
PPA-S25 hw6
Logistics
This homework consists of 100 points total, with points for individual tasks as
indicated below. There are 2 coding tasks.

You should submit your work on Brightspace.

Package your solutions as follows:

replace NYU_NET_ID with your ID, e.g., shw8119.tgz
$ tar czf NYU_NET_ID.tgz IntersectionCount.sml TriangleCount.sml

The resulting .tgz archive should contain only IntersectionCount.sml and
TriangleCount.sml. To submit, upload this .tgz file.

Due Date: This submission is due at 5:00pm EST on Tuesday, Mar
11. Course policy on late submissions is available on the course website.
(https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/)

Setup
• Follow the instructions on the course website to access one of the crunchy

compute servers.
• Install MaPLe. For the crunchy servers, you can:

– Download https://cs.nyu.edu/~shw8119/courses/s25/3033-121-
ppa/resources/mpl-v053.tgz and copy it to the server

– Unpack by running tar xzf mpl-v053.tgz. This will create a direc-
tory mpl-v053/

– The compiler, mpl, is located at mpl-v053/bin/mpl
– Add mpl-v053/bin to your PATH so that you can access it easily:

export PATH="$(pwd -P)/mpl-v053/bin:$PATH". We recommend
updating your ~/.bashrc file or other configuration file as appropri-
ate.

Intersection, Revisited
This homework assignment is primarily about graphs, but before we get there,
we need to take a little detour.

We previously saw that, on binary search trees, we can efficiently implement
functions such as union, intersection, and difference using only O(m log(1+n/m))
work, where n and m (n ≥ m) are the sizes of the bigger and smaller tree,
respectively.

For similar functions on sorted sequences, in some cases, we can get the same
bound. This will be an important primitive for the next part of the assignment.

1

Task 1 (40 points): In IntersectionCount.sml, implement the function
intersection_count cmp (s, t) which counts the number of elements that
appear in both s and t. Your implementation should have O(m log(1 + n/m))
work and O(polylog(n)) span, where n = max(|s|, |t|) and m = min(|s|, |t|).

(To convince yourself of the cost bound, consider how your implementation
relates to the code we saw in lecture for intersection.)

You may assume that the inputs are sorted. You may also assume that, within
each input, there are no duplicates.

For example, on inputs s = ⟨1, 2, 4, 5, 42⟩ and t = ⟨2, 3, 4, 5, 10⟩, intersection_count
Int.compare (s, t) should return 3, because there are 3 elements in common
(2,4,5).

Triangle Counting
In a directed graph, there are two possible kinds of “triangles”. We’ll call them
pointed and cyclic.

• In a pointed triangle, there are two edges pointing at the same vertex.
Specifically, a pointed triangle is a group of three vertices u, v, w with three
edges: u → v, v → w, and u → w.

• In a cyclic triangle, every edge points at a different vertex. Specifically, a
cyclic triangle is a group of three vertices u, v, w with three edges: u → v,
v → w, and w → u.

By counting these triangles (for example, in a social network graph), we can get
a sense for how “tightly knit” a graph is.

Task 2 (60 points): In TriangleCount.sml, implement the function
triangle_count(g) which takes a graph g and returns a tuple (tp, tc), where
tp is the number of pointed triangles, and tc is the number of cyclic triangles.
Your solution should have O(N + Mδ) work and O(polylog(N)) span, where N
is the number of vertices, M is the number of edges, and δ is the maximum
degree (in-degree or out-degree) of any vertex.

See the file lib-local/Graph.sml for the graph interface. You may assume
that the graph has been preprocessed to store neighbors in sorted
order. That is, Graph.out_neighbors(g,v) always returns a sorted sequence,
in O(1) work and span. (Similarly for in_neighbors(...).) You may also
assume the neighbor sequences are free of duplicates, and that there are no
self-loops (i.e., no edges where a vertex points at itself).

We recommend using the intersection_count function. Note that Task 2 will
be graded independently of Task 1.

Hint: be careful with symmetries! How many times do you count each triangle?

2

Unit Testing
You can test your implementations as follows. Feel free to add more tests to the
top of test.sml.

$ make test
$./test

There are test graphs inside of test-graph/.... Each file is a list of directed
edges in human readable format. This is the same format that is commonly used
in the SNAP dataset.

Download and play with some real graphs!
The SNAP dataset has a number of freely available graphs. Here are a few
interesting ones in particular:

• https://snap.stanford.edu/data/cit-Patents.html A patent citation
network, where each directed edge p1 → p2 indicates that a patent p1 cited
some other patent p2.

• https://snap.stanford.edu/data/soc-LiveJournal1.html A social network
graph, taken from LiveJournal.

• https://snap.stanford.edu/data/com-Orkut.html A social network graph,
taken from the short-lived Orkut social network.

You can run these through your implementation as follows:

download the datasets
$ wget https://snap.stanford.edu/data/cit-Patents.txt.gz
$ wget https://snap.stanford.edu/data/bigdata/communities/com-orkut.ungraph.txt.gz
$ wget https://snap.stanford.edu/data/soc-LiveJournal1.txt.gz

unpack
$ gunzip cit-Patents.txt.gz
$ gunzip com-orkut.ungraph.txt.gz
$ gunzip soc-LiveJournal1.txt.gz

compile
$ make main

run
$./main @mpl procs 32 -- cit-Patents.txt
Loading graph (if large, this might take a while...)

Warning: graph contains 1 self-loops
Loaded graph in 4.3893s
num vertices 3774768
num edges 16518948

warmup 0.0000

3

https://snap.stanford.edu/
https://snap.stanford.edu/
https://snap.stanford.edu/data/cit-Patents.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/com-Orkut.html

repeat 1
time 1.4619s

average 1.4619s
minimum 1.4619s
maximum 1.4619s
std dev 0.0000s

num pointed triangles 7515027
num cyclic triangles 0

For reference, using 32 processors on crunchy1, Sam’s code takes:

• Approximately ~1.5s on the patent citation network, to count 7515027
pointed triangles (no cyclic triangles).

• Approximately ~90s on the LiveJournal social network graph, to count
924966203 pointed triangles and 238218098 cyclic triangles. (Note that this
graph has a significant number of self-loops. If your code avoids counting
self-loops as triangles, then you should get the same number of triangles.)

• Approximately ~120s on the Orkut social network graph, to count
627584181 pointed triangles (no cyclic triangles)

4

	PPA-S25 hw6
	Logistics
	Setup
	Intersection, Revisited
	Triangle Counting
	Unit Testing
	Download and play with some real graphs!

