
TypeDis: A Type System for Disentanglement

ALEXANDRE MOINE, New York University, USA

STEPHANIE BALZER, Carnegie Mellon University, USA

ALEX XU, Carnegie Mellon University, USA

SAMWESTRICK, New York University, USA

Disentanglement is a runtime property of parallel programs guaranteeing that parallel tasks remain oblivious

to each other’s allocations. As demonstrated in the MaPLe compiler and run-time system, disentanglement

can be exploited for fast automatic memory management, especially task-local garbage collection with no

synchronization between parallel tasks. However, as a low-level property, disentanglement can be difficult to

reason about for programmers. The only means of statically verifying disentanglement so far has been DisLog,

an Iris-fueled variant of separation logic, mechanized in the Rocq proof assistant. DisLog is a fully-featured

program logic, allowing for proof of functional correctness as well as verification of disentanglement. Yet its

employment requires significant expertise and per-program proof effort.

This paper explores the route of automatic verification via a type system, ensuring that any well-typed

program is disentangled and lifting the burden of carrying out manual proofs from the programmer. It

contributes TypeDis, a type system inspired by region types, where each type is annotated with a timestamp,

identifying the task that allocated it. TypeDis supports iso-recursive types as well as polymorphism over both

types and timestamps. Crucially, timestamps are allowed to change during type-checking, at join points as

well as via a form of subtyping, dubbed subtiming. The paper illustrates TypeDis and its features on a range of

examples. The soundness of TypeDis and the examples are mechanized in the Rocq proof assistant, using an

improved version of DisLog, dubbed DisLog2.

CCS Concepts: • Software and its engineering → Parallel programming languages; • Theory of
computation→ Type theory; Separation logic.

Additional Key Words and Phrases: disentanglement, parallelism, type system, separation logic

ACM Reference Format:
Alexandre Moine, Stephanie Balzer, Alex Xu, and SamWestrick. 2026. TypeDis: A Type System for Disentangle-

ment. Proc. ACM Program. Lang. 10, POPL, Article 13 (January 2026), 30 pages. https://doi.org/10.1145/3776655

1 Introduction
A recent line of work has identified a key memory property of parallel programs called disen-
tanglement [Acar et al. 2015; Arora et al. 2024, 2021, 2023; Guatto et al. 2018; Moine et al. 2024;

Raghunathan et al. 2016; Westrick et al. 2022, 2020]. Roughly speaking, disentanglement is the prop-

erty that concurrent tasks remain oblivious to each other’s memory allocations. As demonstrated

by the MaPLe compiler [Acar et al. 2020], this property makes it possible to perform task-local

memory management (allocations and garbage collection) independently, in parallel, without

any synchronization between concurrent tasks. MaPLe in particular features a provably efficient

memory management system for a dialect of Parallel ML—a parallel functional programming

Authors’ Contact Information: AlexandreMoine, alexandre.moine@nyu.edu, NewYork University, NewYork, USA; Stephanie

Balzer, balzers@cs.cmu.edu, Carnegie Mellon University, Pittsburgh, USA; Alex Xu, alexxu@andrew.cmu.edu, Carnegie

Mellon University, Pittsburgh, USA; Sam Westrick, shw8119@nyu.edu, New York University, New York, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART13

https://doi.org/10.1145/3776655

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0002-8347-3529
https://orcid.org/0009-0003-6455-9217
https://orcid.org/0000-0003-2848-9808
https://doi.org/10.1145/3776655
https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0002-8347-3529
https://orcid.org/0000-0002-8347-3529
https://orcid.org/0009-0003-6455-9217
https://orcid.org/0000-0003-2848-9808
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776655
https://www.acm.org/publications/policies/artifact-review-and-badging-current

13:2 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

let r = ref ""
let rec write_max x =

let current = !r in
if x <= current || compare_and_swap r current x
then () else write_max x

let entangled =
par(fun () -> write_max (Int.to_string 1234),

fun () -> write_max (Int.to_string 5678))

r “”

“1234”

let current = !r in …

“5678”

task-local
heap
heap
object
pointer

Fig. 1. Entanglement example

language—and offers competitive performance in practice relative to low-level parallel code written

in languages such as C/C++ [Arora et al. 2023].

This line of work aims to gain control over the synchronization costs of parallel garbage collection

by taking advantage of structured fork-join parallelism. The idea is to synchronize the garbage

collector only at application-level forks and joins, thereby making these synchronization costs

predictable at the source level, and avoiding the need for any global synchronization of the garbage

collector. At each fork and join, the runtime system performs𝑂 (1) work to maintain a dynamic tree

of heaps which mirrors the parent/child relationships between tasks. Each task thus has its own task-

local heap, in which it allocates memory objects and may perform garbage collection independently,

in parallel. The independence of these task-local garbage collections hinges upon disentanglement,
which can be defined as a “no cross-pointers” invariant. Specifically, disentanglement allows for up-
pointers from descendant heaps to ancestors, as well as down-pointers from ancestors to descendants,

but disallows cross-pointers between concurrent tasks (siblings, cousins, etc.). The existence of

cross-pointers is called entanglement. When two tasks become entangled with a cross-pointer,

neither task can perform garbage collection without synchronizing with the other. These additional

synchronizations lead to significant performance degradations [Arora et al. 2023], and in this sense,

entanglement is a performance hazard.

Entanglement arises from a particular communication pattern, where one task allocates a local

heap object and then another task (executing concurrently, relative to the first task) acquires a

pointer to the object. An example is shown in Figure 1. The example uses the fork-join primitive

par(f1,f2) to execute two functions in parallel; these two function calls correspond to two child

tasks. In the example, the two child tasks perform write_max concurrently, both attempting to

update r to point to a locally allocated string. After one task finishes, the other task reads the

updated r and acquires a cross-pointer, which constitutes entanglement.

As shown below, this example could be rewritten to be disentangled by moving the allocations

of the strings “up” into the parent task (making all pointers involved up-pointers).

... (* same definitions of r and write_max, as in Figure 1 *) ...
let disentangled =
let a = Int.to_string 1234 in let b = Int.to_string 5678 in
par(fun () -> write_max a, fun () -> write_max b)

Preventing entanglement. One way to rule out entanglement is to disallow side effects entirely.

Indeed, the original study of disentanglement emerged out of an interest in improving the perfor-

mance of parallel functional programming techniques, which naturally have a high rate of allocation

and whose scalability and efficiency is largely determined by the performance of automatic memory

management. In this setting, disentanglement is guaranteed by construction due to a lack of side

effects. But the full power of disentanglement lies in its expressivity beyond purely functional

programming—in particular, disentanglement allows for judicious utilization of side effects such as

in-place updates and irregular and/or data-dependent access patterns in shared memory. These side

effects are crucial for efficiency in state-of-the-art implementations of parallel algorithms, such as

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:3

those in the PBBS Benchmark Suite [Abdi et al. 2024; Anderson et al. 2022; Shun et al. 2012], which

have been found to be naturally disentangled [Westrick et al. 2022].

In these more general settings, where there are numerous opportunities to efficiently utilize side

effects, it is easy for a programmer to accidentally entangle concurrent tasks. Ideally, it would be

evident at the source level where entanglement may or may not occur. However, in practice, this is

not the case. To reason about entanglement, the programmer effectively has to know the memory

allocation and access patterns of the entire program. This makes it especially difficult to reason

about higher-order functions, because the memory effects of a function taken as argument are

unknown. Other high-level programming features also complicate the matter, such as parametric

polymorphism which allows for code to be specialized for both “boxed” (heap-allocated) and

“unboxed” types, potentially resulting in entanglement in one case but not the other. These details

can be formally considered using the program logic DisLog [Moine et al. 2024], but verifying

disentanglement using DisLog requires significant expertise and effort, even in small examples.

An interesting question therefore is whether it is possible to guarantee disentanglement statically

through a type system. This would have the advantage of being mostly automatic, requiring (ideally)

only a modest amount of type annotation. Most importantly, a type system would raise the level

of abstraction at which the programmer can reason about disentanglement, clarifying how the

property interacts with high-level abstractions such as parametric polymorphism, higher-order

functions, algebraic datatypes, and other desirable features.

A type system for disentanglement. In this paper, we present TypeDis, the first static type sys-
tem for disentanglement. We intend for TypeDis to be the type system for a high-level ML-like

language with structured fork-join parallelism, in-place atomic operations on shared memory,

and disentangled parallel garbage collection. The language features a single parallel construct,

written par(𝑓1, 𝑓2), which calls 𝑓1 () and 𝑓2 () in parallel, waits for both to complete, and returns their

results as a pair. Here, we think of the execution of the two function calls as two child tasks, which

themselves might execute par(...) recursively, creating a dynamic tree (parent-child) relationship

between tasks.

TypeDis identifies tasks with timestamp variables 𝛿 , and annotates every value computed during

execution with the timestamp of the task that allocated that value. This is tracked explicitly in the

type of the value. For example, 𝑠 : string@𝛿 indicates that the value 𝑠 is a string that was allocated

by a task 𝛿 . The type system implicitly maintains a partial order over timestamps, written 𝛿 ′ ≼ 𝛿 ,

intuitively corresponding to the tree relationship between tasks. Crucially, TypeDis guarantees an

invariant that we call the up-pointer invariant: for every task running at timestamp 𝛿 , every value

accessed by this task must have a timestamp 𝛿 ′ ≼ 𝛿 , i.e., the value must have been allocated “before”

the current timestamp. In other words, the key insight in this paper is to restrict all memory references
to point backwards in time, which is checked statically. This restriction is a deep invariant over

values: every data structure will only contain values allocated at the same timestamp or a preceding

timestamp. As a result, all loads in the language are guaranteed to be safe for disentanglement.

The up-pointer invariant statically rules out one feature of disentanglement: down-pointers. This

restriction is mild, however, because down-pointers are fairly rare. Quantitatively, there has been

at least one relevant study: in their work on entanglement detection, Westrick et al. [2022] observe

in multiple benchmarks that down-pointers do not arise at all, and more broadly they measure that

the number of objects containing down-pointers is small. The creation of a down-pointer requires

a combination of dynamic allocation and pointer indirection, each of which is typically avoided in

parallel performance-sensitive code to reduce memory pressure and improve cache efficiency. In

this paper, we have found the up-pointer invariant to be sufficiently expressive to encode a number

of interesting examples (§6), fully typed within TypeDis, and therefore guaranteed disentangled.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:4 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

The up-pointer invariant is especially well-suited for immutable data (which naturally adheres to

the invariant), as well as parallel batch processing of pre-allocated data. The up-pointer invariant

also allows for structure sharing, even in the presence of mutable state.

Maintaining the up-pointer invariant. To maintain the up-pointer invariant in the presence of

mutable state, TypeDis places a restriction on writes (in-place updates), requiring that the timestamp

of the written value precedes the timestamp of the reference pointing to it. This restriction is

implemented in the type system with a form of subtyping, dubbed subtiming, which affects only

the timestamps of values within their types. The idea is to allow for any value to be (conservatively)

restamped with a newer timestamp. Subtiming makes it possible to express the restriction on writes

as a simple unification over the type of the contents of a mutable reference or array.

Restamping with an older timestamp would be unsound in TypeDis, as it would allow for a

child’s (heap-allocated) value to be written into a parent’s container, potentially making that value

accessible to a concurrent sibling. This is prevented throughout the type system, except in one

place: at the join point of par. At this point, the two sub-tasks have completed and their parent

inherits the values they allocated. To allow the parent task to access these values, TypeDis restamps

the result of par with the timestamp of the parent. We dub this operation backtiming.
TypeDis features first-class function types (𝛼 →𝛿 𝛽), annotated by a timestamp variable 𝛿 ,

indicating which task the function may be called by. Timestamp variables can be universally

quantified, effectively allowing for timestamp polymorphism. For example, pure functions that

have no side-effects are type-able as (∀𝛿. 𝛼 →𝛿 𝛽), indicating that the function may be safely called

by any task. TypeDis also allows for constrained timestamp polymorphism. For example, a

function of type (∀𝛿 ′ ≼ 𝛿. string@𝛿 ′ →𝛿 ()) only accepts as argument strings timestamped at

some 𝛿 ′ that precede the timestamp 𝛿 of the calling task. Typically, such constraints arise from the

use of closures, especially those that close over mutable state.

Soundness. The soundness of TypeDis is verified in the Rocq prover (the new name of the Coq

proof assistant) on top of the Iris higher-order concurrent separation logic framework [Jung et al.

2018b]. We use the approach of semantic typing [Constable et al. 1986; Martin-Löf 1982; Timany et al.

2024], and define a logical relation targeting a variation of DisLog [Moine et al. 2024], from which

we reuse the technical parts. As illustrated by RustBelt [Jung et al. 2018a], semantic typing facilitates

manual verification of programs that are correct (e.g. disentangled), but ill-typed, by carrying out a

logical relation inhabitation proof using the program logic—overcoming incompleteness inherent

to any type system. For example, in the case of TypeDis, this allows the user to verify part of the

code that use down-pointers.

We note that, similar to many other type systems (such as those in OCaml and Haskell), TypeDis

relies on dynamic checks in the operational semantics to enforce memory safety for out-of-bounds

(OOB) array accesses. The formal statement of soundness (§5.1) therefore explicitly distinguishes

between three kinds of program states: those that have terminated, those that can step, and those

that are stuck due to OOB. The soundness theorem states that all executions of programs typed

within TypeDis always remain disentangled throughout execution.

Contributions. Our contributions include:
• TypeDis, the first static type system for disentanglement. It includes the notion of a timestamp

to track which object is accessible by which task. TypeDis offers (iso-)recursive types as well

as polymorphism over types and over timestamps. Moreover, TypeDis supports polymorphic

recursion over timestamps, and offers a relaxation of the value restriction.

• Two mechanisms to update a timestamp annotation: via subtiming, a form of subtyping, and

specifically at join points via the new operation of backtiming.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:5

• A new model for disentanglement with cyclic computation graphs. We prove this model

equivalent to the standard one and explain why it is more amenable to verification.

• A soundness proof of TypeDis mechanized in the Rocq prover using the Iris framework. We

use semantic typing [Timany et al. 2024] and DisLog2, an improved version of DisLog.

• A range of case studies, including building and iterating over an immutable tree in parallel,

as well the challenging example of deduplication via concurrent hashing.

2 Key Ideas
In this section, we cover the key ideas of our work. We start by recalling the definition of disen-

tanglement (§2.1). We then present the main idea of TypeDis: adding task identifiers, specifically

timestamp variables, to types (§2.2). Based on examples, we then illustrate two core principles of

TypeDis, allowing for updating timestamps within types: backtiming (§2.3) and subtiming (§2.4).

2.1 Preliminaries
Nested fork-join parallelism and task trees. We consider programs written in terms of a single

parallel primitive: par(𝑓1, 𝑓2), which creates two new child tasks 𝑓1 () and 𝑓2 () to execute in parallel,

waits for both of the child tasks to complete, and then returns the results of the two calls as an

immutable pair. Creating the two child tasks is called a fork, and waiting for the two children

to complete is called a join. The behavior of the par primitive guarantees that every fork has a

corresponding join. Any task may (recursively) fork and join, facilitating nested parallelism and

giving rise to a dynamic tree during execution called the task tree. The nodes of the task tree

correspond to (parent) tasks that are waiting for their children to join, and the leaves of the task

tree correspond to tasks which may actively take a step. Whenever two sibling tasks join, the

children are removed from the tree and the parent resumes as a leaf task. The task tree therefore

dynamically grows and shrinks as tasks fork and join. In this paper, we will use the letter 𝑡 to

denote tasks (leaves of the task tree), and will equivalently refer to these as timestamps.

Computation graphs. The evolution of the task tree over time can be recorded as a computation
graph, where vertices correspond to tasks and edges correspond to scheduling dependencies. The

computation graph records not just the current task tree, but also the history of tasks that have

joined. When a task 𝑡 forks into two children 𝑡1 and 𝑡2, two edges (𝑡, 𝑡1) and (𝑡, 𝑡2) are added to the

graph; later when 𝑡1 and 𝑡2 join, two edges (𝑡1, 𝑡) and (𝑡2, 𝑡) are added to the graph. We say that

𝑡 precedes 𝑡 ′ in graph 𝐺 and write 𝐺 ⊢ 𝑡 ≼ 𝑡 ′, when there exists a sequence of edges from 𝑡 to 𝑡 ′.
Note that ≼ is reflexive. Two tasks are concurrent when neither precedes the other.

