data_race -n 10000000
2805723

1

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003

The problem is that each update to the mutable cell is non-atomic. In the
example, we write counter := !counter + 1. This is equivalent to:

let
val old_x = !counter
val new_x = old_x + 1

in
counter := new_x

end

Here it is clear that the update does not occur as a single instruction, but rather
multiple separate instructions. If two processors execute this code simultaneously
(assuming an initial counter value of 0), it is possible that both processors read
same the value old_x = 0, and then both write the value counter := 1. We
have lost an update due to an unfortunate timing of events.

To prevent this problem, in this course, we will be avoiding mutable data.
Instead, most of the code we will write is “purely functional”. This term is
generally used to refer to code which computes entirely using immutable data.

The purely functional approach has numerous benefits, as we will develop
throughout this course. Mostly importantly, it allows us to easily and quickly
write parallel code which is efficient, scalable, and (most importantly) correct,
often with a simple proof of correctness.

Parallelism vs Concurrency
These terms are often used interchangeably, but it is useful to distinguish them.

Define parallelism as the case where the performance of a piece
of software is affected by using multiple processors simultaneously
(usually, for speedups).

Define concurrency as the case where the correctness or behavior
of the program is affected by the timing of events.

With these definitions, it is clear that parallelism and concurrency are
orthogonal concerns.

It may be helpful to identify examples for each combination:

not concurrent concurrent
+--------------------------+-------------------------------------+
| classic algorithms 101 | single-processor web server |

not parallel | (e.g. sequential | (dynamically responding to |
(sequential) | mergesort, binary | queries that arrive unpredictably) |

| search, etc.) | |
+--------------------------+-------------------------------------+
| DETERMINISTIC | multi-processor web server |

parallel | PARALLELISM | (dynamically responding to many |

2

| (main topic of this | unpredictable queries, |
| course!) | simultaneously, in parallel) |
+--------------------------+-------------------------------------+

An Example of Parallel-But-Not-Concurrent
A class “hello world” of parallel programming are the Fibonacci numbers:

fun fib(n) = if n <= 1 then n else fib(n-1) + fib(n-2)

These can be easily computed in parallel. (See fib in Ex.sml in the accompanying
code.)

fun fib n =
if n <= 1 then

n
else

let val (a, b) =
ForkJoin.par (fn () => fib (n - 1),

fn () => fib (n - 2))
in a + b
end

The function ForkJoin.par is the main ingredient: this function takes two
(first-class) functions as argument, executes both, and returns the two results as
a tuple.

No matter how many processors we use, this code always returns the same
result. There is parallelism here (it gets faster with more processors), but no
concurrency.

compute the 40th fibonacci number (102334155)
$./main @mpl procs 1 -- fib -n 40
n 40
warmup 0.0000
repeat 1
time 1.9978s

average 1.9978s
minimum 1.9978s
maximum 1.9978s
std dev 0.0000s
102334155

on two processors: same result, but approximately twice as fast
$./main @mpl procs 2 -- fib -n 40
n 40
warmup 0.0000
repeat 1

3

time 1.0271s

average 1.0271s
minimum 1.0271s
maximum 1.0271s
std dev 0.0000s
102334155

Computing a Sum in Parallel
See the code for parallel_sum in Ex.sml in the accompanying code. The func-
tion parallel_sum(lo, hi, f) computes the summation f(lo) + f(lo+1) +
... + f(hi-1) in parallel. How can we do this, using only ForkJoin.par for
parallelism?

A simple and effective solution is to process the range by splitting the range in
half and recursively processing the two halves in parallel. The base cases handle
ranges of indices that are either empty or a singleton.

fun parallel_sum(lo, hi, f) =
if lo >= hi then

0
else if lo + 1 = hi then

f(lo)
else

let
val mid = lo + (hi - lo) div 2
val (left, right) =

ForkJoin.par (fn () => parallel_sum(lo, mid, f),
fn () => parallel_sum(mid, hi, f))

in
left + right

end

Programming Exercise: Parallel Word Count
Challenge: use parallel_sum to compute the number of words in a file in
parallel. The input is a sequence of characters, and the output should be the
number of words. For example, on the input string __hello___world_ (where
_ indicates a space), the output should be 2.

fun word_count(chars: char Seq.t) : int =
(* TODO... *)

As an exercise, try to solve this problem. A hint is that you can solve it using a
single call to parallel_sum. Some useful functions are:

Seq.length(s) (* length of a sequence s *)

4

Seq.nth s i (* the ith element of the sequence s *)
Char.isSpace(c) (* returns true if the character c is a whitespace character *)

A solution is shown in the file Ex.sml in the accompanying code. See the function
wc in this file.

