
PPA-S25 hw2
Logistics
This homework consists of 100 points total, with points for individual tasks as
indicated below. There are 5 tasks: one coding task and four written tasks.

You should submit your work on Brightspace.

Create a file written.pdf with your solutions to the written tasks. Typeset
solutions are preferred. Handwritten solutions will be accepted only if they are
easily legible.

Package your written.pdf with your LongestLine.sml file as follows:

replace NYU_NET_ID with your ID, e.g., shw8119
$ tar czf NYU_NET_ID.tgz LongestLine.sml written.pdf

The resulting .tgz archive should contain only LongestLine.sml and
written.pdf. To submit, upload this .tgz file.

Due Date: This submission is due at 5:00pm EST on Monday, Feb
10. Course policy on late submissions is available on the course website.
(https://cs.nyu.edu/~shw8119/courses/s25/3033-121-ppa/)

Setup
• Follow the instructions on the course website to access one of the crunchy

compute servers.
• Install MaPLe. For the crunchy servers, you can:

– Download https://cs.nyu.edu/~shw8119/courses/s25/3033-121-
ppa/resources/mpl-v053.tgz and copy it to the server

– Unpack by running tar xzf mpl-v053.tgz. This will create a direc-
tory mpl-v053/

– The compiler, mpl, is located at mpl-v053/bin/mpl
– Add mpl-v053/bin to your PATH so that you can access it easily:

export PATH="$(pwd -P)/mpl-v053/bin:$PATH". We recommend
updating your ~/.bashrc file or other configuration file as appropri-
ate.

Longest Line
Here you will use your reduction skills to compute the longest line of a text
file (both the line number, and the length of that line). This is easy to do
sequentially in O(n) work with just a few lines of code. In parallel, however,
the solution isn’t so obvious. The challenge is that newline characters might
be arbitrarily far away from each other. For example, the longest line of a file
might be millions of characters long. Any solution which sequentially walks

1

between newline characters is doomed to have high span (and therefore not much
parallelism) in the worst case.

It turns out that you can solve this problem (work-efficiently, with low span)
using just a single parallel reduction across the whole input.

Task 1 (60 points): In LongestLine.sml, implement the function
longest_line(chars). The output should be a tuple (i, k) where i is the line
number of the longest line, and k is the length of the longest line.

Some requirements/notes/thoughts:

• Your solution must have worst-case O(n) work and O(log n) span, where
n is the length of the input sequence.

• If there are multiple lines that are all tied for the longest, then you should
return the first longest line (the minimum line number).

• Your solution should contain exactly one call to the function
Parallel.reduce, ranging over the entire input sequence. (Of
course, the output of your reduce might not directly solve the problem;
you are permitted to do other computation afterwards as long as your
solution still meets the required work and span bounds.)

• Note that, by convention, line numbers are indexed from 1 instead of 0.
For example, on the input 1\n123\n12, the longest line is line number 2.

• Hint: review the lecture notes on the Maximum Contiguous Subsequence
Sum problem.

• Hint: Sam’s solution strengthens the problem into a 5-tuple.
• The image in Figure 1 is presented without comment. Maybe it is helpful.
• We recommend first thinking about solving a simpler problem: identifying

only the length of the longest line. After you solve this problem, then
think about how you can strengthen your solution to also compute the line
number of the longest line.

The syntax for a reduction is as follows.

Parallel.reduce g z (lo, hi) f

Here, the arguments are:

g: 'a * 'a -> 'a (* (for any type 'a) an associative "combining" function *)
z: 'a (* an identity element for `g` *)
lo: int, hi: int (* range of indices for `f` *)
f: int -> 'a (* a function to generate one element of the reduction *)

Altogether, Task 1 is worth 60 points. This will be graded in two parts: 30 points
for the correctness of the longest line number, and 30 points for the correctness
of the longest line length. So, in other words, you can get half credit on this
task by always correctly computing the length of the longest line but returning
a bogus value for the line number.

Testing. A few test cases are included at the top of test.sml. Feel free to add
more. You can test your code as shown below. If you change test.sml, you will

2

Figure 1: Perhaps a hint for the longest line problem?

3

need to recompile.

$ make test
$./test

Task 2 (5 points): Using the commands shown below, download the list of
words and run your solution to find the longest word. (Each word in this file is
on its own line.) What is the longest word in the list?

$./download_words_dataset.sh # creates a file: data/words.txt
$ make main
$./main @mpl procs 10 -- data/words.txt

Mergesort with Reduce
Suppose you have a function merge: int Seq.t * int Seq.t -> int Seq.t
where merge(S,T) takes two sorted sequences S and T as argument and merges
them, producing an output sequence that is sorted and contains all of the input
elements of both S and T. For example, merge([0,5,6],[1,2,3,4,5,6,7])
produces the sequence [0,1,2,3,4,5,5,6,6,7].

We can use merge to implement a parallel mergesort as follows.

fun mergesort(X: int Seq.t) =
if Seq.length(X) <= 1 then

X
else

let
(* split the sequence in half, producing two sequences, L and R *)
val (L, R) = Seq.split_middle(X)
val (sortedL, sortedR) =

ForkJoin.par (fn () => mergesort(L),
fn () => mergesort(R))

in
merge(sortedL, sortedR)

end

If S is length n and T is length m, then merge has O(n+m) work and O(log2(n+
m)) span. (This is possible in practice and later in the course we will look
closely at how you can implement merge within these cost bounds.) Assume
that Seq.split_middle and Seq.length both require O(1) work and span.

Task 3 (10 points). Write a recurrence W (n) for the work of this mergesort
implementation, given in terms of n, the length of the input sequence. Just write
the recurrence; you don’t need to solve it.

Task 4 (10 points): Now write a recurrence S(n) for the span of mergesort,
again in terms of n, the length of the input sequence. Just write the recurrence;
you don’t need to solve it.

4

Task 5 (15 points): Redefine mergesort(X) in terms of Parallel.reduce.
(Include this in your submitted written.pdf.) The solution should have exactly
one call to Parallel.reduce and should only require at most a few lines of
code.

Recall that Parallel.reduce g z (lo, hi) f executes f(lo), ...,
f(hi-1) in parallel and combines all of the results using the associative function
g and corresponding “identity” z.

In this task you can use functions such as:

• Seq.length(X) which returns the length of sequence X.
• Seq.nth X i which returns the ith element of X.
• Seq.singleton(x) which returns the “singleton” sequence (of length 1)

containing just the element x.
• Seq.empty() which returns an empty sequence (length 0).

5

	PPA-S25 hw2
	Logistics
	Setup
	Longest Line
	Mergesort with Reduce