Cyclic versus standard computation graphs. We contribute a new definition of computation graphs,

which we call the cyclic approach, that differs slightly from the standard presentation used in

prior work [Acar et al. 2016; Moine et al. 2024; Westrick et al. 2020]. The standard approach is to

use a fresh task identifier at each join point, effectively renaming the resumed parent task. In the

cyclic approach, we instead use the same task identifier after the join point. Figure 2 illustrates

the difference between the two approaches. It presents two computation graphs representing the

same computation: Figure 2a shows the standard approach, and Figure 2b shows the (new) cyclic

approach. The distinction occurs when two tasks join. In Figure 2a tasks 𝑡3 and 𝑡4 join and form a

new task 𝑡 ′
2
whereas in Figure 2b the two tasks join by going back to task 𝑡2. This distinction occurs

again when 𝑡 ′
2
(resp. 𝑡2) join to form 𝑡 ′

0
(resp. 𝑡0).

The cyclic approach considerably reduces the need to manipulate timestamps, not only in our

proofs (for example the soundness proof of backtiming), but also in the design of the type system

itself as well as in the underlying program logic (§5.3). We prove the two approaches equivalent

for the purpose of verifying disentanglement [Moine et al. 2025a]. Intuitively, the two approaches

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:6 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

𝑡0

𝑡1

𝑡2

𝑡3

𝑡4

𝑡 ′
2

𝑡 ′
0

𝑡5

𝑡6

(a) Standard computation graph

𝑡0

𝑡1

𝑡2

𝑡3

𝑡4 𝑡5

𝑡6

(b) Equivalent “cyclic” approach used in this paper

Fig. 2. Comparison of two computation graphs equivalent for disentanglement

are equivalent because we never need to check reachability between two tasks that have both

completed. We have formally proven this equivalence with a simulation theorem: every reduction

in the semantics with the standard approach implies the existence of a reduction with the same

scheduling reaching the same expression in the semantics with the cyclic approach, and vice-versa.

Moreover, if one state is disentangled in one semantics, so it is in the other.

Roots. At any moment, every task has a set of task-local roots which are the memory locations

directly mentioned within a subexpression of that task. For example, the expression ‘let𝑥 =

(ℓ1, ℓ2) in fst(𝑥)’ has roots {ℓ1, ℓ2}, where (formally) ℓ1 and ℓ2 are locations within the memory store.

Note that the roots of a task change over time: for example, the above expression eventually steps

to ℓ1 at which point it only has one root, {ℓ1}. The set of roots can grow due to allocations and

loads from memory.

Disentanglement. Disentanglement restricts the set of possible task-local roots. A program state
is disentangled if each root of a task has been allocated by some preceding task. More

precisely, a program state with a computation graph 𝐺 is disentangled if, for a root ℓ of a task 𝑡 , ℓ

has been allocated by a task 𝑡 ′ such that 𝐺 ⊢ 𝑡 ′ ≼ 𝑡 , that is, such that 𝑡 ′ precedes 𝑡 in 𝐺 . Following
the computation graph definition, preceding tasks include 𝑡 itself, parent tasks, but also children

tasks that have terminated. The formal definition of disentanglement appears in Section 3.3.

TypeDis, the type system we present, verifies that a program is disentangled, that is, every

reachable program state is disentangled.

2.2 TypeDis 101: Timestamps in Types
In order to keep track of which task allocated which location, TypeDis incorporates timestamps in

types. More precisely, every heap-allocated (“boxed”) type is annotated by a timestamp variable,
written 𝛿 , which can be understood as the timestamp of the task that allocated the underlying

location. For example, a reference allocated by task 𝛿 on an (unboxed) integer has type ref(int)@𝛿 .

Timestamp polymorphism. Functions in TypeDis are annotated by a timestamp variable, re-

stricting which task they may run on. Such a variable can be universally quantified, allowing for

functions to be run by different tasks. For example, consider the function fun x -> newref(x)
which allocates a new mutable reference containing an integer x. This function can be given the

type ∀𝛿. int→𝛿 ref(int)@𝛿 . The superscript 𝛿 on the arrow indicates that the function must run

on a task at timestamp 𝛿 , and the result type ref(int)@𝛿 indicates that the resulting reference will

be allocated at the same timestamp 𝛿 . By universally quantifying 𝛿 , the function is permitted to

run on any task, with the type system tracking that the resulting reference will be allocated at the

same timestamp as the caller.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:7

newref : ∀𝛼.∀𝛿. 𝛼 →𝛿 ref(𝛼)@𝛿
get : ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ →𝛿 𝛼

set : ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ → 𝛼 →𝛿 ()
Fig. 3. Example: typing reference primitives

let r = newref "hello" 𝑟 : ref(string@𝛿0)@𝛿0
let w = "world" 𝑤 : string@𝛿0
let f () = set r w 𝑓 : (∀𝛿. () →𝛿 ())@𝛿0
let g i = 𝑔 : (int→𝛿0 ())@𝛿0

set r (Int.to_string i)
Fig. 4. Example: typing closures

type tree@𝛿 = (int + (tree@𝛿 × tree@𝛿)@𝛿)@𝛿
let leaf x = inj1 x leaf : (∀𝛿. int→𝛿 tree@𝛿)@𝛿0
let node x y = inj2 (x,y) node : (∀𝛿. tree@𝛿 → tree@𝛿 →𝛿 tree@𝛿)@𝛿0
let rec build n x = build : (∀𝛿. int→ int→𝛿 tree@𝛿)@𝛿0

if n <= 0 then leaf x else
let n' = n - 1 in
let (l,r) = par (fun () -> build n' x) (fun () -> build n' (x + pow2 n')) in
node l r

Fig. 5. Example: building a tree in parallel

Type polymorphism. TypeDis allows type variables 𝛼 to be universally quantified. Using type poly-

morphism, we can now give the function fun x -> newref(x) the more general type∀𝛼.∀𝛿. 𝛼 →𝛿

ref(𝛼)@𝛿 , indicating that it is polymorphic in the type 𝛼 of the contents of the mutable reference.

Corresponding get and set primitives for mutable references are then typed as shown in Figure 3,

all of which are polymorphic in the type variable 𝛼 . For functions with multiple arguments, such as

set, we adopt the notational convention to only specify the timestamp variable on the last arrow.

The up-pointer invariant. In Figure 3, the type of get is given as ∀𝛼.∀𝛿 𝛿 ′ . ref(𝛼)@𝛿 ′ →𝛿 𝛼 .

Note that this type is parameterized over both a caller time 𝛿 as well as a (potentially different)

timestamp 𝛿 ′ associated with the input reference. Intuitively, this type specifies that get is safe to
call at any moment, by any task, with any reference given as argument. The design of TypeDis

in general guarantees that all loads from memory, both mutable and immutable, are always safe.

Specifically, this is guaranteed by enforcing an invariant that we call the up-pointer invariant:
all data structures in the language may only contain values allocated at the same timestamp or a

preceding timestamp. For example, given two non-equal timestamps 𝛿1 and 𝛿2 where 𝛿1 ≺ 𝛿2, the
type ref(ref(int)@𝛿1)@𝛿2 is valid, but ref(ref(int)@𝛿2)@𝛿1 is not.

Closures. In TypeDis, functions are first-class values and may be passed as arguments to other

functions, or stored in data structures, etc. Function values are implemented as heap-allocated

closures [Appel 1992; Landin 1964], and must be given a timestamp indicating when they were

allocated. For example, consider the definition of function 𝑓 in Figure 4, which closes over a mutable

reference 𝑟 and an immutable string𝑤 , both allocated at timestamps 𝛿0 which (in this example) is

the timestamp of the current task. We can give 𝑓 the type (∀𝛿. () →𝛿 ())@𝛿0, indicating that 𝑓

itself was allocated at timestamp 𝛿0. Additionally, the type of 𝑓 specifies that it may be freely called

at any timestamp; this is safe for disentanglement because 𝑓 preserves the up-pointer invariant,

regardless of when it will be called. Contrast this with the definition of function 𝑔, which (when

called) allocates a new string and writes this string into the reference 𝑟 . If 𝑔 were called at some

timestamp 𝛿1 where 𝛿0 ≺ 𝛿1, then this would violate the up-pointer invariant for 𝑟 . The function 𝑔

does however admit the type (int→𝛿0 ())@𝛿0, indicating that 𝑔 may be safely called only by tasks

at time 𝛿0 (the same timestamp as the reference 𝑟).

2.3 Backtiming the Result of a par
As explained earlier (§2.1), we consider in this paper the parallel primitive par(...), which executes

two closures in parallel and returns their result as an immutable pair. The par primitive can be

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:8 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

let rec selectmap p f t = selectmap : (∀𝛿 𝛿𝑝 𝛿 𝑓 𝛿𝑡 . (∀𝛿 ′ . int→𝛿 ′ bool)@𝛿𝑝
match t with → (∀𝛿 ′ . int→𝛿 ′ int)@𝛿 𝑓
| inj1 x -> if p x then leaf (f x) else t → tree@𝛿𝑡 →𝛿 tree@𝛿)@𝛿0
| inj2 (l,r) ->
let (nl,nr) = par (fun () -> selectmap p f l) (fun () -> selectmap p f r) in
if nl == l && nr == r then t else node nl nr

Fig. 6. Example: the selectmap function

used to build data structures in parallel. Consider the code presented in Figure 5. The recursive

type tree@𝛿 = (int + (tree@𝛿 × tree@𝛿)@𝛿)@𝛿 describes a binary tree with integer leaves. It

consists of an immutable sum of either an integer (a leaf) or a product of two subtrees (a node). All

the parts of a tree are specified in the type to have been allocated at the same timestamp 𝛿 . A leaf is

built with the first injection, and a node with the second injection. The function build n x builds

in parallel a binary tree of depth 𝑛, with leaves labeled from 𝑥 to 𝑥 + 2𝑛 − 1 in left-to-right order.

TypeDis type-checks build with the type ∀𝛿. int → int →𝛿 tree@𝛿 . The reader may be

surprised: we announced that the type tree@𝛿 has all of its parts allocated at the same timestamp 𝛿 ,

but we are showing a function that builds a tree in parallel, hence with some parts allocated by

different tasks at different timestamps. What’s the trick?

The key observation is that we can pretend that the objects allocated by a completed sub-task
were instead allocated by its parent. Indeed, disentanglement prevents sharing of data allocated in

parallel, but as soon as the parallel phase has ended, there is no restriction anymore!

In TypeDis, the par primitive implements backtiming, meaning that it replaces the timestamp

of the child task by the timestamp of the parent task in the return type of the closures executed in

parallel. Indeed, the par primitive admits the following, specialized for build, type:

∀𝛿 𝛿𝑙 𝛿𝑟 . (∀𝛿 ′ . () →𝛿 ′ tree@𝛿 ′)@𝛿𝑙 → (∀𝛿 ′ . () →𝛿 ′ tree@𝛿 ′)@𝛿𝑟 →𝛿 (tree@𝛿 × tree@𝛿)@𝛿
This type for par does exactly what we need: it returns the result of the two closures in a pair as if

they were called at time 𝛿 . Backtiming is a powerful feature: it reduces parallelism to almost an

implementation detail. Indeed, the type of build does not reveal its internal use of parallelism.

2.4 Making Something New out of Something Old with Subtiming
A common practice (especially in functional programming) is data structural sharing, where
components of an old structure are reused inside part of a new structure. In the context of TypeDis,

data structural sharing is interesting in that it mixes data of potentially different timestamps within

the same structure. Here we consider one such example and describe a key feature of TypeDis

which enables such “mixing” of timestamps.

Figure 6 presents the selectmap p f t function, which selectively applies the function f to

the leaves of the tree t, following a predicate p on integers. The selectmap function traverses the

tree in parallel and crucially preserves sharing as much as possible. Specifically, when none of the

leaves of the tree satisfy the predicate, the function returns the original input tree as-is, instead of

building another identical tree. To type this function in TypeDis, it may not be immediately clear

what the timestamp of the resulting tree should be: selectmap might directly return the argument

passed as argument (potentially coming from an older task), or it might return a new tree. TypeDis

type-checks selectmap with the type

∀𝛿 𝛿𝑝 𝛿 𝑓 𝛿𝑡 . (∀𝛿 ′ . int→𝛿 ′ bool)@𝛿𝑝 → (∀𝛿 ′ . int→𝛿 ′ int)@𝛿 𝑓 → tree@𝛿𝑡 →𝛿 tree@𝛿

This type universally quantifies over 𝛿 (the timestamp at which selectmap will run), 𝛿𝑝 and 𝛿 𝑓 (the

timestamps of the two closure arguments), and 𝛿𝑡 (the timestamp of the tree argument). Crucially,

the result is of type tree@𝛿 , as if the whole result tree was allocated by 𝛿 . What’s the trick?

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:9

Values 𝑣,𝑤 ::= () | 𝑏 ∈ {true, false} | 𝑖 ∈ Z | ℓ ∈ L | vfold 𝑣
Blocks 𝑟 ::= ®𝑤 | (𝑣, 𝑣) | inj𝜄∈{0,1} 𝑣 | 𝜇𝑓 . 𝜆®𝑥 . 𝑒
Primitives ⊲⊳ ::= + | − | × | ÷ | mod | == | < | ≤ | > | ≥ | ∨ | ∧
Expressions 𝑒 ::= 𝑣 | 𝑥 ∈ V | let𝑥 = 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | 𝑒 ⊲⊳ 𝑒

| 𝜇𝑓 . 𝜆®𝑥 . 𝑒 | 𝑒 ®𝑒 closures
| (𝑒, 𝑒) | proj𝜄∈{1,2} 𝑒 pairs
| inj𝑖∈{1,2} 𝑒 | match 𝑒 with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end sums

| alloc 𝑒 𝑒 | 𝑒.[𝑒] | 𝑒.[𝑒]←𝑒 | length 𝑒 arrays
| fold 𝑒 | unfold 𝑒 iso-recursive types
| par(𝑒, 𝑒) | 𝑒 ∥ 𝑒 | CAS 𝑒 𝑒 𝑒 𝑒 parallelism and concurrency

Contexts 𝐾 ::= let𝑥 = □ in 𝑒 | if□ then 𝑒 else 𝑒 | alloc □ 𝑒 | alloc 𝑣 □ | length□
| □.[𝑒] | 𝑣 .[□] | □.[𝑒]←𝑒 | 𝑣 .[□]←𝑒 | 𝑣 .[𝑣]←□
| □ ⊲⊳ 𝑒 | 𝑣 ⊲⊳ □ | □ ®𝑒 | 𝑣 (®𝑣 ++ □ ++ ®𝑒) | fold□
| unfold□ | (□, 𝑒) | (𝑣,□) | proj𝜄 □ | inj𝑖 □
| match□with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end | par(□, 𝑒) | par(𝑣,□)

| CAS□ 𝑒 𝑒 𝑒 | CAS 𝑣 □ 𝑒 𝑒 | CAS 𝑣 𝑣 □ 𝑒 | CAS 𝑣 𝑣 𝑣 □

Fig. 7. Syntax of DisLang2. Constructs in blue are runtime-level.

TypeDis supports subtiming, that is, a way of “advancing” timestamps within a type, following

the precedence. The rules of subtiming are as follows. For amutable type (e.g. an array or a reference),

subtiming is shallow: the outermost timestamp can be updated, but not the inner timestamps; this

is due to well-known variance issues [Pierce 2002, §15]. For an immutable type (e.g. products and

sums), subtiming is deep: any timestamp within the type can be advanced, as long as the up-pointer

invariant is preserved.

