
PPA-S25 hw3

Logistics
This homework consists of 100 points total, with points for individual tasks as
indicated below. There are 2 coding tasks in this assignment.

You should submit your work on Brightspace.

Package your solutions as follows:

replace NYU_NET_ID with your ID, e.g., shw8119.tgz
$ tar czf NYU_NET_ID.tgz JsonFindStrings.sml JsonNesting.sml

The resulting .tgz archive should contain only JsonFindStrings.sml and
JsonNesting.sml. To submit, upload this .tgz file.

Due Date: This submission is due at 5:00pm EST on Tuesday, Feb
18. Course policy on late submissions is available on the course website.
(https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/)

Setup
• Follow the instructions on the course website to access one of the crunchy

compute servers.
• Install MaPLe. For the crunchy servers, you can:

– Download https://cs.nyu.edu/~shw8119/courses/s25/3033-121-
ppa/resources/mpl-v053.tgz and copy it to the server

– Unpack by running tar xzf mpl-v053.tgz. This will create a direc-
tory mpl-v053/

– The compiler, mpl, is located at mpl-v053/bin/mpl
– Add mpl-v053/bin to your PATH so that you can access it easily:

export PATH="$(pwd -P)/mpl-v053/bin:$PATH". We recommend
updating your ~/.bashrc file or other configuration file as appropri-
ate.

JSON Rainbows
JSON files are ubiquitous in modern computing. With billions of devices across
the globe, it is safe to assume that literally billions of JSON parsers are currently
running right now, as you are reading this.

Commonly, JSON is parsed sequentially, but it is possible to parse large JSON
files in parallel. In this assignment, you will develop a parallel JSON parsing
algorithm. The goal is not to produce the fastest parser in practice, but rather

1

to understand some of the algorithmic techniques that are useful for parallel
parsing.

(Actually, the real goal of the assignment is to flex your understanding of parallel
prefix sums via the scan primitive.)

We’ll focus on two subproblems in particular:

• Finding where all of the strings in a JSON file begin and end.
• Identifying the bracket nesting depth of every curly and square bracket in

a JSON file. We’ll use this to assign “rainbow colors” to the brackets of a
file, where matching brackets are assigned the same color, as modern code
editors and IDEs typically do.

Marking Strings

Task 1 (50 points): In JsonFindStrings.sml, implement the function
in_string_flags(chars), where chars is a sequence of characters from a valid
JSON file. The output should be a sequence of booleans, indicating for each
character of the input whether or not that character is part of a JSON string.
You should include the indices of the start and end quotes.

On an input of length N , your solution to Task 1 must have O(N)
work and O(polylog(N)) span.

Consider the input {"hello":[{"world":1},[1,["2",3],4]]}. The output of
in_string_flags should be as follows, where 1 means true and 0 means false.
Notice that each character of a string is marked with a run of true booleans,
and all other characters are marked false.

input: {"hello":[{"world":1},[1,["2",3],4]]}
output: 0111111100011111110000000011100000000

Every JSON string begins and ends with a double quote character: ". Inside of
a JSON string, there can be escape sequences. Valid JSON escape sequences are:

\" \\ \/ \b \f \n \r \t \uXXXX (where X is a hex digit)

The tricky ones to handle in your solution are going to be the escape sequences
\" and \\. Any escaped quote character does not terminate the string.

It might be tempting to check if a quote character is escaped simply by checking
if the character immediately preceding the quote is a backslash. However, it’s
not quite so simple, because the backslash might itself have been escaped! For
example, all of these are valid JSON strings:

"\""
"\\"
"\\\""
"\\\\\\\"\\\\\\"

2

Notice that, in any contiguous run of backslashes, it is important whether or
not the length is odd or even.

HINT. For any contiguous run of backslashes, consider computing the index of
where that run of backslashes began.

chars: " \ \ \ " _ \ \ _ "
index: 0 1 2 3 4 5 6 7 8 9

run starts: . 1 1 1 . . 6 6 . .

