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Parallel Hardware
Almost every computing device today is parallel. My iPhone has 12 cores (Apple A18 Pro: 2 perf CPU
cores, 4 efficiency cores, 6 GPU cores). You can buy a state-of-the-art desktop multicore processor for
just a few hundred dollars, e.g., https://www.newegg.com/amd-ryzen-9-7900x-ryzen-9-7000-series-ra
phael-zen-4-socket-am5/p/N82E16819113769. For ~$15K, you can get a single chip with 192 cores (384
threads), such as the AMD EPYC 9965: https://www.techpowerup.com/cpu-specs/epyc-9965.c3904.

These devices offer the potential of serious speedups, but can be difficult to program.

Common Parallel+Concurrent Software Bugs
Parallel and concurrent software is especially prone to bugs from race conditions and data races
which can be difficult to identify, let alone debug. The consequences can be severe, for example, the
infamous Northeast Blackout of 2003 was due to an unintended race condition.

It is easy to write a program that exhibits race conditions in practice. For example, see
Ex.data_race_ex in the accompanying lecture code. This example simply attempts to increment a
shared counter 10 million times, in parallel.

We can run this example as follows. Note that on a single core, we always get the same result for the
final value of the counter (10000000). However, when using multiple cores, the results are unpredictable.

$ make main

# Running with a single core always returns the same result:
$ ./main @mpl procs 1 -- data_race -n 10000000
10000000
$ ./main @mpl procs 1 -- data_race -n 10000000
10000000

# Running with multiple cores results in unpredictable results:
$ ./main @mpl procs 8 -- data_race -n 10000000
2879180
$ ./main @mpl procs 8 -- data_race -n 10000000
2806651
$ ./main @mpl procs 8 -- data_race -n 10000000
2805723

The problem is that each update to the mutable cell is non-atomic. In the example, we write counter
:= !counter + 1. This is equivalent to:

let
val old_x = !counter
val new_x = old_x + 1

in
counter := new_x

end
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Here it is clear that the update does not occur as a single instruction, but rather multiple separate
instructions. If two processors execute this code simultaneously (assuming an initial counter value of
0), it is possible that both processors read same the value old_x = 0, and then both write the value
counter := 1. We have lost an update due to an unfortunate timing of events.

To prevent this problem, in this course, we will be avoiding mutable data. Instead, most of the
code we will write is “purely functional”. This term is generally used to refer to code which computes
entirely using immutable data.

The purely functional approach has numerous benefits, as we will develop throughout this course.
Mostly importantly, it allows us to easily and quickly write parallel code which is efficient, scalable,
and (most importantly) correct, often with a simple proof of correctness.

Parallelism vs Concurrency
These terms are often used interchangeably, but it is useful to distinguish them.

Define parallelism as the case where the performance of a piece of software is affected by
using multiple processors simultaneously (usually, for speedups).

Define concurrency as the case where the correctness or behavior of the program is
affected by the timing of events.

With these definitions, it is clear that parallelism and concurrency are orthogonal concerns.

It may be helpful to identify examples for each combination:

not concurrent concurrent
+--------------------------+-------------------------------------+
| classic algorithms 101 | single-processor web server |

not parallel | (e.g. sequential | (dynamically responding to |
(sequential) | mergesort, binary | queries that arrive unpredictably) |

| search, etc.) | |
+--------------------------+-------------------------------------+
| DETERMINISTIC | multi-processor web server |

parallel | PARALLELISM | (dynamically responding to many |
| (main topic of this | unpredictable queries, |
| course!) | simultaneously, in parallel) |
+--------------------------+-------------------------------------+

An Example of Parallel-But-Not-Concurrent
A class “hello world” of parallel programming are the Fibonacci numbers:

fun fib(n) = if n <= 1 then n else fib(n-1) + fib(n-2)

These can be easily computed in parallel. (See fib in Ex.sml in the accompanying code.)

fun fib n =
if n <= 1 then

n
else

let val (a, b) =
ForkJoin.par (fn () => fib (n - 1),

fn () => fib (n - 2))
in a + b
end
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The function ForkJoin.par is the main ingredient: this function takes two (first-class) functions as
argument, executes both, and returns the two results as a tuple.

No matter how many processors we use, this code always returns the same result. There is parallelism
here (it gets faster with more processors), but no concurrency.

# compute the 40th fibonacci number (102334155)
$ ./main @mpl procs 1 -- fib -n 40
n 40
warmup 0.0000
repeat 1
time 1.9978s

average 1.9978s
minimum 1.9978s
maximum 1.9978s
std dev 0.0000s
102334155

# on two processors: same result, but approximately twice as fast
$ ./main @mpl procs 2 -- fib -n 40
n 40
warmup 0.0000
repeat 1
time 1.0271s

average 1.0271s
minimum 1.0271s
maximum 1.0271s
std dev 0.0000s
102334155

Computing a Sum in Parallel
See the code for parallel_sum in Ex.sml in the accompanying code. The function parallel_sum(lo,
hi, f) computes the summation f(lo) + f(lo+1) + ... + f(hi-1) in parallel. How can we do
this, using only ForkJoin.par for parallelism?