For selectmap, we need to use deep subtiming on the recursive immutable type tree@𝛿𝑡 in
order to update it to tree@𝛿 . How can we be sure that 𝛿𝑡 , the timestamp of the tree, precedes 𝛿 , the

timestamp at which we call selectmap? We unveil a key invariant of TypeDis: every timestamp of

every memory location in scope precedes the “current” timestamp, that is, the timestamp of the

task executing the function. In our case the current timestamp is precisely 𝛿 . We hence deduce that

𝛿𝑡 precedes 𝛿 , allowing us to use subtiming to “restamp” the value 𝑡 : tree@𝛿𝑡 as 𝑡 : tree@𝛿 .
To allow the user to express additional knowledge about the dependencies between timestamps,

TypeDis annotates universal timestamp quantification with a set of constraints, which are supposed

to hold while typing the function body, and are verified at call sites. For example, the following

function let par' f g = ignore (par f g) that executes two closures f and g from unit to

unit in parallel and ignores the result can be given the type:

∀𝛿 𝛿1 𝛿2. (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ ())@𝛿1 → (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ ())@𝛿2 →𝛿 ()

This type says that, if par' gets called at timestamp 𝛿 with arguments 𝑓 and 𝑔, then 𝑓 and 𝑔 can

assume that they will be called at timestamp 𝛿 ′ such that 𝛿 ≼ 𝛿 ′. These constraints are discussed in

Section 4, and the fully general type of par is presented in Section 4.6.

3 Syntax and Semantics
The formal language we study, dubbed DisLang2, can be understood as an extension of DisLang,

the language studied by Moine et al. [2024]. DisLang2 adds support for immutable pairs and sums,

iso-recursive types, and directly offers the par primitive for fork-join parallelism. We present the

syntax of DisLang2 (§3.1), its semantics (§3.2), and the formal definition of disentanglement (§3.3).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:10 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

3.1 Syntax
The syntax of DisLang2 appears in Figure 7. The constructs in blue are forbidden in the source

program and occur only at runtime.

A value 𝑣 ∈ V can be the unit value (), a boolean 𝑏 ∈ {true, false}, an idealized integer 𝑖 ∈ Z, a
memory location ℓ ∈ L, where L is an infinite set of locations, or a folded value vfold 𝑣 , witnessing
our use of iso-recursive types [Pierce 2002, §20].

A block describes the contents of a heap cell, amounting to either an array of values, written ®𝑤 ,

an immutable pair (𝑣, 𝑣), the first injection inj
1
𝑣 or the second injection inj

2
𝑣 of an immutable sum,

or a 𝜆-abstraction 𝜇𝑓 . 𝜆®𝑥 . 𝑒 . Lambdas can close over free variables, compilers of functional languages

usually implement them as closures [Appel 1992; Landin 1964]. A closure is a heap-allocated object

carrying a code pointer as well as an environment, recording the values of the free variable. Thus,

acquiring a closure can create entanglement. Moreover, because functions and tuples are heap

allocated, currying and uncurrying—that is, converting a function taking multiple arguments to a

function taking a tuple of arguments and vice-versa—does not come for free. Hence, we chose to

support a version of the language were every function takes possibly multiple arguments. Closure

allocation is written 𝜇𝑓 . 𝜆®𝑥 . 𝑒 . This notation binds a recursive name 𝑓 , argument names ®𝑥 in the

expression 𝑒 . A function call is written 𝑒 ®𝑒 .
In DisLang2, fork-join parallelism is available via the parallel primitive par(𝑒1, 𝑒2), which re-

duces 𝑒1 and 𝑒2 to closures, calls them in parallel, and returns their result as an immutable pair. This

parallel computation is represented by the active parallel pair 𝑒1 ∥ 𝑒2, appearing only at runtime.

DisLang2 supports a compare-and-swap instruction CAS 𝑒 𝑒 𝑒 𝑒 , which targets an array, and is

parameterized by 4 arguments: the location of the array, the index in the array, the old value and

the new value. A (sequential) evaluation context 𝐾 describes a term with a hole, written □. The
syntax of evaluation contexts dictates a left-to-right call-by-value evaluation strategy. Note that

evaluation contexts 𝐾 in this presentation are sequential. Specifically, we intentionally excluded

active parallel pairs (− ∥ −) from the grammar of 𝐾 . The evaluation strategy for active parallel

pairs allows for interleaving of small steps, which is handled separately by a “scheduler reduction”

relation in the operational semantics (§3.2).

3.2 Operational Semantics
Head reduction relation. A head configuration 𝜎 \𝛼 \𝑒 is composed of a store 𝜎 , an allocation

map 𝛼 , and an expression 𝑒 . The store 𝜎 represents the heap and consists of a finite map of locations

to blocks. The allocation map 𝛼 is a finite map of locations to timestamps, recording the timestamps

at which locations were allocated. Figure 8 presents parts of the definition of the head reduction

relation between two head configurations 𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎 ′ \𝛼 ′ \𝑒′ occurring at the (local)
task of timestamp 𝑡 in the (global) computation graph 𝐺 . A head configuration consists of the

expression 𝑒 being evaluated, the store 𝜎 , and an allocation map 𝛼 . Figure 8 omits rules for the

length array primitive as well as the atomic compare-and-swap on arrays.

We write 𝜎 (ℓ) to denote the block stored at the location ℓ in the store 𝜎 . We write [ℓ := 𝑟]𝜎 for

the insertion of block 𝑟 at location ℓ in 𝜎 . Note that only arrays can be updated; closures, pairs and

sums are immutable. We write ®𝑤 (𝑖) to refer to the index 𝑖 of an array ®𝑤 . We write [𝑖 := 𝑣] ®𝑤 for

an update to an array, and we similarly write [ℓ := 𝑡]𝛼 for an insertion in the allocation map. We

write 𝑣𝑛 for an array of length 𝑛, where each element of the array is initialized with the value 𝑣 .

HeadAlloc allocates an array, extending the store and the allocation map. HeadLoad acquires

the value 𝑣 from an index of an array. HeadStore, HeadLetVal, HeadIfTrue and HeadIfFalse

are standard. HeadClosure allocates a closure and HeadCall calls a closure. HeadCallPrim

calls a primitive, whose result is computed at the meta-level by the
pure−−−→ relation. HeadPair and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:11

HeadAlloc

0 < 𝑛 ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \alloc 𝑛 𝑣 −→ [ℓ := 𝑣𝑛]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ .[𝑖] −→ 𝜎 \𝛼 \𝑣

HeadStore

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ .[𝑖]←𝑣 −→ [ℓ := [𝑖 := 𝑣] ®𝑤]𝜎 \𝛼 \ ()

HeadLetVal

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ let𝑥 = 𝑣 in 𝑒 −→ 𝜎 \𝛼 \ [𝑣/𝑥]𝑒

HeadIfTrue

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if true then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒1
HeadIfFalse

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ if false then 𝑒1 else 𝑒2 −→ 𝜎 \𝛼 \𝑒2
HeadClosure

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝜇𝑓 . 𝜆®𝑥 . 𝑒 −→ [ℓ := 𝜇𝑓 . 𝜆®𝑥 . 𝑒]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadCall

𝜎 (ℓ) = 𝜇𝑓 . 𝜆®𝑥 . 𝑒 | ®𝑥 | = | ®𝑤 |
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ ℓ ®𝑤 −→ 𝜎 \𝛼 \ [ℓ/𝑓] [®𝑤/®𝑥]𝑒

HeadCallPrim

𝑣1 ⊲⊳ 𝑣2
pure−−−→ 𝑣

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑣1 ⊲⊳ 𝑣2 −→ 𝜎 \𝛼 \𝑣

HeadPair

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ (𝑣1, 𝑣2) −→ [ℓ := (𝑣1, 𝑣2)]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadProj

𝜎 (ℓ) = (𝑣1, 𝑣2)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \proj𝜄 ℓ −→ 𝜎 \𝛼 \𝑣𝜄

HeadInj

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼)
𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ inj𝑖 𝑣 −→ [ℓ := inj𝑖 𝑣]𝜎 \ [ℓ := 𝑡]𝛼 \ ℓ

HeadCase

𝜎 (ℓ) = inj𝜄 𝑣

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ (match ℓ with inj
1
𝑥1 ⇒ 𝑒1 | inj2 𝑥2 ⇒ 𝑒2 end) −→ 𝜎 \𝛼 \ [𝑣/𝑥𝜄]𝑒𝜄

HeadFold

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \ fold 𝑣 −→ 𝜎 \𝛼 \vfold 𝑣
HeadUnfold

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \unfold (vfold 𝑣) −→ 𝜎 \𝛼 \𝑣

Fig. 8. Head reduction (selected rules)

HeadProj allocate and project immutable pairs, respectively. HeadInj and HeadCase allocate and

case over immutable sums, respectively. HeadFold and HeadUnfold handle iso-recursive types

in a standard way.

Scheduler reduction relation. In order to keep track of the timestamp of each task and whether the

task is activated or suspended, we followWestrick et al. [2020] and enrich the semantics with an aux-

iliary structure called a task tree, written 𝑇 , of the following formal grammar: 𝑇 ≜ 𝑡 ∈ T | 𝑇 ⊗𝑡 𝑇 .
A leaf 𝑡 indicates an active task denoted by its timestamp. A node 𝑇1 ⊗𝑡 𝑇2 represents a suspended
task 𝑡 that has forked two parallel computations, recursively described by the task trees 𝑇1 and 𝑇2.

Figure 9 presents the scheduling reduction relation 𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎 ′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′ as
either a head step, a fork, or a join. In this reduction relation, 𝜎 is a store, 𝛼 an allocation map, 𝐺

a computation graph, 𝑇 a task tree, and 𝑒 an expression. SchedHead reduction describes a head

reduction. SchedFork reduction describes a fork: the task tree consists of a leaf 𝑡 and the ex-

pression par(𝑣1, 𝑣2), where both 𝑣1 and 𝑣2 are closures to be executed in parallel. The reduction

generates two fresh timestamps 𝑡1 and 𝑡2, adds the corresponding edges to the computation graph,

and updates the task tree to comprise the node with two leaves 𝑡1 ⊗𝑡 𝑡2. The reduction then updates

the expression to the active parallel pair 𝑣1 [()] ∥ 𝑣2 [()], reflecting the parallel call of the two

closures 𝑣1 and 𝑣2, each one called with a single argument, the unit value (). SchedJoin reduction

describes a join and differs from prior semantics for disentanglement [Moine et al. 2024; Westrick

et al. 2022] because it reuses a timestamp (§2.1). The task tree is at a node 𝑡 with two leaves 𝑡1 ⊗𝑡 𝑡2,
and both leaves reached a value. The reduction adds edges (𝑡1, 𝑡) and (𝑡2, 𝑡) to the computation

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:12 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

SchedHead

𝐺 , 𝑡 ⊢ 𝜎 \𝛼 \𝑒 −→ 𝜎 ′ \𝛼 ′ \𝑒′

𝜎 /𝛼 /𝐺 /𝑡 /𝑒 sched−−−−→ 𝜎 ′ /𝛼 ′ /𝐺 /𝑡 /𝑒′

SchedFork

𝑡1, 𝑡2 ∉ vertices(𝐺)
𝐺 ′ =𝐺 ∪ {(𝑡, 𝑡1), (𝑡, 𝑡2)} 𝑒′ = 𝑣1 [()] ∥ 𝑣2 [()]

𝜎 /𝛼 /𝐺 /𝑡 /par(𝑣1, 𝑣2)
sched−−−−→ 𝜎 /𝛼 /𝐺 ′ /𝑡1 ⊗𝑡 𝑡2 /𝑒′

SchedJoin

ℓ ∉ dom(𝜎) ℓ ∉ dom(𝛼) 𝐺 ′ =𝐺 ∪ {(𝑡1, 𝑡), (𝑡2, 𝑡)}

𝜎 /𝛼 /𝐺 /𝑡1 ⊗𝑡 𝑡2 /𝑣1 ∥ 𝑣2
sched−−−−→ [ℓ := (𝑣1, 𝑣2)]𝜎 / [ℓ := 𝑡]𝛼 /𝐺 ′ /𝑡 / ℓ

StepSched

𝜎 /𝛼 /𝐺 /𝑇 /𝑒 sched−−−−→ 𝜎 ′ /𝛼 ′ /𝐺 ′ /𝑇 ′ /𝑒′

(𝜎, 𝛼,𝐺) /𝑇 /𝑒 step−−−→ (𝜎 ′, 𝛼 ′,𝐺 ′) /𝑇 ′ /𝑒′

StepBind

𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

𝑆 /𝑇 /𝐾 [𝑒] step−−−→ 𝑆 ′ /𝑇 ′ /𝐾 [𝑒′]
StepParL

𝑆 /𝑇1 /𝑒1
step−−−→ 𝑆 ′ /𝑇 ′

1
/𝑒′

1

𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

1
⊗𝑡 𝑇2 /𝑒′1 ∥ 𝑒2

StepParR

𝑆 /𝑇2 /𝑒2
step−−−→ 𝑆 ′ /𝑇 ′

2
/𝑒′

2

𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2
step−−−→ 𝑆 ′ /𝑇1 ⊗𝑡 𝑇 ′2 /𝑒1 ∥ 𝑒′2

Fig. 9. Reduction under a context and parallelism

DELeaf

∀ℓ . ℓ ∈ 𝑟𝑜𝑜𝑡𝑠 (𝑒) =⇒ 𝐺 ⊢ 𝛼 (ℓ) ≼ 𝑡

Disentangled (_, 𝛼,𝐺) /𝑡 /𝑒

DEPar

Disentangled 𝑆 /𝑇1 /𝑒1 Disentangled 𝑆 /𝑇2 /𝑒2
Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2

DEBind

𝑆 = (_, 𝛼,𝐺) Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒
∀ℓ . ℓ ∈ 𝑟𝑜𝑜𝑡𝑠 (𝐾) =⇒ ∀𝑡 ′ . 𝑡 ′ ∈ leaves(𝑇1) ∪ leaves(𝑇2) =⇒ 𝐺 ⊢ 𝛼 (ℓ) ≼ 𝑡 ′

Disentangled 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝐾 [𝑒]

Fig. 10. Definition of Disentanglement

graph, and allocates a memory cell to store the result of the (active) parallel pair. It then updates

the task tree to the leaf 𝑡 .

Parallelism and reduction under a context. The lower part of Figure 9 presents the main reduction

relation 𝑆 /𝑇 /𝑒 step−−−→ 𝑆 ′ /𝑇 ′ /𝑒′, which describes a scheduling reduction inside the whole parallel

program [Moine et al. 2024]. A configuration 𝑆 /𝑇 /𝑒 consists of the program state 𝑆 , the task tree𝑇 ,

and an expression 𝑒 . This expression 𝑒 can consist of multiple tasks, governed by the nesting

of active parallel pairs (𝑒1 ∥ 𝑒2). The corresponding timestamps of these tasks are given by the

accompanying task tree𝑇 . A state 𝑆 consists of the tuple (𝜎, 𝛼,𝐺), denoting a store 𝜎 , an allocation

map 𝛼 , and a computation graph 𝐺 . StepSched reduction describes a scheduling step. The other

reductions describe where the scheduling reduction takes place in the whole parallel program.

StepBind reduction describes a reduction under an evaluation context. StepParL and StepParR

reductions are non-deterministic: if a node of the task tree is encountered facing an active parallel

pair, the left side or the right side can reduce.