Also, an important property of JSON is that backslashes can only appear inside
of strings. This just happens to be true of the JSON grammar; backslashes
aren’t permitted elsewhere. More info about the JSON grammar can be found
here: https://www.json.org/json-en.html

As usual, you will need functions on sequences:

Seq.length: 'a Seq.t -> int (* O(1) work, O(1) span *)
Seq.nth: 'a Seq.t -> int -> 'a (* O(1) work, O(1) span *)

We also encourage using functions such as the following:

Parallel.tabulate:
(int * int) -> (int -> 'a) -> 'a Seq.t

Parallel.reduce:
('a * 'a -> 'a) -> 'a -> (int * int) -> (int -> 'a) -> 'a

(* note: output sequence of scan is length N+1 *)
Parallel.scan:

('a * 'a -> 'a) -> 'a -> (int * int) -> (int -> 'a) -> 'a Seq.t

(* `filter (lo, hi) f p` computes the sequence
* `[f(i) : lo <= i < hi for each i satisyfing p(i)]`
* i.e., p(i) says whether or not to include f(i) in the output *)

Parallel.filter:
(int * int) -> (int -> 'a) -> (int -> bool) -> 'a Seq.t

Assuming the functions f, g, and p all require O(1) work, you may assume the
following cost bounds for these functions:

tabulate (lo, hi) f (* O(hi-lo) work, O(log(hi-lo)) span *)
reduce g z (lo, hi) f (* O(hi-lo) work, O(log(hi-lo)) span *)
scan g z (lo, hi) f (* O(hi-lo) work, O(log(hi-lo)) span *)
filter (lo, hi) f p (* O(hi-lo) work, O(log(hi-lo)) span *)

Time for Rainbows

Task 2 (50 points): In the file JsonNesting.sml, implement the function
bracket_depths chars string_flags, where chars are characters from a valid

3

JSON file, and string_flags are flags indicating whether or not each character
is part of a JSON string. That is, you can assume that the input string_flags
is a correct result from the first task.

(Tasks 1 and 2 will be graded separately. Your grade on Task 2 will not depend
on the correctness of your solution to Task 1.)

On inputs of length N , your solution to Task 2 must have O(N) work
and O(polylog(N)) span. You can assume the same costs as shown above for
common library functions.

Your goal is to compute the nesting depth of every bracket in the JSON file.
Brackets can either be curly or square:

{ } []

The output should be a sequence of tuples (i, dc, ds), each of which corresponds
to one bracket in the file, where:

• i is the index (in chars) of the bracket
• dc is the “curly depth”, i.e., the number of curly bracket pairs that surround

index i (not including the bracket at position i)
• ds is the “square depth”, i.e., the number of square bracket pairs that

surround index i (not including the bracket at position i)

For example, consider the input {"he][o":[{"wo{ld":1},[1,[2,3],4]]}. This
input has 10 brackets:

string_flags: 01111111000111111100000000000000000
chars: {"he][o":[{"wo{ld":1},[1,[2,3],4]]}

^ ^^ ^ ^ ^ ^ ^^^

The output for this example should as follows:

(0, 0, 0), (* open { at index 0; no surrounding brackets *)
(9, 1, 0), (* open [at index 9; 1 surrounding curly pair *)
(10, 1, 1), (* open { at index 10; 1 surrounding curly pair,

* and 1 surrounding square pair *)
(20, 1, 1), (* close } at index 20; 1 surrounding curly,

* and 1 surrounding square *)
(22, 1, 1), (* etc... *)
(25, 1, 2), (* etc... *)
(29, 1, 2),
(32, 1, 1),
(33, 1, 0),
(34, 0, 0)

Notice that, in the example above, there are strings that contain bracket charac-
ters, but these are part of the string and should not be counted as actual brackets
of the JSON file. (This is why we computed the string_flags separately; you

4

can refer to these booleans to figure out which characters are and are not inside
of a string.)

Testing

You can test your code as follows.

$ make test
$./test

This will run your code on a few test JSON files inside of test-json/. Feel free
to add more tests, and remember to add these to the list at the top of test.sml
and then recompile.

For reference and to help with testing for correctness, there are reference solutions
available inside of ReferenceSolutions.sml. Note that these solutions are
entirely sequential and therefore do not meet the work and span requirements of
Tasks 1 and 2.

See the Rainbow, Taste the Rainbow

Using the results of your in_string_flags and bracket_depths functions, we
can parse a JSON file and assign colors to the strings and brackets. Brackets
of the same nesting depth (here computed as d_c + d_s) will be assigned the
same color.

Run the following to see the rainbow! (Hopefully, the terminal you are using
supports colors!)

$ make main
$./main test-json/3.json

5

	PPA-S25 hw3
	Logistics
	Setup
	JSON Rainbows
	Marking Strings
	Time for Rainbows
	Testing
	See the Rainbow, Taste the Rainbow