Figure 1: Example speedup plot

Measuring Performance
Define T (P) as the running time of a program on P processors. Next, define the
(self-)speedup of a program on P processors as speedup(P) = T (1)/T (P). Note
that we call this “self-speedup” because, as a baseline, it compares against the
sequential performance of the same program.

Ideally, in a perfect world, speedup(P) ≈ P . However, in reality, this is almost
never the case.

There are numerous reasons for this. Three important reasons in particular:

• The memory wall. On modern chips, the maximum throughput of
memory loads does not match the cumulative computational power of all
the cores together. That is, if all processors are loading from memory
simultaneously, then (in the hardware) there will be significant delays,
causing the peek performance to plateau.

5

• Scheduling is not free. The system has to perform work to make decisions
about which processor should be assigned to execute each task. Tasks
also have to be migrated between processors, which requires additional
instructions to be executed. All of this is additional overhead. It is
unavoidable for parallel computation, but sequential code has no such
overhead.

• Insufficient parallelism. At the extreme, consider that an entirely
sequential program obviously has a speedup plateau: speedup(P) ≈ 1
regardless of P . More generally, many problems are difficult to parallelize
and may not be able to expose a sufficient number of parallel tasks to keep
all processors happy. We will study this issue in particular in great detail
throughout the course.

To measure speedups, we often use speedup plots. An example speedup plot is
shown in Figure 1 (.png).

Scheduling
We have thrown around some intuitive terms (tasks, processors, assigning tasks
to processors, etc.), but it is time to make this more precise.

A useful model is the DAG model, where we model the execution of a parallel
program in terms of a directed acyclic graph (DAG). We often refer to this
graph as a computation graph. Each vertex in the graph represents a group
of instructions that were executed sequentially, without any synchronization.
Edges in the graph represent dependencies.

For example, execution of the code ForkJoin.par(fn () => 1+2, fn () =>
3+4) can be modeled as the following DAG, with edges pointing from top to
bottom. Here, I am labeling the two middle vertices by the expressions they
compute, for clarity.

* (fork)
/ \

/ \
1+2 3+4

\ /
\ /
* (join)

The vertex at the top is known as a fork vertex; this vertex shows that the
computation splits (forks) into two computations. Every fork vertex has a
corresponding join vertex. The join vertex does not execute until after both of
the inner computations have finished, hence the two incoming edges.

A larger example is shown in Figure 2 (.png). In this example, we draw the
computation graph corresponding to an execution of Ex.fib(4) from Ex.sml in
the accompanying code from lecture.

6

https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/resources/example-speedup-plot.png
https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/resources/fib-4-computation-graph.png

Figure 2: Computation graph for fib(4). Vertices are labeled with the expres-
sions they compute, for clarity.

7

With a computation graph in hand, we can now imagine scheduling the graph,
specifically by assigning vertices to processors. This assignment has to respect
the dependencies in the graph: for every edge a -> b in the graph, we cannot
assign b to a processor until after a has been assigned to a processor on a previous
time step.

A simple strategy which is extremely effective in practice is to assign vertices
greedily. This is known as the greedy scheduling principle:

Greedy scheduling principle. If a vertex is ready to be assigned,
then no processor should be idle.

For the example computation graph we considered earlier, we can construct a
greedy schedule by adhering to the greedy scheduling principle at every time
step. Assuming each vertex takes a single unit of time to execute, a 2-processor
greedy schedule is shown in Figure 3 (.png). There are 13 vertices in the
graph, and this particular 2-processor greedy schedule finishes in 8 units of time.
Abstractly, this would correspond to a 2-processor speedup of 13/8 = 1.625.

8

https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/resources/greedy-sched-example.png

Figure 3: Greedy 2-processor schedule of an example computation graph. There
are 13 vertices, which would have taken a single processor 13 time steps. With 2
processors, we complete the execution using only 8 time steps. This (abstractly)
yields a 2-processor speedup of 13/8 = 1.625.

9

	Lecture 1 Notes (January 27, 2025)
	Parallel Hardware
	Common Parallel+Concurrent Software Bugs
	Parallelism vs Concurrency
	An Example of Parallel-But-Not-Concurrent
	Computing a Sum in Parallel
	Programming Exercise: Parallel Word Count
	Measuring Performance
	Scheduling