A simple and effective solution is to process the range by splitting the range in half and recursively
processing the two halves in parallel. The base cases handle ranges of indices that are either empty or
a singleton.

fun parallel_sum(lo, hi, f) =
if lo >= hi then

0
else if lo + 1 = hi then

f(lo)
else

let
val mid = lo + (hi - lo) div 2
val (left, right) =

ForkJoin.par (fn () => parallel_sum(lo, mid, f),
fn () => parallel_sum(mid, hi, f))

in
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left + right
end

Programming Exercise: Parallel Word Count
Challenge: use parallel_sum to compute the number of words in a file in parallel. The input is a
sequence of characters, and the output should be the number of words. For example, on the input
string __hello___world_ (where _ indicates a space), the output should be 2.

fun word_count(chars: char Seq.t) : int =
(* TODO... *)

As an exercise, try to solve this problem. A hint is that you can solve it using a single call to
parallel_sum. Some useful functions are:

Seq.length(s) (* length of a sequence s *)
Seq.nth s i (* the ith element of the sequence s *)
Char.isSpace(c) (* returns true if the character c is a whitespace character *)

A solution is shown in the file Ex.sml in the accompanying code. See the function wc in this file.

Measuring Performance
Define T (P ) as the running time of a program on P processors. Next, define the (self-)speedup of
a program on P processors as selfspeedup(P ) = T (1)/T (P ). Note that we call this “self-speedup”
because, as a baseline, it compares against the sequential performance of the same program.

Ideally, in a perfect world, selfspeedup(P ) ≈ P . However, in reality, this is almost never the case.

There are numerous reasons for this. Three important reasons in particular:

• The memory wall. On modern chips, the maximum throughput of memory loads does not
match the cumulative computational power of all the cores together. That is, if all processors
are loading from memory simultaneously, then (in the hardware) there will be significant delays,
causing the peek performance to plateau.

• Scheduling is not free. The system has to perform work to make decisions about which
processor should be assigned to execute each task. Tasks also have to be migrated between
processors, which requires additional instructions to be executed. All of this is additional overhead.
It is unavoidable for parallel computation, but sequential code has no such overhead.

• Insufficient parallelism. At the extreme, consider that an entirely sequential program obviously
has a speedup plateau: selfspeedup(P ) ≈ 1 regardless of P . More generally, many problems are
difficult to parallelize and may not be able to expose a sufficient number of parallel tasks to keep
all processors happy. We will study this issue in particular in great detail throughout the course.

To measure speedups, we often use speedup plots. An example speedup plot is shown in Figure 1.

Scheduling
We have thrown around some intuitive terms (tasks, processors, assigning tasks to processors, etc.),
but it is time to make this more precise.

A useful model is the DAG model, where we model the execution of a parallel program in terms
of a directed acyclic graph (DAG). We often refer to this graph as a computation graph. Each
vertex in the graph represents a group of instructions that were executed sequentially, without any
synchronization. Edges in the graph represent dependencies.
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Figure 1: Example speedup plot
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For example, execution of the code ForkJoin.par(fn () => 1+2, fn () => 3+4) can be modeled
as the following DAG, with edges pointing from top to bottom. Here, I am labeling the two middle
vertices by the expressions they compute, for clarity.

* (fork)
/ \

/ \
1+2 3+4

\ /
\ /
* (join)

The vertex at the top is known as a fork vertex; this vertex shows that the computation splits (forks)
into two computations. Every fork vertex has a corresponding join vertex. The join vertex does not
execute until after both of the inner computations have finished, hence the two incoming edges.

A larger example is shown in Figure 2. In this example, we draw the computation graph corresponding
to an execution of Ex.fib(4) from Ex.sml in the accompanying code from lecture.

With a computation graph in hand, we can now imagine scheduling the graph, specifically by assigning
vertices to processors. This assignment has to respect the dependencies in the graph: for every edge a
-> b in the graph, we cannot assign b to a processor until after a has been assigned to a processor on
a previous time step.

A simple strategy which is extremely effective in practice is to assign vertices greedily. This is known
as the greedy scheduling principle:

Greedy scheduling principle. If a vertex is ready to be assigned, then no processor
should be idle.

For the example computation graph we considered earlier, we can construct a greedy schedule by
adhering to the greedy scheduling principle at every time step. Assuming each vertex takes a single
unit of time to execute, a 2-processor greedy schedule is shown in Figure 3. There are 13 vertices in
the graph, and this particular 2-processor greedy schedule finishes in 8 units of time. Abstractly, this
would correspond to a 2-processor self-speedup of 13/8 = 1.625.
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Figure 2: Computation graph for fib(4). Vertices are labeled with the expressions they compute, for
clarity.
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Figure 3: Greedy 2-processor schedule of an example computation graph. There are 13 vertices, which
would have taken a single processor 13 time steps. With 2 processors, we complete the execution using
only 8 time steps. This (abstractly) yields a 2-processor self-speedup of 13/8 = 1.625.
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