PPA-S25 hwbj

Logistics

This homework consists of 100 points total, with points for individual tasks as
indicated below. There are 7 tasks total: 2 coding tasks, and 5 written tasks.

You should submit your work on Brightspace.

Create a file written.pdf with your solutions to the written tasks. Typeset
solutions are preferred. Handwritten solutions will be accepted only if they are
easily legible.

Package your solutions as follows:

replace NYU_NET_ID with your ID, e.g., shw8119.tgz
$ tar czf NYU_NET_ID.tgz Splitters.sml written.pdf

The resulting . tgz archive should contain only Splitters.sml and written.pdf.
To submit, upload this .tgz file.

Due Date: This submission is due at 5:00pm EST on Monday, Mar
3. Course policy on late submissions is available on the course website.
(https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/)

Setup

o Follow the instructions on the course website to access one of the crunchy
compute servers.
o Install MaPLe. For the crunchy servers, you can:
— Download https://cs.nyu.edu/~shw8119/courses/s25/3033-121-
ppa/resources/mpl-v053.tgz and copy it to the server
— Unpack by running tar xzf mpl-v053.tgz. This will create a direc-
tory mpl-v053/
— The compiler, mpl, is located at mpl-v053/bin/mpl
— Add mpl-v053/bin to your PATH so that you can access it easily:
export PATH="$(pwd -P)/mpl-v053/bin:$PATH". We recommend
updating your ~/.bashrc file or other configuration file as appropri-
ate.

Quick Preliminary: Parametric, Augmented BSTs
Take a look at the files TREE_DATA.sml and JUST_JOIN.sml.

The first describes types and values that can be freely defined by a programmer,
including:

o the types of the keys-value pairs in the tree, together with a comparison
function on the keys

o the types of the augmented values, and how they are computed, including
an associative combining function for augmented values.

Given these definitions, we can build an implementation of a balanced binary
search tree which provides the user with the JUST_JOIN interface. The file
AVL.sml provides one such implementation, with AVL-tree rebalancing. Other
balancing criteria could be implemented, providing exactly the same interface.
The implementations in TreeFuncs.sml then provide common functionality, but
are entirely parametric: any module that ascribes to the JUST_JOIN interface
can be passed as argument to TreeFuncs.

The JUST_JOIN interface, as the name suggests, is built around the function join.
This interface has been designed very carefully to ensure that the underlying
balancing scheme remains hidden and that the invariants of the balancing criteria
are not broken.

The way this is accomplished is by hiding the actual representation of the tree,
with an “opaque” type tree. The only way to observe a tree is to call expose,
which returns either Leaf or Node(1,k,v,r) where 1 and r are the two child
subtrees and (k,v) is one key-value pair. (Note that both 1 and r have type
tree, so you would have to call expose again on these to look inside them.)

To put trees back together again, you have to call join, which has type join:
exposed —-> tree. This function restores balance if necessary.

Any tree you can possibly construct using this interface will be bal-
anced. You don’t have to check this yourself; it is guaranteed by the interface.

(* opaque, can't see inside *)
type tree
(* take a look at just the root element of a tree
* using the function "expose' *)
datatype exposed = Leaf | Node of tree * key * value * tree
val expose: tree —> exposed
(* any exposed tree can be put back together again by
* calling “join~ *)
val join: exposed -> tree

Note that the typical usage of this interface often constructs a Node and then
immediately calls join on it. For example, here is an implementation of the
function split we considered in lecture, now rewritten for this interface.

fun split (t, k) =
case expose t of
Leaf => (join Leaf, false, join Leaf)
| Node (1, k', v',) =>
case key_compare (k, k') of
EQUAL => (1, true, 1)
| LESS =>
let val (11, b, 1lr) = split (1, k)
in (11, b, join (Node (1r, k', v', r)))
end
| GREATER =>
let val (rl, b, rr) = split (r, k)
in (join (Node (1, k', v', rl)), b, rr)
end

One funny thing you’ll notice is that we write join Leaf to construct an “opaque”

leaf from an exposed leaf. This may seem silly, but it is actually important for
hiding the entire implementation of the “opaque” tree and making sure that no
component of it is visible to the client of the library.

Split Paths

For a tree t, define the split path of a key k to be a sequence of the results of
all of the calls to key_compare that split(t,k) makes.

For example, in the figure below, the split path of the key 5 is: LESS, GREATER,
LESS, LESS, EQUAL.

Task 1 (5 points). In the example tree shown below, what is the split path for
key 37

spli
|0
/ D
5 € K
% 4
7 Lj?\ I 3
. Y q

Figure 1: Example split path

Taking only what you need

Often, you want to split a tree but only need one of the two output trees.
Defining special-purpose splitting routines (that don’t construct the unneeded
output) is beneficial for practical performance.

