
Lecture 3 Notes (Sep 22, 2025)
Sam Westrick

s.westrick@nyu.edu

Sequences
A sequence is an ordered collection of elements indexed by natural numbers between 0 and n − 1 where
n is the length. We can define a few useful notational conveniences and a cost model. All work and
span quantities in the following table are asymptotic, e.g., 1 means O(1) and n means O(n).

Syntactic Sugar Code Work W Span S

|s| length s 1 1
s[i] nth s i 1 1
s[i..j] subseq s (i, j-i) 1 1
⟨⟩ empty() 1 1
⟨x⟩ singleton x 1 1
⟨ei : lo ≤ i < hi⟩ tabulate (lo, hi)

(fn i => e_i)

∑hi
i=lo W (ei) log(hi-lo) +

maxi S(ei)
⟨f(x) : x ∈ s⟩ map f s

∑
x W (f(x)) log |s| +

maxx S(f(x))
s1 ▷◁ s2 append (s1, s2) |s1| + |s2| log(|s1| + |s2|)

This particular cost model assumes sequences that are represented as arrays. More generally, it is
helpful to think of a sequence as an abstract data type which could have many different representations.
For example, another common representation is as a (balanced) tree, with elements stored at nodes,
where the in-order traversal of the tree implicitly represents the ordering of the elements in the sequence.

Parallel Prefix “Sums”
Perhaps the single most important primitive in parallel computing is an algorithm for computing
prefix sums in parallel. This core building block can be used to parallelized computations that may
at first appear to be sequential.

Given a sequence of integers s, suppose we wanted to know the sum of every prefix of s. On input of
length n, the output will be length n + 1, as there are n + 1 prefixes (including the initial zero-length
prefix).

s prefix sums of s

⟨1, 2, 3, 4⟩ ⟨0, 1, 3, 6, 10⟩
⟨1, 0, 0, 1, 0, 1⟩ ⟨0, 1, 1, 1, 2, 2, 3⟩
⟨⟩ ⟨0⟩

Sequentially, we could clearly compute all prefix sums by walking left-to-right across the input and
keeping track of a running sum. At each element, we write down the current running sum to the
output, and then update the running sum with the next element. This has O(n) work but is entirely
sequential.

1

It turns out that it is possible to compute all prefix sums in parallel, with only O(n) work and O(log n)
span. Before we get there, let’s see a few examples of how we could compute prefix sums in parallel,
but less efficiently.

Work-inefficient Parallel Prefix Sums #1

The most obvious way we could compute prefix sums in parallel would be to perform one sum for
every prefix:〈

reduce (op+) 0 s[0..i] : 0 ≤ i ≤ |s|
〉

This solution has O(n2) work and O(log n) span for an input of size n. This is a significant amount of
parallelism, but it is work-inefficient: this approach requires asymptotically more work than the best
sequential solution.

To see that the solution above requires O(n2) work, consider that we have pay O(i) work for each
prefix of length i, which comes out to O(

∑
i i) = O(n2) work in total.

Work-inefficient Parallel Prefix Sums #2

Another possibility would be to compute prefix sums with a divide-and-conquer approach.

fun dc_prefix_sums (s: int Seq.t) =
if Seq.length s = 0 then

Seq.singleton 0
else if Seq.length s = 1 then

Seq.fromList [0, Seq.nth s 0]
else

let
val n1 = Seq.length s div 2
val n2 = Seq.length s - n1
val s1 = Seq.subseq s (0, n1)
val s2 = Seq.subseq s (n1, n2)
val (p1, p2) = ForkJoin.par (fn () => dc_prefix_sums s1,

fn () => dc_prefix_sums s2)
val t1 = Seq.nth p1 n1 (* total sum of the left-hand side *)

in
Seq.append (Seq.subseq p1 (0, n1), Seq.map (fn x => t1 + x) p2)

end

This divide-and-conquer solution admits the following work and span recurrences.

W (n) = 2W (n/2) + O(n) = O(n log n)

S(n) = S(n/2) + O(log n) = O(log2 n)

We see that this approach is closer to work-efficient, but still off by a logarithmic factor. The problem
is that, after solving the recursive instances, we still have to pay a linear cost to update the results of
the right-hand side (by adding the total from the left-hand side).