3.3 Definition of Disentanglement
The property Disentangled 𝑆 /𝑇 /𝑒 asserts that, given a program state 𝑆 and a task tree 𝑇 , the

expression 𝑒 is disentangled—that is, the roots of each task in 𝑒 were allocated by preceding

tasks. Figure 10 gives the inductive definition of Disentangled 𝑆 /𝑇 /𝑒 . If the program state has

an allocation map 𝛼 and a computation graph 𝐺 , and if the task tree is a leaf 𝑡 , DELeaf requires

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:13

Timestamp variables 𝛿

Type variables 𝛼

Logical graphs Δ ≜ Δ, 𝛿 ≼ 𝛿 | ∅
Kinds 𝜅 ≜ ★ | ⊲⊳ ⇒ 𝜅

Unboxed types 𝜏 ≜ () | bool | int
Boxed types 𝜎 ≜ array(𝜌) | (𝜌 × 𝜌) | (𝜌 + 𝜌) | ∀®𝛿 Δ. ®𝜌 →𝛿 𝜌

Types 𝜌 ≜ 𝜏 | 𝜆𝛿. 𝜌 | 𝜌 𝛿 | ∀𝛼 :: 𝜅. 𝜌 | 𝜇𝛼. 𝜎@𝛿 | 𝛼 | 𝜎@𝛿
Environments Γ ≜ 𝑥 : 𝜌, Γ | 𝛼 :: 𝜅, Γ | ∅

Fig. 11. Syntax of types

for every location ℓ in 𝑟𝑜𝑜𝑡𝑠 (𝑒), that is, the set of locations syntactically occurring in 𝑒 , that the

location ℓ has been allocated by a task 𝛼 (𝑡) preceding 𝑡 in𝐺 . If the task tree is a node𝑇1 ⊗𝑡 𝑇2, there
are two cases. In the first case, if the expression is an active parallel pair, DEPar requires that the

two sub-expressions are disentangled. Otherwise, the expression must be of the form 𝐾 [𝑒], and
then DEBind requires that 𝑒 itself is disentangled and that for every location ℓ occurring in the

evaluation context 𝐾 , the location ℓ has been allocated before every leaf 𝑡 ′ of 𝑇1 and 𝑇2.

Difference with Previous Semantics for Disentanglement. Inspired by Westrick et al. [2022], we

equip DisLang2 with a mostly standard semantics, instrumented with a computation graph and an

allocation map. We then distinguish disentangled states using the Disentangled property, resem-

bling the “rootsde” invariant proposed byWestrick et al. [2022]. The novelty of our approach resides

in the instrumentation with the, more amenable to verification, cyclic computation graph (§2.1).

DisLog [Moine et al. 2024] chooses a slightly different formalization in which the semantics

gets stuck if entanglements is detected. Each time a task acquires a location from the heap, the

semantics performs a check to verify that the location was allocated by a preceding task. Intuitively,

this check ensures by construction that a program’s evaluation reaches only states satisfying the

Disentangled property. Conversely, guaranteeing the Disentangled property at every step ensures

that a disentanglement check cannot fail.

4 Type System
In this section, we describe TypeDis in depth. First, we present the formal syntax of types (§4.1) as

well as the typing judgment (§4.2). We then comment on typing rules for mutable heap blocks (§4.3),

which enforce disentanglement. Next, we present the rules for creating and calling closures (§4.4),

which are crucial for understanding our approach for typing the par primitive (§4.5). We then

focus on advanced features of TypeDis: general recursive types and type polymorphism (§4.6). We

conclude by presenting subtiming (§4.7).

4.1 Syntax of Types
To reason statically about the runtime notions of timestamps 𝑡 and computation graphs𝐺 (§3.2), we

introduce their corresponding static notions: timestamp variables 𝛿 and logical graphs Δ, respectively.
A logical graph Δ is a set of pairs 𝛿1 ≼ 𝛿2, asserting that the timestamp 𝛿1 precedes the timestamp 𝛿2,

that is, everything allocated by the task at 𝛿1 is safe to acquire for the task at 𝛿2. Figure 11 summarizes

these notions together with the syntax of types.

A powerful feature of our type system is its support for timestamp polymorphism, facilitated

through higher-order types. This higher-order feature is instrumental in typing the par primi-

tive (§4.5), and thus supporting the cyclic approach detailed in §2.1. Because our system is higher-

order, we introduce kinds, written 𝜅, which capture the number of timestamps a type expects as

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:14 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

arguments. The ground kind, written★, indicates that the type does not take a timestamp argument.

The successor kind, written ⊲⊳⇒ 𝜅, indicates that the type expects 𝜅 + 1 timestamp arguments.

A base type 𝜏 describes an unboxed value, that is, a value that is not allocated on the heap. Base

types include the unit type, Booleans, and integers.

The syntax of types 𝜌 is mutually inductive with the syntax of boxed types 𝜎 . A type 𝜌 is either a

base type 𝜏 , a type taking a timestamp argument 𝜆𝛿. 𝜌 , an application of a type to a timestamp 𝜌 𝛿 ,

a universal quantification of a type variable with some kind ∀𝛼 :: 𝜅. 𝜌 , a recursive type 𝜇𝛼. 𝜎@𝛿 , a

type variable 𝛼 , or a boxed type annotated with a timestamp 𝜎@𝛿 . When the timestamp 𝛿 does not

matter, we write 𝜎@_. A boxed type 𝜎 is either an array array(𝜌), an immutable pair (𝜌 × 𝜌), an
immutable sum (𝜌 + 𝜌), or a function ∀®𝛿 Δ. ®𝜌 →𝛿 𝜌 .

Types support 𝛼-equivalence for both type and timestamp variables, as well as 𝛽-reduction.

4.2 The Typing Judgment
A typing environment Γ is a map from free program variables to types, and from free type variables

to kinds. The general form of the typing judgment of TypeDis is:

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

where Δ is a logical graph, Γ a typing environment, 𝑒 the expression being type-checked at type 𝜌

and at current timestamp 𝛿 .

Selected rules of the type system appear in Figure 12. The rules adopt Barendregt’s conven-

tion [Barendregt 1984], assuming bound variables to be distinct from already existing free variables

in scope. The reader might notice that several rules (for example, T-Abs or T-TAbs) require the

user to manually decide where to apply these rules and with which arguments. We leave to future

work the design of syntactic features together with a type inference mechanism for simplifying this

process. Various rules are standard: T-Var type-checks variables and T-Unit, T-Int, and T-Bool

type-check base types. The structural rules T-Let and T-If are also standard, and type-check let

bindings and if statements, respectively. In the remainder, we discuss the rules that deserve special

attention with regard to disentanglement.

4.3 Typing Rules for Heap Blocks
Heap blocks must be handled with care to guarantee disentanglement: every time the program

acquires a location—that is, the address of a heap block—we must ensure that this location has been

allocated by a preceding task. Otherwise, this newly created root would break the disentanglement

invariant (§3.3). Because load operations are so common in programming languages, we chose to

enforce the following invariant on the typing judgment Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 : every location that can

be acquired from Γ was allocated before the current timestamp 𝛿 (§2.4). Hence, load operations

(from immutable blocks and from mutable blocks) do not have any timestamp check.

Operations on immutable blocks are type-checked by T-Pair and T-Proj, for pairs, and by T-Inj

and T-Case, for sums. In particular, T-Pair and T-Inj reflect that pair creation and injection allocate
heap blocks, hence, the resulting type is annotated with @𝛿 , denoting the allocating timestamp.

Operations on mutable blocks are type-checked by T-Array, T-Store, and T-Load.

4.4 Abstractions and Timestamp Polymorphism
A function can be seen as a delayed computation. In our case, this notion of “delay” plays an

interesting role: a function can run on a task distinct from the one that allocated it. Hence, functions

in TypeDis have three non-standard features related to timestamps, roughly describing the status

of the computation graph when the function will run. First, a function takes timestamp parameters,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:15

T-Var

Γ(𝑥) = 𝜌
Δ | Γ ⊢ 𝑥 : 𝜌 ⊲ 𝛿

T-Unit

Δ | Γ ⊢ () : unit ⊲ 𝛿
T-Int

Δ | Γ ⊢ 𝑖 : int ⊲ 𝛿
T-Bool

Δ | Γ ⊢ 𝑏 : bool ⊲ 𝛿

T-Let

Δ | Γ ⊢ 𝑒1 : 𝜌 ′ ⊲ 𝛿 Δ | 𝑥 : 𝜌 ′, Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜌 ⊲ 𝛿

T-If

Δ | Γ ⊢ 𝑒1 : bool ⊲ 𝛿
Δ | Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿 Δ | Γ ⊢ 𝑒3 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜌 ⊲ 𝛿

T-Pair

Δ | Γ ⊢ 𝑒1 : 𝜌1 ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : 𝜌2 ⊲ 𝛿

Δ | Γ ⊢ (𝑒1, 𝑒2) : (𝜌1 × 𝜌2)@𝛿 ⊲ 𝛿

T-Proj

Δ | Γ ⊢ 𝑒 : (𝜌1 × 𝜌2)@_ ⊲ 𝛿

Δ | Γ ⊢ proj𝜄 𝑒 : 𝜌𝑖 ⊲ 𝛿

T-Inj

Δ | Γ ⊢ 𝑒 : 𝜌𝑖 ⊲ 𝛿

Δ | Γ ⊢ inj𝜄 𝑒 : (𝜌1 + 𝜌2)@𝛿 ⊲ 𝛿

T-Case

Δ | Γ ⊢ 𝑒 : (𝜌1 + 𝜌2)@_ ⊲ 𝛿

Δ | 𝑥1 : 𝜌1, Γ ⊢ 𝑒1 : 𝜌 ⊲ 𝛿 Δ | 𝑥2 : 𝜌2, Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ match 𝑒 with inj
1
𝑥1 ⇒ 𝑒1 | inj2 𝑥2 ⇒ 𝑒2 end : 𝜌 ⊲ 𝛿

T-Array

Δ | Γ ⊢ 𝑒1 : int ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ alloc 𝑒1 𝑒2 : array(𝜌)@𝛿 ⊲ 𝛿

T-Store

Δ | Γ ⊢ 𝑒1 : array(𝜌)@_ ⊲ 𝛿

Δ | Γ ⊢ 𝑒2 : int ⊲ 𝛿 Δ | Γ ⊢ 𝑒3 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒1 .[𝑒2]←𝑒3 : () ⊲ 𝛿
T-Load

Δ | Γ ⊢ 𝑒1 : array(𝜌)@_ ⊲ 𝛿

Δ | Γ ⊢ 𝑒2 : int ⊲ 𝛿
Δ | Γ ⊢ 𝑒1 .[𝑒2] : 𝜌 ⊲ 𝛿

T-Abs

Δ,Δ1, 𝛿 ≼ 𝛿 𝑓 | 𝑓 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@𝛿, (®𝑥 : ®𝜌1), Γ ⊢ 𝑒 : 𝜌2 ⊲ 𝛿 𝑓

Δ | Γ ⊢ 𝜇𝑓 . 𝜆®𝑥 . 𝑒 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@𝛿 ⊲ 𝛿

T-App

𝛿 = [®𝛿 ′
1
/ ®𝛿1]𝛿 𝑓 ®𝜌 ′

1
= [®𝛿 ′

1
/ ®𝛿1] ®𝜌1 𝜌 ′

2
= [®𝛿 ′

1
/ ®𝛿1]𝜌2 Δ′

1
= [®𝛿 ′

1
/ ®𝛿1]Δ1

Δ | Γ ⊢ 𝑒 : (∀ ®𝛿1 Δ1 . ®𝜌1 →𝛿𝑓 𝜌2)@_ ⊲ 𝛿 Δ ⊢ Δ′
1

Δ | Γ ⊢ ®𝑒′ : ®𝜌 ′
1
⊲ 𝛿

Δ | Γ ⊢ 𝑒 ®𝑒′ : 𝜌 ′
2
⊲ 𝛿

T-Par

Γ ⊢ 𝜑1 :: ⊲⊳ ⇒ ★ Γ ⊢ 𝜑2 :: ⊲⊳ ⇒ ★

Δ | Γ ⊢ 𝑒1 : (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑1 𝛿
′)@_ ⊲ 𝛿 Δ | Γ ⊢ 𝑒2 : (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑2 𝛿

′)@_ ⊲ 𝛿

Δ | Γ ⊢ par(𝑒1, 𝑒2) : (𝜑1 𝛿 × 𝜑2 𝛿)@𝛿 ⊲ 𝛿

T-Fold

Γ ⊢ 𝜇𝛼. 𝜎@𝛿 :: ★

Δ | Γ ⊢ 𝑒 : ([𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 ⊲ 𝛿

Δ | Γ ⊢ fold 𝑒 : 𝜇𝛼. 𝜎@𝛿 ⊲ 𝛿

T-Unfold

Γ ⊢ 𝜇𝛼. 𝜎@𝛿 :: ★

Δ | Γ ⊢ 𝑒 : 𝜇𝛼. 𝜎@𝛿 ⊲ 𝛿

Δ | Γ ⊢ unfold 𝑒 : ([𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 ⊲ 𝛿

T-TAbs

Δ | 𝛼 :: 𝜅, Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 veryPure 𝑒

Δ | Γ ⊢ 𝑒 : ∀𝛼 :: 𝜅. 𝜌 ⊲ 𝛿

T-TApp

Γ ⊢ 𝜌 ′ :: 𝜅 Δ | Γ ⊢ 𝑒 : ∀𝛼 :: 𝜅. 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒 : [𝜌 ′/𝛼]𝜌 ⊲ 𝛿

T-GetRoot

Γ(𝑥) = array(𝜎 ′)@𝛿 ′ ∨ Γ(𝑥) = 𝜇𝛼. 𝜎 ′@𝛿 ′
Δ, 𝛿 ′ ≼ 𝛿 | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿

T-Subtiming

Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′

Δ | Γ ⊢ 𝑒 : 𝜌 ′ ⊲ 𝛿

Fig. 12. The type system (selected rules)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:16 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

which are universally quantified. Second, a function takes a constraint over these timestamps, as a

logical graph. Third, a function is annotated with a timestamp representing the task it will run on.

Let us focus on the abstraction rule T-Abs. This rule type-checks a function definition of the

form 𝜇𝑓 . 𝜆®𝑥 . 𝑒 , and requires the user to provide timestamp parameters
®𝛿1, logical graph Δ1, and

a running timestamp 𝛿 𝑓 . The current timestamp is 𝛿 and the type associated to the function is

(∀ ®𝛿1 Δ1. ®𝜌1 →𝛿𝑓 𝜌2)@𝛿 . This type asserts that, if (i) there is some instantiation of
®𝛿1 satisfying

Δ1, (ii) there are some arguments of type ®𝜌1, and (iii) the timestamp of the calling task is 𝛿 𝑓 ,

then the function will produce a result of type 𝜌2. This type also reminds us that a function is a

heap-allocated object, and is hence annotated with the task that allocated it, here 𝛿 . The premise of

T-Abs changes the current timestamp to be 𝛿 𝑓 , the timestamp of the invoking task, and requires

the body 𝑒 to be of type 𝜌2. T-Abs is in fact the sole rule of the system “changing” the current

timestamp while type-checking. The logical graph is augmented with Δ1 plus the knowledge that 𝛿

precedes 𝛿 𝑓 , conveying the fact that a function can only be called at a subsequent timestamp. The

environment Γ is extended with the parameters (®𝑥 : ®𝜌1) as well as the recursive name 𝑓 . Note that

timestamp parameters
®𝛿1 and logical graph Δ1 are before the arguments ®𝑥 . This means that the

body 𝑒 will be able to recursively call 𝑓 with different timestamp arguments (potentially including

a different 𝛿 𝑓), for example after it forked. We already saw such an example for the build and

selectmap functions in Sections 2.3 and 2.4.

Let us now focus on T-App, type-checking a function application. The conclusion type-checks the

expression 𝑒 ®𝑒′ to be of type 𝜌 ′
2
at the current timestamp 𝛿 . The premise of T-App requires 𝑒 to be a

function of type ∀ ®𝛿1 Δ1. ®𝜌1 →𝛿𝑓 𝜌2, allocated by some irrelevant task. The premise then substitutes

in all the relevant parts the user-supplied timestamps
®𝛿 ′
1
in place of

®𝛿1. Hence, the result type 𝜌 ′2 is
equal to [®𝛿 ′

1
/ ®𝛿1]𝜌2. In particular, the premise 𝛿 = [®𝛿 ′

1
/ ®𝛿1]𝛿 𝑓 requires that the running timestamp

𝛿 𝑓 to be equal to 𝛿 , the current timestamp. The premise also requires the logical graph Δ′
1
to be a

subgraph of the logical graph Δ, written Δ ⊢ Δ′
1
, meaning that every pair of vertices reachable in

Δ′
1
must also be reachable in Δ. This property is formally defined in the Appendix [Moine et al.

2025b]. Finally, the premise requires the arguments ®𝑒 to be of the correct type
®𝜌 ′
1
.