Task 2 (20 points). In Splitters.sml, implement the function split_leq:
tree * key -> tree where split_leq(t, k) returns a tree containing all keys
from t that are less-than-or-equal-to k. Your solution should call join at most
g + 1 times, where ¢ is the number of times either GREATER or EQUAL appears in
the split path for k.

Task 3 (20 points). In Splitters.sml, implement the function split_geq:
tree * key -> tree where split_geq(t, k) returns a tree containing all keys
from t that are greater-than-or-equal-to k. Your solution should call join at
most ¢ + 1 times, where £ is the number of times either LESS or EQUAL appears
in the split path for k.

You can test these functions as follows. Feel free to add more tests to the top of
test.sml.

$ make test
$./test

Split Efficiency?

Suppose you wanted to extract all key-value pairs that lie within a range
of keys defined by two keys, lo: key and hi: key. Below are two possible
implementations.

The first implementation, called split_between, uses the split_leq and
split_geq functions you completed in the previous task. We know that split
takes O(logn) work on balanced trees, and therefore each of split_leq and
split_geq require at most O(logn) work. Altogether, the amount of work
required for split_between is O(logn) on a balanced tree.

fun split_between (t, lo, hi) =
split_leq (split_geq (t, lo), hi)

The second implementation, split_between_alt, takes a different approach.
The code cases on three possibilities for where the key at the root lies relative to
the range [lo,hi]: below, above, or somewhere within.

fun split_between_alt (t, lo, hi) =
case expose t of
Leaf => t
| Node (1, k, v,) =>
if key_compare (k, lo) = LESS then
(* k < lo, so we know [lo,hi] lies entirely within r *)
split_between_alt (r, lo, hi)
else if key_compare (k, hi) = GREATER then
(* k > ht, so we know [lo,ht] lies entirely within 1 *)
split_between_alt (1, lo, hi)
else
(* pieces of both 1 and r overlap with the range *)
let val (1', r') =
ForkJoin.par (fn () => split_between_alt (1, lo, hi),
fn () => split_between_alt (r, lo, hi))
in join (Node (1', k, v, r')) end

This split_between_alt implementation is correct, but it might not be imme-
diately clear how well it performs.

Task 4 (10 points). Consider some call split_between_alt(t,lo,hi). Let
n be the number of keys in the input t, and let b be the number of keys in the
output. Exactly how many calls to join are executed? (Specifically, we
call join only on the last line. If we count 1 every time the last line of code
occurs, what will the total count be, exactly? No asymptotics here! Please give
an exact count in terms of n and/or b.)

Task 5 (15 points). Argue (informally, in words, in just a few sentences)
that the amount of work required for split_between_alt(t,lo,hi) can be
upper-bounded by O(blog(1 + %)), where n is the number of keys in t and b is

the number of keys in the output.

Hint: You may assume that union, intersection, and difference require
O(mlog(1 + »)) work on trees of size n and m where n > m. There’s a
connection here. . .

Task 6 (10 points). Describe an example where split_between_alt would
require O(n) work, but split_between requires only O(logn).

Non-constant Augmentation

Imagine you had a function update_key: tree * key * value -> tree where
update_key(t, k, v) finds key k in the tree and replaces that node with the
key-value pair (k,v) (and constructs new ancestor nodes appropriately). This
function does not change the structure of the tree, it only changes values (and
augmented values) stored at nodes.

In lecture, we considered only constant-time augmentation of trees, i.e., where the
functions f: key * value -> avalue and g: avalue * avalue -> avalue
each require O(1) work and span. In this setting, the cost of update_key(...)
is always O(logn) for balanced trees.

Suppose we instead augmented a tree as follows. These would cause the aug-
mented value at the root to be a sequence of all the keys in the tree.

type key = ... type value = ... type avalue = value Seq.t
fun f(k, v) = Seq.singleton v

fun g(vl, v2) = Seq.append (vl, v2)

val z = Seq.empty()

Task 7 (20 points). Suppose you have a perfectly balanced tree (where for
every node, the heights of its two children are exactly equal), with n elements,
augmented with £ and g as defined above. Write work and span recurrences for
update_key in terms of n, and solve these recurrences, providing tight big-O work
and span bounds. You may assume that append(s;,s2) requires O(|s1| + |s2|)
work and O(log(|s1| + [s2])) span.

	PPA-S25 hw5
	Logistics
	Setup
	Quick Preliminary: Parametric, Augmented BSTs
	Split Paths
	Taking only what you need
	Split Efficiency?
	Non-constant Augmentation