Work-efficient Parallel Prefix Sums: Upsweep-Downsweep

To achieve O(n) work, we can use the following idea. Notice that in the divide-and-conquer solution
above, to generate the right-hand-side results, we needed to know the total sum on the left. So, why
not just precompute all of these total sums?

2

The first phase of our work-efficient algorithm will do just this. We call this an upsweep. It is similar
to a parallel divide-and-conquer summation, but we also write down all of the intermediate results.
These intermediate results can be organized into a balanced binary tree, mirroring the structure of the
divide-and-conquer recursion.

The second phase of the algorithm is called the downsweep. We walk down the tree in parallel,
maintaining an “accumulator” value (initially 0 at the root). Every time we walk to a left child, the
accumulator stays the same. Every time we walk to a right child, we update the accumulator by adding
the total sum of the left child.

When this traversal hits a leaf, the current value of the accumulator will be the prefix sum at that
position.

Here is code that implements this solution. In the downsweep, we write directly to an array, and keep
track of our current position (offset) and the number of elements that need to be written (n).

datatype tree = Leaf of int | Node of int * tree * tree
fun sum_of(t) = case t of Leaf x => x | Node (x, _, _) => x

fun upsweep(s: int Seq.t) =
if Seq.length s = 1 then Leaf (Seq.nth s 0) else
let val half = Seq.length s div 2

val (t1, t2) = ForkJoin.par (fn () => upsweep (Seq.take s half),
fn () => upsweep (Seq.drop s half))

in Node (sum_of t1 + sum_of t2, t1, t2)
end

fun downsweep(t, acc, output, offset, n) =
case t of

Leaf _ => Array.update(output, offset, acc)
| Node(_, t1, t2) =>

let val half = n div 2
in ForkJoin.par (fn () => downsweep(t1, acc, output,

offset, half),
fn () => downsweep(t2, sum_of t1 + acc, output,

offset + half, n - half));
()

end

fun up_down_prefix_sums(s: int Seq.t) =
if Seq.length s = 0 then Seq.singleton 0 else
let

val n = Seq.length s
val t = upsweep s
val output = ForkJoin.alloc(n + 1)

in
downsweep(t, 0, output, 0, n);
Array.update(output, n, sum_of t);

(* In actual MaPLe, this converts an array to a sequence; at this
* point, the programmer needs to be careful to never mutate the
* underlying array.
*)

3

Figure 1: Upsweep-downsweep prefix sums

4

ArraySlice.full(output)
end

This solution has two phases (the upsweep, and the downsweep), so the overall work and span is just
the sum of the two phases:

W (n) = Wupsweep(n) + Wdownsweep(n)

S(n) = Supsweep(n) + Sdownsweep(n)

Each phase has a simple work and span recurrence:

Wupsweep(n) = 2Wupsweep(n/2) + O(1) = O(n)

Supsweep(n) = Supsweep(n/2) + O(1) = O(log n)

Wdownsweep(n) = 2Wdownsweep(n/2) + O(1) = O(n)

Sdownsweep(n) = Sdownsweep(n/2) + O(1) = O(log n)

Overall, therefore, we have O(n) work and O(log n) span. This algorithm is work-efficient (it
asymptotically matches the best sequential solution), yet still has ample parallelism.

Another work-efficient Prefix Sum Algorithm: Contraction

Another idea would be to allow for the tree of partial results to be implicit by working level-by-level
instead of constructing the tree explicitly.

The initial level is the input sequence, and the next level in the tree can be obtained by contracting:
combining adjacent elements, pairwise, to produce a sequence of half the length. We can then recursively
compute the prefix sums across the contracted level. Finally, the overall prefix sums can be computed
by expanding the result (filling in the missing elements). This sometimes also called a three-phase
scan.

Figure 2: Contraction-based Prefix Sums

Code for this solution is as follows. Here, for simplicity, we assume the input length is a power of 2.

5

(* Note: assumes the input is power-of-two length *)
fun contraction_prefix_sums(s: int Seq.t) =

if Seq.length s = 0 then Seq.singleton 0
else if Seq.length s = 1 then

Seq.fromList [0, Seq.nth s 0]
else

let
val n = Seq.length s
val contracted =

Seq.tabulate (fn i => Seq.nth s (2*i) + Seq.nth s (2*i + 1)) (n div 2)
val recursive_sums =

contraction_prefix_sums(contracted)
fun expanded_elem(i) =

if i mod 2 = 0 then Seq.nth recursive_sums (i div 2)
else Seq.nth recursive_sums (i div 2) + Seq.nth s (i-1)

in
Seq.tabulate expanded_elem (n+1)

end

Note that this approach only has a single recursive call, yielding the following work and span recurrences:

W (n) = W (n/2) + O(n)

S(n) = S(n/2) + O(log n)

The span recurrence we have seen before; this solves to O(log2 n). The work recurrence can be solved
by noticing that it forms a geometrically decreasing series. We can use the fact that

∑∞
i=0 1/2i = 2 to

see that this comes out to a total of linear work.