4.5 The Par Rule
The typing rule for the par primitive is at the core of TypeDis. T-Par type-checks par(𝑒1, 𝑒2) at cur-
rent timestamp 𝛿 . Recall (§3.2) that the results of 𝑒1 and 𝑒2 must be closures; these closures are then

called in parallel and their results are returned as an immutable pair. To preserve disentanglement,

the two closures must not communicate allocations they make with each other. Hence, the premise

of T-Par requires the two expressions 𝑒1 and 𝑒2 to be of type ∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ . . . , signaling that

they must be closures that are expected to run on a task 𝛿 ′, universally quantified, and subsequent

to 𝛿 . Because of this universal quantification over the running timestamp 𝛿 ′ and because the rules

allocating blocks (T-Array, T-Pair, T-Proj and T-Abs) always tag the value they allocate with the

running timestamp, the tasks will not be able to communicate allocations they make.

After these two closure calls terminate, and their underlying tasks join, the parent task gains

access to everything the two children allocated. In fact, from the point of view of disentanglement,

we can even pretend that the parent task itself allocated these locations! T-Par does more than

pretending and backtimes the return types of the two closures, by substituting the running

timestamp of the children 𝛿 ′ by the running timestamp of the parent 𝛿 . Indeed, the return types

of the closures, 𝜑1 𝛿
′
for 𝑒1 and 𝜑2 𝛿

′
for 𝑒2, signal that these two closures will return some type,

parametrized by the running timestamp 𝛿 ′. This formulation allows the rule to type-check the

original par(𝑒1, 𝑒2) as (𝜑1 𝛿 × 𝜑2 𝛿)@𝛿 , that is, a pair of the two types returned by the closures, but
where the running timestamp of the child 𝛿 ′ was replaced by the running timestamp of the parent 𝛿 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:17

4.6 Recursive Types and Type Polymorphism
Recursive types. TypeDis supports iso-recursive types [Pierce 2002, §20.2]. In TypeDis, a recursive

type takes the form 𝜇𝛼. 𝜎@𝛿 , binding the recursive name 𝛼 in the boxed type 𝜎 which must have

been allocated at 𝛿 . This syntax ensures that types are well-formed, and forbids meaningless types

𝜇𝛼. 𝛼 as well as useless types 𝜇𝛼. 𝜇𝛽. 𝜌 . T-Fold and T-Unfold allow for going from 𝜇𝛼. 𝜎@𝛿 to

([𝜇𝛼. 𝜎@𝛿/𝛼]𝜎)@𝛿 and vice-versa. Note that this approach requires that the recursive occurrences

of 𝛼 are all allocated at the same timestamp; all the nodes of the recursive data structures must

have been allocated at the same timestamp. This may seem restrictive, but subtiming will relax this

requirement (§4.7).

Let us give an example. The type of lists allocated at timestamp 𝛿 containing integers is:

𝜇𝛼. (() + (int × 𝛼)@𝛿)@𝛿
This type describes that a list of integers is either the unit value (describing the nil case), or the

pair of an integer and a list of integers (describing the cons case).

Type polymorphism. TypeDis supports type polymorphism, through type abstraction T-TAbs

and type application T-TApp. Whereas the former is standard, the latter has an unusual premise

veryPure 𝑒 , our variant of the value restriction.
The value restriction [Wright 1995] is a simple syntactic restriction guaranteeing soundness of

polymorphism in the presence of mutable state—a combination that is well known to be unsound if

unrestricted. In particular, the value restriction permits only values to be polymorphic. However,

DisLang2 has an unusual aspect: functions are not values, they are allocated on the heap (§3.1). Hence,
the value restriction is not applicable as-is, yet it is crucial to allow universal type quantification in

front of functions. We contribute a variant of the value restriction, that allows type quantification

in front of any pure expression that does not call a function, project a pair, case over a sum, or fork new
tasks. This includes function allocation, pair allocation, sums injection, as well as other control-flow

constructs. This syntactic check is ensured by the predicate veryPure 𝑒 that appears as a premise of

the type abstraction rule T-TAbs. The predicate veryPure 𝑒 is defined in the Appendix [Moine et al.

2025b]. It can be seen as an alternative to the solution proposed by de Vilhena [2022], in which

every arrow has a purity attribute, indicating if the function interacts with the store. Contrary

to de Vilhena’s solution, we support some benign interactions with the store: the allocation of

immutable data structures.

TypeDis supports higher-kind type polymorphism. For example, reminding of the typing rule

T-Par, one could present par as a higher-order function of the following type

par : ∀(𝜑1 :: ⊲⊳⇒ ★) (𝜑2 :: ⊲⊳⇒ ★).
∀𝛿 𝛿1 𝛿2. (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑1 𝛿

′)@𝛿1 → (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . () →𝛿 ′ 𝜑2 𝛿
′)@𝛿2 →𝛿 (𝜑1 𝛿 × 𝜑2 𝛿)@𝛿

Taking 𝜑1 = 𝜑2 = 𝜆𝛿. tree@𝛿 and doing 𝛽-reduction matches the type presented in Section 2.3.

4.7 Subtiming
As presented so far, backtiming—that is, substituting the timestamp of a child task by the one of its

parent task at the join point—is the only way of changing a timestamp inside a type (§4.5). We

propose here another mechanism that we dub subtiming. As the name suggests, subtiming is a

form of subtyping [Pierce 2002, §15] for timestamps.

At a high-level, subtiming allows for “advancing” a timestamp within a type, as long as this

update makes sense. This notion of “advancing” relates to the notion of precedence, describing
reachability between two timestamps. We write Δ ⊢ 𝛿1 ≼ 𝛿2 to describe that 𝛿1 can reach 𝛿2 in Δ (the

Appendix [Moine et al. 2025b]). Equipped with this reachability predicate, we make a first attempt

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:18 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

S-Refl

Δ ⊢ 𝜌 ⊆𝛿 𝜌
S-ReflAt

Δ ⊢ 𝜎 ⊆𝛿 𝜎

S-TAbs

Δ ⊢ 𝜌1 ⊆𝛿 𝜌2
Δ ⊢ ∀𝛼 :: 𝜅. 𝜌1 ⊆𝛿 ∀𝛼 :: 𝜅. 𝜌2

S-Pair

Δ ⊢ 𝜌𝑙1 ⊆𝛿 𝜌𝑙2 Δ ⊢ 𝜌𝑟1 ⊆𝛿 𝜌𝑟2
Δ ⊢ (𝜌𝑙1 × 𝜌𝑟1) ⊆𝛿 (𝜌𝑙2 × 𝜌𝑟2)

S-Sum

Δ ⊢ 𝜌𝑙1 ⊆𝛿 𝜌𝑙2 Δ ⊢ 𝜌𝑟1 ⊆𝛿 𝜌𝑟2
Δ ⊢ (𝜌𝑙1 + 𝜌𝑟1) ⊆𝛿 (𝜌𝑙2 + 𝜌𝑟2)

S-At

Δ ⊢ 𝛿1 ≼ 𝛿2 (𝛿1 ≠ 𝛿2 =⇒ Δ ⊢ 𝛿2 ≼ 𝛿)
Δ ⊢ 𝜎1 ⊆𝛿2 𝜎2

Δ ⊢ 𝜎1@𝛿1 ⊆𝛿 𝜎2@𝛿2
S-Rec

Δ ⊢ 𝛿1 ≼ 𝛿2 (𝛿1 ≠ 𝛿2 =⇒ Δ ⊢ 𝛿2 ≼ 𝛿)
Δ ⊢ 𝜎1 ⊆𝛿2 𝜎2 Δ | 𝛼 ↦→ 𝛿2 ⊢𝛿2 𝜎2

Δ ⊢ 𝜇𝛼. 𝜎1@𝛿1 ⊆𝛿 𝜇𝛼. 𝜎2@𝛿2

S-Abs

Δ′ = Δ ∪ Δ2 Δ′ ⊢ Δ1

Δ′ ⊢ ®𝜌𝑠2 ⊆𝛿𝑓 ®𝜌𝑠1 Δ′ ⊢ 𝜌1 ⊆𝛿𝑓 𝜌2
Δ ⊢ ∀ ®𝛿𝑠 Δ1 . ®𝜌𝑠1 →𝛿𝑓 𝜌1 ⊆𝛿 ∀ ®𝛿𝑠 Δ2 . ®𝜌𝑠2 →𝛿𝑓 𝜌2

S-Inst

𝛿2 = [𝛿𝑦/𝛿𝑥]𝛿1 ®𝜌𝑠2 = [𝛿𝑦/𝛿𝑥] ®𝜌𝑠1 Δ2 = [𝛿𝑦/𝛿𝑥]Δ1

Δ ⊢ ∀(®𝛿𝑠𝑙 ++[𝛿𝑥] ++ ®𝛿𝑠𝑟) Δ1 . ®𝜌𝑠1 →𝛿1 𝜌1 ⊆𝛿 ∀(®𝛿𝑠𝑙 ++ ®𝛿𝑠𝑟) Δ2 . ®𝜌𝑠2 →𝛿2 𝜌2

Fig. 13. The subtiming judgment

at capturing the idea of subtiming as follows:

Specialized-Subtiming

Δ | Γ ⊢ 𝑒 : 𝜎@𝛿1 ⊲ 𝛿 Δ ⊢ 𝛿1 ≼ 𝛿2 Δ ⊢ 𝛿2 ≼ 𝛿

Δ | Γ ⊢ 𝑒 : 𝜎@𝛿2 ⊲ 𝛿

Specialized-Subtiming asserts that an expression of type 𝜎@𝛿1 can be viewed as an expression

of type 𝜎@𝛿2 as long as 𝛿1 precedes 𝛿2 and 𝛿2 is not ahead of time, that is 𝛿2 precedes the current

timestamp 𝛿 . Indeed, TypeDis enforces that, if Δ | Γ ⊢ 𝑒 : 𝜎@𝛿 ′ ⊲ 𝛿 holds, then 𝛿 ′ precedes 𝛿 .
While Specialized-Subtiming is admissible in TypeDis, it is not general enough, as it only

considers the timestamp at the root of a type. This motivates rule T-Subtiming in Figure 12, which

relies on the subtiming judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′, given in Figure 13, and acts as a subsumption rule.

Intuitively, the judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′ captures the fact the timestamps in 𝜌 precede the timestamps

in 𝜌 ′ under logical graph Δ, knowing that every timestamp occurring in 𝜌 ′ must precede 𝛿 . The

definition of the judgment now allows changing the timestamps inside immutable types. Because

of variance issues (see [Pierce 2002, §15.5]), however, subtiming for mutable types is only shallow:

a timestamp can be changed only at the root of an array type.

The subtiming judgment Δ ⊢ 𝜌 ⊆𝛿 𝜌 ′ assumes that types are in 𝛽-normal form. S-Refl and

S-ReflAt assert that the subtiming judgment is reflexive. S-TAbs asserts that subtiming goes below

type quantifiers (which are irrelevant here, the subtiming judgment tolerates open terms). S-Pair

and S-Sum reflect that subtiming for immutable types is deep.

S-At illustrates the case presented in Specialized-Subtiming. This rule asserts that, with logical

graph Δ and maximum allowed timestamp 𝛿 , the boxed type 𝜎1@𝛿1 is a subtype of 𝜎2@𝛿2 if three

conditions are met. First, 𝛿1 must precede 𝛿2. Second, if subtiming is applied here, that is, if 𝛿1 ≠ 𝛿2,

then 𝛿2 must precede 𝛿 , the maximum timestamp allowed. Third, 𝜎1 must recursively be a subtype

of 𝜎2, with maximum timestamp allowed 𝛿2. Indeed, recall that TypeDis allows only for up-pointers:

every timestamp in 𝜎2 must precede 𝛿2.

S-Rec allows subtiming for recursive types 𝜇𝛼. 𝜎1@𝛿1 and 𝜇𝛼. 𝜎2@𝛿2. The first three premises (in

the left-to-right, top-to-bottom order) are the same as for S-At. The fourth premiseΔ | 𝛼 ↦→ 𝛿2 ⊢𝛿2 𝜎2
requires explanations. This predicate, dubbed the “valid variable” judgment and formally defined in

the Appendix [Moine et al. 2025b], ensures two properties. First, that 𝛼 does not appear in an array
type (because subtiming is not allowed at this position) or in an arrow or another recursive type

(for simplicity). Second, that if 𝛼 appears under a timestamp 𝛿 , then 𝛿2 must precede 𝛿 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:19

OOB-Alloc

𝑖 < 0

OOB𝜎 (alloc 𝑖 𝑣)

OOB-Load

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |
OOB𝜎 (ℓ .[𝑖])

OOB-Store

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |

OOB𝜎 (ℓ .[𝑖]←𝑤)

OOB-CAS

𝜎 (ℓ) = ®𝑣
𝑖 < 0 ∨ 𝑖 ≥ |®𝑣 |

OOB𝜎 (CAS ℓ 𝑖 𝑤1𝑤2)
Red-Sched

𝑆 /𝑇 /𝑒 sched−−−−→ 𝑆 ′ /𝑇 ′ /𝑒′

AllRedOrOOB 𝑆 /𝑇 /𝑒

Red-OOB

OOB𝜎 𝑒

AllRedOrOOB (𝜎, 𝛼,𝐺) /𝑡 /𝑒

Red-Ctx

AllRedOrOOB 𝑆 /𝑇 /𝑒
AllRedOrOOB 𝑆 /𝑇 /𝐾 [𝑒]

Red-Par

(𝑒1 ∉ V ∨ 𝑒2 ∉ V)
(𝑒1 ∉ V =⇒ AllRedOrOOB 𝑆 /𝑇1 /𝑒1)
(𝑒2 ∉ V =⇒ AllRedOrOOB 𝑆 /𝑇2 /𝑒2)

AllRedOrOOB 𝑆 /𝑇1 ⊗𝑡 𝑇2 /𝑒1 ∥ 𝑒2

Safe-Final

Safe 𝑆 /𝑡 /𝑣

Safe-NonFinal

AllRedOrOOB 𝑆 /𝑇 /𝑒
Safe 𝑆 /𝑇 /𝑒

Fig. 14. The OOB, AllRedOrOOB and Safe predicates

S-Abs allows subtiming for function types ∀ ®𝛿𝑠 Δ1. ®𝜌𝑠1 →𝛿𝑓 𝜌1 and ∀ ®𝛿𝑠 Δ2. ®𝜌𝑠2 →𝛿𝑓 𝜌2. The

quantified timestamps
®𝛿𝑠 and the calling timestamp 𝛿 𝑓 must be the same. The extended logical

graph Δ′, equal to Δ ∪ Δ2, must subsume Δ1. Moreover, the arguments ®𝜌𝑠2 must subtime ®𝜌𝑠1 (note
the polarity inversion). The return type 𝜌1 must subtime 𝜌2.

S-Inst allows for specializing a universally-quantified timestamp and has a more standard

subtyping flavor. In this rule, the quantified timestamp 𝛿𝑥 is being instantiated with 𝛿𝑦 (similarly to

the instantiation occurring in T-App).

Before using subtiming, information about precedence may be needed. TypeDis guarantees a

strong invariant: every timestamp occurring in the typing environment comes before the current

timestamp. Such an invariant is illustrated by T-GetRoot, which allows adding to the logical

graph Δ an edge (𝛿 ′, 𝛿), where 𝛿 ′ is a timestamp in the environment and 𝛿 the current timestamp.

5 Soundness
In this section, we state the soundness of TypeDis and give an intuition for its proof, which takes the

form of a logical relation in Iris and is mechanized in Rocq [Moine et al. 2025a]. We first enunciate

the soundness theorem (§ 5.1). We then recall the concepts of Iris we need (§ 5.2) and present

DisLog2 (§5.3), the verification logic we use. We then devote our attention to the formal proof,

by presenting the high-level ideas of the logical relation (§5.4) we developed and its fundamental

theorem (§5.5). We conclude by assembling all the building blocks we presented and sketching the

soundness proof of TypeDis (§5.6).

5.1 Soundness Statement of TypeDis
Our soundness statement adapts Milner [1978]’ slogan “well-typed programs cannot go wrong” by

proving that the reduction of a well-typed program reaches only configurations that are safe and
disentangled.

We already formally defined the concept of disentanglement (§3.3). What about safety? Intuitively,

a configuration is safe if all tasks can take a step or, conversely, no task is stuck. However, this
property is too strong for our type system due to reasons unrelated to disentanglement. Being

purposefully designed for disentanglement, our type system is not capable of verifying arbitrary

functional correctness conditions. In particular, while the semantics of DisLang2 ensures that

accesses to arrays by load and store operations are within bounds and thus cannot cause a task to

get stuck, our type system does not enforce that. This restriction comes at the advantage of freeing

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:20 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

programmers from carrying out correctness proofs themselves, which are carried out by the type-

checker instead. Intuitively, we say that a configuration is safe if it is final, or each task can either

take a step or encounters a load or a store operation out-of-bounds. We formalize these properties in

Figure 14. The propertyOOB𝜎 𝑒 asserts that the expression 𝑒 faces an out-of-bounds operation: that
is, an allocation, a load, a store, or a CAS outside the bounds. The property AllRedOrOOB 𝑆 /𝑇 /𝑒
asserts that, within the configuration of the program state 𝑆 , the task tree 𝑇 and the expression 𝑒 ,

every task of the task tree can either take a step or faces an out-of-bounds operation. Red-Sched

asserts that the configuration can take a scheduling step (that is, either a head step, a fork, or a join).

Red-OOB asserts that the configuration is at a leaf and faces an out-of-bounds operation. Red-Ctx

asserts that an expression under evaluation is reducible if this very expression is reducible. Red-Par

asserts that an active parallel pair 𝑒1 ∥ 𝑒2 is reducible if at least one of its components 𝑒𝑖 is not a

value and any 𝑒𝑖 that is not a value is reducible. (If both expressions are values, a join is possible).

The property Safe 𝑆 /𝑇 /𝑒 asserts that the configuration 𝑆 /𝑇 /𝑒 is either final (Safe-Final), that is,
the task tree is at a leaf and the expression is a value, or that every task of the task tree can either

take a step or faces an out-of-bounds operation (Safe-NonFinal).

An expression 𝑒 is always safe and disentangled if (∅, ∅, {(𝑡0, 𝑡0)}) /𝑡 /𝑒
step−−−→ ∗ 𝑆 ′ /𝑇 ′ /𝑒′ im-

plies that Safe 𝑆 ′ /𝑇 ′ /𝑒′ and Disentangled 𝑆 ′ /𝑇 ′ /𝑒′ hold, for some initial timestamp 𝑡0.

Theorem 5.1 (Soundness of TypeDis). If ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 then 𝑒 is always safe and disentangled.

Proof. We prove this theorem using a logical relation [Timany et al. 2024], which makes use of

DisLog2, a variation of DisLog [Moine et al. 2024]. We present the proof sketch in Section 5.6. □

5.2 Iris Primer
We set up our proofs in Iris [Jung et al. 2018b], and recall here the base notations. Iris’ assertions

are of type iProp. We write Φ for an assertion, ⌜𝑃⌝ for an assertion of the meta-logic (that is,

Rocq), Φ1 ∗ Φ2 for a separating conjunction, and Φ1 −∗ Φ2 for a separating implication. We write a

postcondition—that is, a predicate over values—using Ψ.
One of the most important features of Iris are invariants. An invariant assertion Φ, written

Φ , holds true in-between every computation step. (Formally, invariants are annotated with so-

called masks [Jung et al. 2018b, §2.2], we omit them for brevity.) Invariants, as well as other

logical resources in Iris, are implemented using ghost state. We write Φ1 ⇛ Φ2 to denote a ghost
update—that is, an update of the ghost state between Φ1 and Φ2.

Iris features a variety of modalities. In this work we use two of them extensively. First, the

persistence modality, written �Φ, asserts that the assertion Φ is persistent, meaning in particular

that �Φ is duplicable. Second, the later modality, written ⊲Φ, asserts that Φ holds “one step of

computation later”.

We write ℓ ↦→ ®𝑣 to denote that ℓ points-to an array with contents ®𝑣 . We write ℓ ↦→� 𝑟 , with a

discarded fraction [Vindum and Birkedal 2021], to denote that ℓ points-to an immutable block 𝑟 (that

is, either a closure, an immutable pair, or an immutable sum). This latter assertion is persistent.

5.3 Taking Advantage of the Cyclic Approach with DisLog2
Moine et al. [2024] contributed DisLog, the first program logic for verifying disentanglement. DisLog

depends on the very definition of disentanglement, and uses the standard approach presented in

Section 2.1: when two tasks join, they form a new task with a fresh timestamp. This choice impacts

the logic: the weakest precondition (WP) modality of DisLog takes the form wp ⟨𝑡, 𝑒⟩ {𝜆 𝑡 ′ 𝑣 . Φ} and
asserts that the expression 𝑒 running on current timestamp 𝑡 is disentangled, and if the evaluation

of 𝑒 terminates, it does so on the end timestamp 𝑡 ′, with final value 𝑣 and satisfying the assertion Φ.
In particular, 𝑡 and 𝑡 ′ may not be the same, for example if 𝑒 contains a call to par.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:21

D-Load

⌜0 ≤ 𝑖 < | ®𝑤 | ∧ ®𝑤 (𝑖) = 𝑣⌝ ℓ ↦→𝑝 ®𝑤 𝑣 � 𝑡

wp ⟨𝑡, ℓ .[𝑖]⟩ {𝜆 𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ ℓ ↦→𝑝 ®𝑤}

D-LoadOOB

⌜𝑖 < 0 ∨ 𝑖 ≥ | ®𝑤 |⌝ ℓ ↦→𝑝 ®𝑤
wp ⟨𝑡, ℓ .[𝑖]⟩ {𝜆 _. ⊥}

D-Par

∀𝑡1 𝑡2 . 𝑡 ≼ 𝑡1 ∗ 𝑡 ≼ 𝑡2 ⇛ ∃Ψ1 Ψ2 . wp ⟨𝑡1, ℓ1 [()]⟩ {Ψ1} ∗ wp ⟨𝑡2, ℓ2 [()]⟩ {Ψ2} ∗(
∀𝑣1 𝑣2 ℓ . Ψ1 𝑣1 ∗ Ψ2 𝑣2 ∗ 𝑡1 ≼ 𝑡 ∗ 𝑡2 ≼ 𝑡 ∗ ℓ ↦→ (𝑣1, 𝑣2) −∗ Ψ ℓ

)
wp ⟨𝑡, par(ℓ1, ℓ2)⟩ {Ψ}

D-ClockMono

𝑣 � 𝑡1 𝑡1 ≼ 𝑡2

𝑣 � 𝑡2

Fig. 15. Selected rules of DisLog2

To take advantage of the cyclic approach for disentanglement (§2.1), we had to develop a new

version of DisLog, yielding the logic DisLog2. DisLog2 allows reusing the timestamp of the forking

task for the child tasks upon join. As a result, the current timestamp and end timestamp of an

expression always coincide, allowing us to simplify the WP of DisLog by simply removing the end

timestamp parameter of the postcondition. Formally, the WP of DisLog2 then takes the form

wp ⟨𝑡, 𝑒⟩ {𝜆 𝑣. Φ}

and asserts that the expression 𝑒 running on timestamp 𝑡 is disentangled, and if the evaluation

of 𝑒 terminates, it does so with final value 𝑣 and satisfying the assertion Φ. In contrast to DisLog,

DisLog2 tolerate out-of-bounds accesses to cater to the TypeDis type system which only enforces

disentanglement. (In practice, DisLog2 is parameterized by a boolean flag which can be used to

enable or disable inboundedness proof obligations; when such obligations are enabled, DisLog2

has the same expressive power as DisLog.) Otherwise, DisLog2 adapts all the ideas of DisLog.

In particular, the logic features two persistent assertions related to timestamps. First, the clock

assertion ℓ � 𝑡 asserts that location ℓ was allocated by a task that precedes 𝑡 . Similarly, 𝑣 � 𝑡 has the

same meaning, if 𝑣 is a location ℓ , or otherwise denotes ⌜𝑇𝑟𝑢𝑒⌝. Second, the precedence assertion
𝑡1 ≼ 𝑡2 asserts that task 𝑡1 precedes task 𝑡2 in the underlying computation graph. The precedence

assertion forms a pre-order: it is reflexive and transitive. Crucially, the clock assertion is monotonic
with respect to the precedence pre-order [Moine et al. 2024].

In the remainder of the paper, we write 𝑡1 ≈ 𝑡2 to denote that 𝑡1 and 𝑡2 are equivalent, that is,
both 𝑡1 ≼ 𝑡2 and 𝑡2 ≼ 𝑡1 hold.

Selected rules of DisLog2. Figure 15 presents four key rules of DisLog2. The premise of these rules

are implicitly separated by a separating conjunction ∗.
D-Load, targeting a load operation on the array ℓ at offset 𝑖 on task 𝑡 , ensures disentanglement.

Indeed, the rule requires that ℓ points-to the array ®𝑤 and that the offset 𝑖 in ®𝑤 corresponds to the

value 𝑣 . It also requires the assertion 𝑣 � 𝑡 , witnessing that if 𝑣 is a location, then this location must

have been allocated by a preceding task. D-LoadOOB is unusual for a program logic and reflects

that we purposefully allow for OOB accesses in verified programs, because our type system does.

Because an OOB access results in a crash, the postcondition of the WP is ⌜𝐹𝑎𝑙𝑠𝑒⌝, allowing the

user to conclude anything. D-Par is at the heart of DisLog2 and allows verifying a parallel call

to two closures ℓ1 and ℓ2 at timestamp 𝑡 . The premise universally quantifies over 𝑡1 and 𝑡2, the

two timestamps of the forked tasks, that are both preceded by 𝑡 . Then, the user must provide two

postconditions, Ψ1 and Ψ2 for the two tasks, and verify that the closure call ℓ1 [()] (resp. ℓ2 [()])
is safe at timestamp 𝑡1 (resp. 𝑡2) with postcondition Ψ1 (resp. Ψ2). The second line of the premise

requires the user to prove that, after the two tasks terminated and joined, the initial postcondition

Ψ ℓ must hold, for some location ℓ pointing to the pair (𝑣1, 𝑣2) where 𝑣1 is the final result of 𝑡1 and𝑣2
of 𝑡2. D-ClockMono formalizes monotonicity of the clock assertion.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:22 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

The adequacy theorem of DisLog2. The adequacy theorem of DisLog2 asserts that if 𝑒 can be

verified using the program logic, then 𝑒 is always safe and disentangled.

Theorem 5.2 (Adeqacy of DisLog2). If wp ⟨𝑡, 𝑒⟩ {Ψ} holds then 𝑒 is always safe and dis-
entangled.

Proof. Similar to the adequacy proof of DisLog; see our mechanization [Moine et al. 2025a]. □

5.4 A Logical Relation
The very heart of the soundness proof of TypeDis is a logical relation, set up in Iris using DisLog2.

Logical relations [Girard 1972; Pitts and Stark 1998; Plotkin 1973; Statman 1985; Tait 1967] are a

technique that allows one to prescribe properties of valid programs in terms of their behavior, as
opposed to solely their static properties. We adopt the semantic approach [Constable et al. 1986;

Martin-Löf 1982; Timany et al. 2024], which admits terms that are not necessarily (syntactically) well-

typed to be an inhabitant of the logical relation and has been successfully deployed in the RustBelt

project [Jung et al. 2018a], for example. Our logical relation is presented in the Appendix [Moine

et al. 2025b]; we comment next on the high-level ideas.

As usual, our (unary) logical relation gives the interpretation of a type 𝜌 with kind★ as a predicate

on values. Values satisfying the predicate are said to inhabit the relation. Because our types have

higher kinds, our logical relation includes predicates on timestamps. In particular, the interpretation

of a type 𝜌 with kind 𝜅 is a function taking 𝜅 timestamp arguments (where ★ indicates zero

timestamps and ⊲⊳⇒ 𝜅 indicates 𝜅 + 1 timestamps) and producing a predicate over values.

The presented relations involve two sorts of closing substitutions for variables occurring in

types. First, a timestamp substitution, written ℎ, which is a finite map from timestamp variables 𝛿

to concrete timestamps 𝑡 . Second, a type substitution, written𝑚, which is a finite map from type

variables to tuples of a kind 𝜅 and a tuple of two functions depending on 𝜅. The first function

takes 𝜅 timestamps and produces a predicate over values; it represents the semantic interpretation

of the type by which the variable will be instantiated. The second function takes 𝜅 timestamps

and produces a timestamp; its result corresponds to the root timestamp of the type by which the

variable will be instantiated. The interpretation of a type guarantees that the type only contains

up-pointers (§2.2), that is, the interpretation of 𝜎@𝛿 ensures that if 𝛿 ′ appears in 𝜎 , then 𝛿 ′ precedes
𝛿 . To enforce this invariant, our approach makes use of transitivity: the interpretation of 𝜎@𝛿

ensures that, for each outermost 𝜌 encountered in 𝜎 , the root timestamp of 𝜌—conceptually, the
outermost timestamp in 𝜌—precedes 𝛿 . Because this invariant is enforced at each stage of the type

interpretation, and because precedence is transitive, we guarantee that there are only up-pointers.

The Appendix [Moine et al. 2025b] presents a function that computes the root timestamp of a type

and defines the assertion root 𝜌 ≼ℎ
𝑚 𝛿 , asserting that the root timestamp of 𝜌 comes before 𝛿 with

the mappings ℎ and𝑚.

The main relation is the type relation J𝜌Kℎ𝑚 𝜅 . It produces a predicate waiting for 𝜅 timestamps, a

value 𝑣 , and captures that 𝑣 is of type 𝜌 , given the timestamp mapping ℎ and type mapping𝑚.

Apart from timestamps, the seasoned reader of logical relations in Iris will not be surprised by

our approach, as it follows the standard recipe [Timany et al. 2024]: a recursive type is interpreted

using a guarded fixpoint, universal type quantification is interpreted as a universal quantification

in the logic, an array is interpreted using an invariant, and an arrow using WP. Moreover, every

predicate is designed such that it is persistent.

5.5 Interpretation of Typing Judgments
We now focus on the interpretation of the TypeDis typing judgment, paving our way to state the

fundamental theorem of the logical relation. Figure 16 gives its interpretation, appealing to theWP of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:23

JΔ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K ≜ �∀ℎ𝑚𝑢. ⌜dom Γ = dom𝑢⌝ −∗
⌜∀𝛼 𝜅 Ψ 𝑟 . 𝑚(𝛼) = (𝜅, (Ψ, 𝑟)) =⇒ proper𝜅 Ψ ∧ regular𝜅 𝑟⌝ −∗∗(𝑡1,𝑡2) ∈Δ ℎ(𝑡1) ≼ ℎ(𝑡2) −∗∗(𝑥,𝜌) ∈Γ, (𝑥,𝑣) ∈𝑢 (root 𝜌 ≼ℎ

𝑚 𝛿 ∗ J𝜌Kℎ𝑚 ★ 𝑣) −∗
∀𝑡 . 𝑡 ≈ ℎ(𝛿) −∗ wp ⟨𝑡, [𝑢/]𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ

𝑚 𝛿 ∗ J𝜌Kℎ𝑚 ★ 𝑣}

Fig. 16. The interpretation of typing judgments

DisLog2. For the judgment with logical graph Δ, type environment Γ, and expression 𝑒 with type 𝜌 at
timestamp 𝛿 , the interpretation starts by quantifying over three closing substitutions: the timestamp

mappingℎ, the type mapping𝑚, as well as a variable mapping 𝑢, a map from term variables to values.

The variable mapping must have the same domain as the environment Γ. The type mapping𝑚

is restricted such that type variables are given only a proper interpretation (via the proper𝜅 Ψ
property) and a regular root function (via the regular𝜅 𝑟 property). The property proper𝜅 Ψ captures

that any timestamp parameter of Ψ can be replaced by an equivalent one. The property regular𝜅 𝑟
captures that the function 𝑟 either ignores all its arguments or returns one of them. These two

properties are needed in order to prove the correctness of T-Par.