W (n) = O(n + n/2 + n/4 + . . .) = O(n
∑

i 1/2i) = O(n)

Generalization: Scan
Above, we have focused on prefix sums, specifically for performing a summation (with addition of
integers).

But, similar to reduce, we can generalize the algorithm to compute a “sum” of any associative binary
operation. Anywhere above where we combine two numbers with addition, we can instead compute an
arbitrary function, g.

The general form is written Seq.scan g z s for computing all the prefix “sums” (w.r.t. function g) of
the sequence s. Alternatively, in MaPLe, we can write Parallel.scan g z (lo, hi) f to compute
prefix sums over the implicit sequence f(lo), ..., f(hi-1).

From this we can compute a variety of interesting functions. Here are two especially interesting and
powerful examples:

• Solutions to linear recurrences of the form r(i) = ai · r(i − 1) + bi can be computed using
the associative operation g((a1, b1), (a2, b2)) = (a1 · a2, b1 · a2 + b2) and corresponding identity
z = (1, 0), over the elements (ai, bi). (Note that this function g is associative!)

• We can compute the nearest non-zero value to the left of any position in a sequence using
the function copy(a,b) = if b > 0 then b else a and corresponding identity value z = 0.
(Note that copy is associative!) We call this a copy-scan, and it is a very powerful primitive in
parallel computing. For example, scan copy 0 ⟨0, 1, 0, 2, 0, 0, 0, 3, 0⟩ = ⟨0, 0, 1, 1, 2, 2, 2, 2, 3, 3⟩.

6

A Practical Consideration: Block-based Three-phase Scan
Commonly, in practice, the preferred implementation of scan is a three-phase (contraction-based)
algorithm with a small modification: rather than combine adjacent elements pairwise, we instead break
up the input in larger blocks and contract into a much smaller recursive problem size.

Figure 3: Three-phase Blocked Scan

Note that in this approach, we sacrifice some parallelism, because the expansion step has to walk
sequentially within each block (but is parallel across the blocks).

For a block-size B, this approach admits the following work and span recurrences.

W (n) = W (n/B) + O(n) = O(n)

S(n) = S(n/B) + O(B + log n) = O(B + log2 n)

As the block size increases, this approach gets more and more sequential. But as long as n ≫ B, this
solution still has ample parallelism.

But, a question we haven’t answered: why? Why would you want to increase the block size and
sacrifice parallelism?

The reason is work efficiency. Let’s consider the following recurrence, u, which is similar to the work
recurrence above but is no longer asymptotic. This function is counting (approximately) the number
of array updates performed within the block-based scan, which is a good estimate of its performance
in practice. The question is, how does this function behave as we change the block size?

u(n) = u(n/B) + n + n/B = u(n/B) + n B+1
B

We can upper bound this recurrence by a geometric series:

u(n) ≤ n B+1
B

∑∞
i=0

1
Bi = n B+1

B
B

B−1 = n B+1
B−1

And actually, for sufficiently large n, we will have u(n) ≈ n B+1
B−1 .

For B = 2, we have u(n) ≈ 3n, and as we increase B, this function decreases; at the limit as B → ∞,
we have that u(n) approximately approaches n.

In other words, as we increase the block size, the work-efficiency of the algorithm improves.

7

In practice, we typically use a block size such as B = 100 or B = 1000 which guarantees that u(n) is
within a few percent of n while still exposing ample parallelism for large n.

8

	Lecture 3 Notes (Sep 22, 2025)
	Sequences
	Parallel Prefix “Sums”
	Work-inefficient Parallel Prefix Sums #1
	Work-inefficient Parallel Prefix Sums #2
	Work-efficient Parallel Prefix Sums: Upsweep-Downsweep
	Another work-efficient Prefix Sum Algorithm: Contraction

	Generalization: Scan
	A Practical Consideration: Block-based Three-phase Scan