Then, the interpretation requires that Δ is a valid logical graph, that is, each edge between two

timestamp variables in Δ corresponds to an edge between their mapping. The interpretation also

requires that, for every variable 𝑥 that has type 𝜌 in Γ and is associated to value 𝑣 in 𝑢, the root

timestamp of 𝑣 precedes the interpretation of 𝛿 and 𝑣 inhabits the interpretation of 𝜌 . Next, the

definition quantifies over a timestamp 𝑡 , equivalent to the interpretation of 𝛿 , and asserts WP at

timestamp 𝑡 of the expression 𝑒 in which variables are substituted by values following the variable

mapping 𝑢. The postcondition asserts that the root timestamp of 𝑣 precedes the interpretation of 𝛿

and that the returned value 𝑣 inhabits the interpretation of type 𝜌 .

Having the interpretation of typing judgment defined, we can state the fundamental theorem,

ensuring that syntactically well-typed terms (§4) inhabit the logical relation.

Theorem 5.3 (Fundamental). If Δ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 holds, then JΔ | Γ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K holds too.

Proof. By induction over the typing derivation; see our mechanization [Moine et al. 2025a]. □

5.6 Putting Pieces Together: The Soundness Proof of TypeDis
We can finally unveil the proof of the soundness Theorem 5.1 of TypeDis, which we formally

establish in Rocq. Let us suppose that ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 holds. Making use of the fundamental

Theorem 5.3, we deduce that J ∅ | ∅ ⊢ 𝑒 : 𝜌 ⊲ 𝛿 K holds too. Unfolding the definition (Fig-

ure 16), instantiating the timestamp mapping ℎ with the singleton map [𝛿 := 𝑡0]—for some

initial timestamp 𝑡0—and the type mapping 𝑚 and the variable mapping 𝑢 with empty maps,

and simplifying trivial premises concerning these mappings, we are left with the statement

∀𝑡 . 𝑡 ≈ 𝑡0 −∗ wp ⟨𝑡, 𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ
𝑚 𝛿 ∗ J𝜌K[𝛿 :=𝑡0]∅ ★ 𝑣}. Instantiating 𝑡 with 𝑡0, we deduce

that wp ⟨𝑡0, 𝑒⟩ {𝜆 𝑣. root 𝜌 ≼ℎ
𝑚 𝛿 ∗ J𝜌K[𝛿 :=𝑡0]∅ ★ 𝑣} holds. We finally use the adequacy Theorem 5.2

of DisLog2 and deduce that 𝑒 is always safe and disentangled.

6 Case Studies
We evaluate the usefulness of TypeDis by type-checking several case studies in Rocq using the

rules presented in Section 4.

We verify the examples presented in the “Key Ideas” Section 2. These examples illustrate: simple

mechanics of the type system (§2.2), backtiming (§2.3), and subtiming (§2.4). In particular, the last

two examples, build and selectmap, illustrate the use of TypeDis with higher-order functions and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:24 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

parfor ≜ 𝜇 𝑓 . 𝜆[𝑎;𝑏;𝑘] .
if 𝑏 ≤ 𝑎 then () else if (𝑏 − 𝑎) ==1 then 𝑘 [𝑎]
else let𝑚𝑖𝑑 = 𝑎 + ((𝑏 − 𝑎)/2) in par(𝑓 [𝑎;𝑚𝑖𝑑 ;𝑘], 𝑓 [𝑚𝑖𝑑 ;𝑏;𝑘])

parfor : ∀𝛿 𝛿𝑘 . int→ int→ (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . int→𝛿 ′ ())@𝛿 𝑓 →𝛿 ()

Fig. 17. Implementation and type of the parfor primitive

a recursive immutable type (a binary tree with integer leaves). For more details than the intuitions

we already gave for these examples, we refer the reader to our formalization [Moine et al. 2025a].

Our largest case study consists of the typing of a parallel deduplication algorithm via concurrent

hashing. This example is a case study of DisLog [Moine et al. 2024, §6.3]. Deduplication consists of

removing duplicates from an array—something that can be done efficiently in a parallel, disentangled

setting [Westrick 2022]. The algorithm relies on a folklore [VerifyThis 2022] concurrent, lock-free,

fixed-capacity hash set using open addressing and linear probing to handle collisions [Knuth 1998].

The main deduplication function allocates a new hash set, inserts in parallel every element into the

hash set using a parallel for loop, and finally returns the elements of the set. We first comment on

the parallel for loop (§6.1) and then on the main deduplication algorithm (§6.2).

6.1 The Parallel For Loop
Our implementation of the parallel for loop appears in the upper part of Figure 17 and is a direct

translation of MaPLe standard library’s implementation [Acar et al. 2020], The function parfor
takes three arguments: a lower bound 𝑎, a higher bound 𝑏, and a closure 𝑘 to execute at each index

between these bounds. The function parfor is defined recursively: it returns immediately if 𝑏 ≤ 𝑎,
executes the closure 𝑘 [𝑎] if 𝑏 − 𝑎 = 1, and otherwise calls itself recursively in parallel, splitting the

range in two. The type we give to parfor appears in the lower part of Figure 17, and is as one could

expect. Indeed, the type quantifies over two timestamps 𝛿 , at which parfor will be called, and 𝛿𝑘 ,
the (irrelevant) timestamp of the closure. The function then requires two integers, and a closure

that will be called at some timestamp 𝛿 ′ that succeeds 𝛿 .
The type-checking of parfor is non-trivial because it involves polymorphic recursion. Indeed,

parfor’s type universally quantifies over the calling timestamp, but calls itself recursively after a par—

that is, at another (subsequent) timestamp. TypeDis supports natively such a pattern thanks to T-Abs.

Interestingly, polymorphic recursion introduce a need for subtiming. Indeed, while type-checking

parfor’s body at current timestamp 𝛿 , the closure 𝑘 has type (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . int→𝛿 ′ ()). However, the
recursive call happens after a par, hence at a new current timestamp 𝛿1 such that 𝛿 ≼ 𝛿1. But in order

to type-check the recursive call, the user has to give to 𝑘 the type (∀𝛿 ′ 𝛿1 ≼ 𝛿 ′ . int→𝛿 ′ ())—notice
the difference between the precedence information on 𝛿 ′. This is a typical use of subtiming, and

because 𝛿 ≼ 𝛿1, we conclude using S-Abs.

6.2 Internals of the Deduplication Case Study
Let us now focus on the code for our deduplication algorithm, which appears in the upper part of

Figure 18. This code assumes a maximum size 𝐶 for the underlying hash set. The function dedup
takes three arguments: a hashing function ℎ, a dummy element 𝑑 in order to populate the result

array, and the array to deduplicate ℓ . The function first allocates the hash set 𝑎 and then calls in

parallel the add function for every index in ℓ . The function add consists of a CAS loop, that tries to

insert the element in the first available slot. Finally, dedup filters the remaining dummy elements 𝑑

using an omitted function filter_compact. Because it involves no fork or join, the function add
admits a simple polymorphic type, shown in the lower part of Figure 18, quantifying over the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:25

add ≜ 𝜆[ℎ;𝑎;𝑑 ;𝑥] .
let 𝑝𝑢𝑡 = 𝜇 𝑓 .𝜆[𝑖] .

if (CAS𝑎 𝑖 𝑑 𝑥 ∨ 𝑎.[𝑖] ==𝑥) then ()
else 𝑓 [(𝑖 + 1) mod 𝐶] in

𝑝𝑢𝑡 [ℎ [𝑥] mod 𝐶]

dedup ≜ 𝜆[ℎ;𝑑 ; ℓ] .
let 𝑎 = alloc 𝐶 𝑑 in

let 𝑘 = 𝜆[𝑖] . add [ℎ;𝑎;𝑑 ; ℓ .[𝑖]] in
parfor [0; length ℓ ;𝑘] ;
filter_compact [𝑎;𝑑]

add : ∀𝛼 :: ★.∀𝛿 𝛿1 𝛿2 . (𝛼 →𝛿 int)@𝛿1 → array(𝛼)@𝛿2 → 𝛼 → 𝛼 →𝛿 ()
dedup : ∀𝛼 :: ★.∀𝛿 𝛿1 𝛿2 . (∀𝛿 ′ 𝛿 ≼ 𝛿 ′ . 𝛼 →𝛿 ′ int)@𝛿1 → 𝛼 → array(𝛼)@𝛿2 →𝛿 array(𝛼)@𝛿

Fig. 18. Case study: deduplication of an array by concurrent hashing

type 𝛼 of the elements of the array to deduplicate, the calling timestamp 𝛿 and two timestamps 𝛿1
and 𝛿2. The first argument is a closure of a hashing function on 𝛼 that will be called at timestamp 𝛿 .

The second argument is the hash set, a array(𝛼). The third and fourth arguments are of type 𝛼 and

correspond to the dummy element and the element to insert, respectively.

Using this type for add, we are able to type-check dedupwith the type shown in the lower part of

Figure 18. This type quantifies again over the type 𝛼 of the elements of the array to deduplicate, and

then quantifies over 𝛿 , the calling timestamp, and 𝛿1 and 𝛿2, the (irrelevant) allocation timestamps

of the first and third argument, respectively. The first argument is a closure of a hashing function

on 𝛼 , that will be called at subsequent tasks 𝛿 ′. The second argument is a dummy element. The

third argument is the array to deduplicate. Again, type-checking dedup requires subtiming: the

add function expects a hashing function at its calling timestamp 𝛿 , whereas the supplied ℎ is more

general, because it is polymorphic with respect to its calling timestamp. We use subtiming (S-Abs

and S-Inst) to convert the latter into the former.

7 Related Work
Disentanglement. The specific property we consider in this paper is based on the definition by

Westrick et al. [2020] which was later formalized byMoine et al. [2024]. Most of the existing work on

disentanglement considers structured fork-join parallel code, as we do in this paper. More recently,

Arora et al. [2024] showed that disentanglement is applicable in a more general setting involving

parallel futures, and specifically prove deadlock-freedom in this setting. We plan to investigate

whether TypeDis could be extended to support futures.

Verification of Disentanglement. Two approaches to check for and/or verify disentanglement

have been proposed prior to TypeDis. First, as currently implemented in the MaPLe compiler, the

programmer can rely on a runtime entanglement detector [Westrick et al. 2022]. This approach

is similar in principle to dynamic race detection [Flanagan and Freund 2009]. In the case of

entanglement, dynamic detection has been shown to have low overhead, making it suitable for

automatic run-time management of entanglement [Arora et al. 2023]. However, run-time detection

cannot guarantee disentanglement due to the inherent non-determinism of entanglement, which

typically arises due to race conditions andmay ormay not occur in individual executions. The second

approach, as developed by Moine et al. [2024], is full-blown static verification of disentanglement

using a separation logic called DisLog, proven sound in Rocq. This approach can be used to

statically verify disentanglement for a wide variety of programs—for example, even for non-

deterministic programs that utilize intricate lock-free data structures in shared memory. However,

static verification with DisLog is difficult, requiring significant effort even to verify small examples.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:26 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

Region-based Systems. TypeDis associates timestamp variables with values in their types. Im-

mediately, we note similarities with region-based type and effect systems [Grossman et al. 2002;

Tofte et al. 2004; Tofte and Talpin 1997] which have also recently received attention in supporting

parallelism [Elsman and Henriksen 2023]. The timestamps in our setting are somewhat analogous

to regions, with parent-child relationships between timestamps and the up-pointer invariant of

TypeDis bearing resemblance to the stack discipline of region-based memory management systems.

However, there are a number of key differences. In region-based systems, allocations may occur

within any region, and all values within a region are all deallocated at the same moment; one chal-

lenge in such systems is statically predicting or conservatively bounding the lifetime of every value.

In contrast, in TypeDis, allocations only ever occur at the “current” timestamp, and timestamps

tell you nothing about deallocation—every value in our approach is dynamically garbage collected.

Each timestamp in TypeDis is associated with a task within a nested fork-join task structure, and

values with the same timestamp are all allocated by the same task (or one of its subtasks).

Possible Worlds Type Systems. Our type system falls into what can broadly be categorized as a

possible worlds type system. These type systems augment the typing judgment with world modalities

(in our case timestamp variables 𝛿) that occur as syntactic objects in propositions (a.k.a. types),

and typing is then carried out relative to an accessibility relation (in our case the logical graph Δ).
While our work is the first to contribute a possible worlds type system for disentanglement, world

modalities have been successfully used for other purposes. In the context of fork-join parallelism,

Muller et al. [2017] employed world modalities to track priorities of tasks and guarantee absence

of priority inversions, ensuring responsiveness and interactivity. While Muller et al. [2017] also

require their priorities to be partially ordered, as we require timestamps to be partially ordered,

their priorities are fixed, whereas ours are not. In the context of message-passing concurrency,

world modalities have been employed to verify deadlock-freedom [Balzer et al. 2019], domain

accessibility [Caires et al. 2019], and information flow control [Derakhshan et al. 2021, 2024]. This

line of work not only differs in underlying computation model, considering a process calculus, but

also adopts linear typing to control data races and non-determinism. While disentanglement does

not forbid races, adopting some form of linear typing may be an interesting avenue for future work,

to admit even more disentangled programs as well-typed, e.g. those with down-pointers.

Information Flow Control Type Systems. Information flow type systems [Sabelfeld and Myers

2003; Smith and Volpano 1998; Volpano et al. 1996] can also be viewed as representatives of possible

worlds type systems, where modalities capture confidentiality (or integrity) and pc labels, and the

accessibility relation is a lattice. Typically, modalities can change by typing. For example, when

type-checking the branches of an if statement the pc label is increased to the join of its current value

and the confidentiality label of the branching condition. A similar phenomenon happens in TypeDis

upon type-checking a fork, where the sibling threads are type-checked at a later timestamp. Besides

these similarities in techniques employed, the fundamental invariants preserved by type-checking

are different. In our setting it is the “no cross-pointers invariant”, whereas it is noninterference

for IFC type systems. As a result, the metatheory employed also differs: whereas we use a unary

logical relation, noninterference demands a binary logical relation. Such a binary logical relation

for termination-insensitive noninterference in the context of a sequential, higher-order language

with higher-order store, for example, has been contributed by Gregersen et al. [2021]. The authors

develop an IFC type system, in the spirit of Flow Caml [Pottier and Simonet 2003; Simonet 2003],

with label polymorphism, akin to our timestamp polymorphism. Like our work, the authors use the

semantic typing approach supported by the Iris separation logic framework. Similarly, the authors

support subtyping on labels, allowing a label to be raised in accordance with the lattice, akin to our

subtiming, in accordance with the precedence relation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

TypeDis: A Type System for Disentanglement 13:27

Type Systems for Parallelism and Concurrency. There has been significant work on developing

static techniques, especially type systems, to guarantee correctness and safety properties (such

as race-freedom, deadlock-freedom, determinism, etc.) for parallel and concurrent programs. For

example, the idea of ownership [Clarke et al. 1998; Dietl and Müller 2005; Müller 2002; Noble et al.

1998] has been exploited to rule out races and deadlocks among threads [Boyapati et al. 2002, 2003;

Boyapati and Rinard 2001]. Ownership is also enforced by linear type systems [Wadler 1990], which

rule out races by construction and have been successfully employed inmessage-passing concurrency

[Caires et al. 2019; Wadler 2012]. The approach has then been popularized by Rust [Klabnik and

Nichols 2023], in particular, focusing on statically restricting aliasing and mutability [Jung et al.

2018a], which in Rust takes the form of ownership and borrowing as well as reference-counted

mutexes for maximal flexibility. Recently flexible mode-based systems have been explored, as

present in the work on DRFCaml [Georges et al. 2025], which exploits modes (extending Lorenzen

et al. [2024]) to distinguish values that can and cannot be safely shared between threads. Other

systems leverage region-based techniques to restrict concurrent threads, ensuring safe disjoint

access to the heap with minimal annotations [Milano et al. 2022], or leveraging explicit annotations

to limit the set of permissible effects on shared parts of the heap [Bocchino Jr. et al. 2009].

Much of these related works focus on the hazards of concurrency: data races, race conditions,

non-determinism, and similar issues. Disentanglement (and by extension, TypeDis) focuses on

an equally important but different issue, namely, the performance of parallel programs. TypeDis

in particular is designed to allow for unrestricted sharing of immutable data (as demonstrated

in Section 2.4) mixed with disentangled sharing of mutable data (for example, in Section 6). This

support for data sharing is motivated by the implementation of efficient parallel algorithms, many

of which rely upon access to shared memory with irregular and/or data-dependent access patterns,

which are difficult to statically analyze for safety. For example, Abdi et al. [2024] find that many

standard implementations of parallel algorithms are rejected by the Rust type system, yet these

same implementations have been shown to be disentangled [Westrick et al. 2022]. We consider one

such implementation as a case study in Section 6 and confirm that it is typeable under TypeDis.

8 Conclusion and Future Work
Disentanglement is an important property of parallel programs, which can in particular serve

for improving performance. This paper introduces TypeDis, a static type system that proves

disentanglement. TypeDis annotates types with timestamps, recording for each object the task

that allocated it. Moreover, TypeDis supports iso-recursive types, as well as type and timestamp

polymorphism. TypeDis allows restamping the timestamps in types using a particular form of

subtyping we dub subtiming.
This paper focuses on type-checking, that is, given a program annotated with types, checking if

these types are valid. We are currently working on a prototype type-checker, written in OCaml.

An immediate direction for future work is type inference, that is, generating a valid type for a

program. For future work, we plan to use the framework of Odersky et al. [1999], which adapts

Hindley-Milner to a system with constrained universal quantification. We believe subtiming and

backtiming will be inferrable. One challenging case will be mixing polymorphic recursion with

par, which might require annotations in order to remain decidable (this is a known problem in

region-based type systems [Tofte and Birkedal 1998]).

Acknowledgments
We thank Umut A. Acar for sharing his insights during early design discussions and helping us

shape the context for this work. We also thank Kashish Raimalani for reviewing an initial draft,

and we thank the anonymous reviewers for their helpful comments.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

13:28 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

References
Javad Abdi, Gilead Posluns, Guozheng Zhang, Boxuan Wang, and Mark C. Jeffrey. 2024. When Is Parallelism Fearless and

Zero-Cost with Rust?. In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2024, Nantes, France, June 17-21, 2024, Kunal Agrawal and Erez Petrank (Eds.). ACM, 27–40. doi:10.1145/3626183.3659966

Umut A. Acar, Jatin Arora, Matthew Fluet, Ram Raghunathan, Sam Westrick, and Rohan Yadav. 2020. MPL: A high-

performance compiler for Parallel ML. https://github.com/MPLLang/mpl

Umut A. Acar, Guy E. Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan. 2015. Coupling Memory and

Computation for Locality Management. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6,
2015, Asilomar, California, USA (LIPIcs, Vol. 32), Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner,

and Greg Morrisett (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1–14. doi:10.4230/LIPICS.SNAPL.2015.1

Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. 2016. Dag-calculus: a calculus for parallel

computation. In International Conference on Functional Programming (ICFP). 18–32. https://doi.org/10.1145/2951913.

2951946

Daniel Anderson, Guy E. Blelloch, LaxmanDhulipala, Magdalen Dobson, and Yihan Sun. 2022. The problem-based benchmark

suite (PBBS), V2. In PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee, Kunal Agrawal, and Michael F. Spear (Eds.). ACM, 445–447.

doi:10.1145/3503221.3508422

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press. http://www.cambridge.org/

9780521033114

Jatin Arora, Stefan K. Muller, and Umut A. Acar. 2024. Disentanglement with Futures, State, and Interaction. Proc. ACM
Program. Lang. 8, POPL (2024), 1569–1599. doi:10.1145/3632895

Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably space-efficient parallel functional programming. Proc. ACM
Program. Lang. 5, POPL (2021), 1–33. doi:10.1145/3434299

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Programming with Effects. Proc. ACM
Program. Lang. 7, PLDI (2023), 1558–1583. doi:10.1145/3591284

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types. In

28th European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 11423). Springer, 611–639.
doi:10.1007/978-3-030-17184-1_22

Henk P. Barendregt. 1984. The Lambda Calculus, Its Syntax and Semantics. Elsevier. http://www.elsevier.com/wps/find/

bookdescription.cws_home/501727/description

Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey,

Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect system for deterministic parallel Java.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,

97–116. doi:10.1145/1640089.1640097

Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. 2002. Ownership types for safe programming: preventing data

races and deadlocks. In ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA). ACM, 211–230. doi:10.1145/582419.582440

Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. 2003. Ownership types for object encapsulation. In 30th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 213–223. doi:10.1145/604131.604156

Chandrasekhar Boyapati and Martin C. Rinard. 2001. A Parameterized Type System for Race-Free Java Programs. In ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). ACM, 56–69.

doi:10.1145/504282.504287

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2019. Domain-Aware Session Types. In 30th International
Conference on Concurrency Theory (CONCUR) (LIPIcs, Vol. 140). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

39:1–39:17. doi:10.4230/LIPICS.CONCUR.2019.39

David G. Clarke, John Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA). ACM, 48–64. doi:10.1145/

286936.286947

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, Robert Harper, Douglas J. Howe, Todd B.

Knoblock, Nax Paul Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. 1986. Implementing Mathematics
with the Nuprl Proof Development System. Prentice Hall. http://dl.acm.org/citation.cfm?id=10510

Paulo Emílio de Vilhena. 2022. Proof of Programs with Effect Handlers. Theses. Université Paris Cité. https://inria.hal.

science/tel-03891381

Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. 2021. Session Logical Relations for Noninterference. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society, 1–14. doi:10.1109/LICS52264.2021.

9470654

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

https://doi.org/10.1145/3626183.3659966
https://github.com/MPLLang/mpl
https://doi.org/10.4230/LIPICS.SNAPL.2015.1
https://doi.org/10.1145/2951913.2951946
https://doi.org/10.1145/2951913.2951946
https://doi.org/10.1145/3503221.3508422
http://www.cambridge.org/9780521033114
http://www.cambridge.org/9780521033114
https://doi.org/10.1145/3632895
https://doi.org/10.1145/3434299
https://doi.org/10.1145/3591284
https://doi.org/10.1007/978-3-030-17184-1_22
http://www.elsevier.com/wps/find/bookdescription.cws_home/501727/description
http://www.elsevier.com/wps/find/bookdescription.cws_home/501727/description
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/604131.604156
https://doi.org/10.1145/504282.504287
https://doi.org/10.4230/LIPICS.CONCUR.2019.39
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/286936.286947
http://dl.acm.org/citation.cfm?id=10510
https://inria.hal.science/tel-03891381
https://inria.hal.science/tel-03891381
https://doi.org/10.1109/LICS52264.2021.9470654
https://doi.org/10.1109/LICS52264.2021.9470654

TypeDis: A Type System for Disentanglement 13:29

Farzaneh Derakhshan, Stephanie Balzer, and Yue Yao. 2024. Regrading Policies for Flexible Information Flow Control in

Session-Typed Concurrency. In 38th European Conference on Object-Oriented Programming (ECOOP) (LIPIcs, Vol. 313).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 11:1–11:29. doi:10.4230/LIPICS.ECOOP.2024.11

Werner Dietl and Peter Müller. 2005. Universes: Lightweight Ownership for JML. Journal of Object Technology 4, 8 (2005),

5–32. doi:10.5381/JOT.2005.4.8.A1

Martin Elsman and Troels Henriksen. 2023. Parallelism in a Region Inference Context. Proc. ACM Program. Lang. 7, PLDI
(2023), 884–906. doi:10.1145/3591256

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic race detection. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM, 121–133. doi:10.1145/1542476.1542490

Aïna Linn Georges, Benjamin Peters, Laila Elbeheiry, Leo White, Stephen Dolan, Richard A. Eisenberg, Chris Casinghino,

François Pottier, and Derek Dreyer. 2025. Data Race Freedom à la Mode. Proc. ACM Program. Lang. 9, POPL (2025),

656–686. doi:10.1145/3704859

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Thèse
d’État. Université Paris 7. https://girard.perso.math.cnrs.fr/These.pdf

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized logical relations for

termination-insensitive noninterference. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. doi:10.1145/3434291

Dan Grossman, J. Gregory Morrisett, Trevor Jim, Michael W. Hicks, Yanling Wang, and James Cheney. 2002. Region-Based

Memory Management in Cyclone. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, Jens Knoop and Laurie J. Hendren (Eds.). ACM, 282–293.

doi:10.1145/512529.512563

Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, andMatthew Fluet. 2018. Hierarchical memory management

for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.). ACM, 81–93. doi:10.1145/

3178487.3178494

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of

the Rust Programming Language. Proceedings of the ACM on Programming Languages 2, POPL (2018), 66:1–66:34.

https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Steve Klabnik and Carol Nichols. 2023. The Rust programming language. No Starch Press.

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching. Addison Wesley

Longman Publishing Co., Inc., USA.

Peter J. Landin. 1964. The Mechanical Evaluation of Expressions. Computer Journal 6, 4 (Jan. 1964), 308–320.
Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with Modal

Memory Management. Proc. ACM Program. Lang. 8, ICFP (2024), 485–514. doi:10.1145/3674642

PerMartin-Löf. 1982. ConstructiveMathematics and Computer Programming. In Logic, Methodology and Philosophy of Science
VI. Studies in Logic and the Foundations of Mathematics, Vol. 104. Elsevier, 153–175. doi:10.1016/S0049-237X(09)70189-2

Mae Milano, Joshua Turcotti, and Andrew C. Myers. 2022. A flexible type system for fearless concurrency. In PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, USA, June
13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 458–473. doi:10.1145/3519939.3523443

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (Dec. 1978), 348–375.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276

Alexandre Moine, Stephanie Balzer, Alex Xu, and SamWestrick. 2025a. TypeDis: A Type System for Disentanglement (Artifact).
doi:10.5281/zenodo.17336385

Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick. 2025b. TypeDis: A Type System for Disentanglement

(Extended Version). (Nov. 2025). https://arxiv.org/abs/2511.23358

Alexandre Moine, Sam Westrick, and Stephanie Balzer. 2024. DisLog: A Separation Logic for Disentanglement. Proc. ACM
Program. Lang. 8, POPL, Article 11 (Jan. 2024), 30 pages. doi:10.1145/3632853

Peter Müller. 2002. Modular Specification and Verification of Object-Oriented Programs. Lecture Notes in Computer Science,

Vol. 2262. Springer. doi:10.1007/3-540-45651-1

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2017. Responsive parallel computation: bridging competitive and

cooperative threading. In 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
ACM, 677–692. doi:10.1145/3062341.3062370

James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In 12th European Conference on Object-Oriented
Programming (ECOOP) (Lecture Notes in Computer Science, Vol. 1445). Springer, 158–185. doi:10.1007/BFB0054091

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

https://doi.org/10.4230/LIPICS.ECOOP.2024.11
https://doi.org/10.5381/JOT.2005.4.8.A1
https://doi.org/10.1145/3591256
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3704859
https://girard.perso.math.cnrs.fr/These.pdf
https://doi.org/10.1145/3434291
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/3178487.3178494
https://doi.org/10.1145/3178487.3178494
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1145/3674642
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1145/3519939.3523443
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276
https://doi.org/10.5281/zenodo.17336385
https://arxiv.org/abs/2511.23358
https://doi.org/10.1145/3632853
https://doi.org/10.1007/3-540-45651-1
https://doi.org/10.1145/3062341.3062370
https://doi.org/10.1007/BFB0054091

13:30 Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. Theory and Practice of
Object Systems 5, 1 (1999), 35–55. https://infoscience.epfl.ch/handle/20.500.14299/221715

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.

Andrew M. Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. Higher Order Operational
Techniques in Semantics (HOOTS) (1998), 227–273.

Gordon D. Plotkin. 1973. Lambda-definability and logical relations. Technical Report. University of Edinburgh.

François Pottier and Vincent Simonet. 2003. Information flow inference for ML. ACM Transactions on Programming
Languages and Systems (TOPLAS) 25, 1 (2003), 117–158. doi:10.1145/596980.596983

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy E. Blelloch. 2016. Hierarchical memory management for

parallel programs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP
2016, Nara, Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 392–406.

doi:10.1145/2951913.2951935

Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based Information-Flow Security. IEEE J. Sel. Areas Commun. 21, 1
(2003), 5–19.

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri, and Kanat

Tangwongsan. 2012. Brief announcement: the problem based benchmark suite. In 24th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA, June 25-27, 2012, Guy E. Blelloch and Maurice Herlihy (Eds.).

ACM, 68–70. doi:10.1145/2312005.2312018

Vincent Simonet. 2003. Flow Caml in a Nutshell. In 1st APPSEM-II Workshop, Graham Hutton (Ed.).

Geoffrey Smith and Dennis M. Volpano. 1998. Secure Information Flow in a Multi-Threaded Imperative Language. In POPL.
ACM, 355–364.

Richard Statman. 1985. Logical Relations and the Typed 𝜆-calculus. Information and Control 65, 2/3 (1985), 85–97. doi:10.
1016/S0019-9958(85)80001-2

William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. The Journal of Symbolic Logic 32, 2 (1967),
198–212. http://www.jstor.org/stable/2271658

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. J. ACM
71, 6, Article 40 (Nov. 2024), 75 pages. doi:10.1145/3676954

Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (1998), 724–767.
doi:10.1145/291891.291894

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A Retrospective on Region-Based Memory

Management. Higher-Order and Symbolic Computation 17, 3 (Sept. 2004), 245–265. https://doi.org/10.1023/B:

LISP.0000029446.78563.a4

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information and Computation 132, 2 (1997),

109–176. http://www.irisa.fr/prive/talpin/papers/ic97.pdf

VerifyThis. 2022. Challenge 3 - The World’s Simplest Lock-Free Hash Set. https://ethz.ch/content/dam/ethz/special-

interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue. In Certified Programs and
Proofs (CPP). 76–90. https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf

Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System for Secure Flow Analysis. J. Comput.
Secur. 4, 2/3 (1996), 167–188.

Philip Wadler. 1990. Linear Types Can Change the World!. In IFIP Working Group 2.2, 2.3 on Programming Concepts and
Methods. North-Holland, 561.

Philip Wadler. 2012. Propositions as Sessions. In ACM SIGPLAN International Conference on Functional Programming (ICFP).
ACM, 273–286. doi:10.1145/2364527.2364568

Sam Westrick. 2022. Efficient and Scalable Parallel Functional Programming through Disentanglement. Ph. D. Dissertation.
Department of Computer Science, Carnegie Mellon University.

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection with Near-Zero Cost. Proc. ACM Program.
Lang. 6, ICFP, Article 115 (aug 2022), 32 pages. doi:10.1145/3547646

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in Nested-Parallel Programs. Proc.
ACM Program. Lang. 4, POPL, Article 47 (jan 2020), 32 pages. doi:10.1145/3371115

Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and Symbolic Computation 8, 4 (Dec. 1995), 343–356.

http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 13. Publication date: January 2026.

https://infoscience.epfl.ch/handle/20.500.14299/221715
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/2951913.2951935
https://doi.org/10.1145/2312005.2312018
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1016/S0019-9958(85)80001-2
http://www.jstor.org/stable/2271658
https://doi.org/10.1145/3676954
https://doi.org/10.1145/291891.291894
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
http://www.irisa.fr/prive/talpin/papers/ic97.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/3547646
https://doi.org/10.1145/3371115
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 Preliminaries
	2.2 TypeDis 101: Timestamps in Types
	2.3 Backtiming the Result of a par
	2.4 Making Something New out of Something Old with Subtiming

	3 Syntax and Semantics
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Definition of Disentanglement

	4 Type System
	4.1 Syntax of Types
	4.2 The Typing Judgment
	4.3 Typing Rules for Heap Blocks
	4.4 Abstractions and Timestamp Polymorphism
	4.5 The Par Rule
	4.6 Recursive Types and Type Polymorphism
	4.7 Subtiming

	5 Soundness
	5.1 Soundness Statement of TypeDis
	5.2 Iris Primer
	5.3 Taking Advantage of the Cyclic Approach with DisLog2
	5.4 A Logical Relation
	5.5 Interpretation of Typing Judgments
	5.6 Putting Pieces Together: The Soundness Proof of TypeDis

	6 Case Studies
	6.1 The Parallel For Loop
	6.2 Internals of the Deduplication Case Study

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

