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Nondeterminism makes parallel programs challenging to write and reason about. To avoid these challenges,
researchers have developed techniques for internally deterministic parallel programming, in which the steps
of a parallel computation proceed in a deterministic way. Internal determinism is useful because it lets a
programmer reason about a program as if it executed in a sequential order. However, no verification framework
exists to exploit this property and simplify formal reasoning about internally deterministic programs.

To capture the essence of why internally deterministic programs should be easier to reason about, this
paper defines a property called schedule-independent safety. A program satisfies schedule-independent safety,
if, to show that the program is safe across all orderings, it suffices to show that one terminating execution of
the program is safe. We then present a separation logic called Musketeer for proving that a program satisfies
schedule-independent safety. Once a parallel program has been shown to satisfy schedule-independent safety,
we can verify it with a new logic called Angelic, which allows one to dynamically select and verify just one
sequential ordering of the program.

Using Musketeer, we prove the soundness of MiniDet, an affine type system for enforcing internal deter-
minism. MiniDet supports several core algorithmic primitives for internally deterministic programming that
have been identified in the research literature, including a deterministic version of a concurrent hash set.
Because any syntactically well-typed MiniDet program satisfies schedule-independent safety, we can apply
Angelic to verify such programs.

All results in this paper have been verified in Rocq using the Iris separation logic framework.

CCS Concepts: • Theory of computation→ Program verification; Separation logic; • Software and its
engineering→ Parallel programming languages.
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1 Introduction
One of the most challenging aspects of concurrent and parallel programming is dealing with
nondeterminism. Nondeterminism complicates almost every aspect of trying to make programs
correct. Bugs often arise because programmers struggle to reason about the set of all possible non-
deterministic outcomes and interleavings. Finding those bugs becomes more difficult, as testing can
only cover a subset of possible outcomes. Even when bugs are found, nondeterminism makes them
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harder to reproduce and debug. These challenges also extend to formal methods for such programs,
where nondeterminism makes various analyses and verification techniques more complex.

For these reasons, there has long been interest in methods for deterministic parallel programming.
A range of algorithmic techniques [Blelloch et al. 2012], language designs [Blelloch et al. 1994;
Kuper et al. 2014a], type systems [Bocchino Jr. et al. 2009], specialized operating systems and
runtimes [Aviram et al. 2010], and various other approaches have been developed for making
parallel programs deterministic. Researchers in this area have long noted that determinism is not
simply a binary property, and in fact there is a spectrum of degrees of determinism. On one end
of the spectrum is external determinism, which simply says that the input/output behavior of a
program is deterministic. However, in an externally deterministic program, even if the final output
is deterministic, the manner in which the computation takes place may be highly nondeterministic
and vary across runs. As a result, external determinism does not eliminate all of the programming
challenges associated with nondeterminism. For example, a programmer who attaches a debugger
to an externally deterministic program may still see different internal behaviors across different
runs, complicating efforts to understand the program’s behavior.
A stronger property, called internal determinism, requires in addition that the structure and

internal steps of a computation are deterministic. More formally, in an internally deterministic
program, for a given input, every execution will generate the same computation graph, a trace that
captures the dependencies of operations and their results. With this strong form of determinism, we
can reason about the program’s behavior by considering any one sequential traversal of operations
in the computation graph. This is useful, because as Blelloch et al. [2012] put it:

In addition to returning deterministic results, internal determinism has many advan-
tages including ease of reasoning about the code, ease of verifying correctness, ease of
debugging, ease of defining invariants, ease of defining good coverage for testing, and
ease of formally, informally and experimentally reasoning about performance.

Although ensuring internal determinism might seem expensive, Blelloch et al. [2012] have shown
that by using a core set of algorithmic techniques and building blocks, it is possible to develop fast
and scalable internally deterministic algorithms for a range of benchmark problems.

In this paper, we explore the meaning and benefits of internal determinism from the perspective of
program verification. If one of the advantages of internal determinism is that it simplifies reasoning
about programs, then it should be possible to exploit this property in the form of new reasoning
rules in a program logic. To do so, we first define a property we call schedule-independent safety,
which holds for a parallel program 𝑒 if, to verify that every execution of 𝑒 is safe (i.e. never triggers
undefined behavior or a failing assert), it suffices to prove that at least one interleaving of operations
in 𝑒 is terminating and safe. Internal determinism implies schedule-independent safety, and it is
this property that makes reasoning about internally deterministic programs simpler. Schedule-
independent safety recalls the motto of Dumas’ Three Musketeers, “all for one and one for all”: the
safety of all interleavings amounts to the safety of one of them. Building on this observation, we
develop Musketeer, a separation logic for proving that a program satisfies schedule-independent
safety. Although Musketeer is formulated as a unary program logic, schedule-independent safety is
a ∀∀ hyperproperty [Clarkson and Schneider 2010], since it relates safety of any chosen execution
of a program 𝑒 to all other executions of 𝑒 . Thus, to prove the soundness of Musketeer, we encode
Musketeer triples into a new relational logic called ChainedLog. In contrast to most prior relational
concurrent separation logics, which are restricted to ∀∃ hyperproperties, ChainedLog supports ∀∀
hyperproperties using a judgement we call a chained triple.
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Intuitively, the high-level reasoning rules of Musketeer restrict the user to verify only internally-
deterministic programs. However, while internally deterministic programs always satisfy schedule-
independent safety, the converse is false: a program may be nondeterministic because it observes
actions from concurrent tasks, but it may do so without jeopardizing safety. In order to verify such
programs (§7.2, §7.3), we use the fact that Musketeer is defined in terms of the more flexible and
more complex ChainedLog, and drop down to this low-level logic to conduct the proof.

We next explore how to exploit schedule-independent safety to simplify verification of programs.
To that end, we present a logic called Angelic that allows one to angelically select and verify one
sequential ordering of operations in a parallel program. Angelic is sound to apply to programs
that satisfy schedule-independent safety because the safety and termination of the one ordering
verified during the proof will imply safety for all other executions. This is in contrast to standard
concurrent separation logics, in which one must consider all possible orderings during a proof.

Using these logics, we verify a number of examples from the literature on internal determinism
and related properties. First, we show how to use Musketeer to prove properties about language-
based approaches for enforcing internal determinism. In particular, because Musketeer is a higher-
order impredicative logic, Musketeer can encode logical relations models for type systems that are
designed to enforce internal determinism. We start by applying this to a simple ownership-based
affine type system we call MiniDet. The resulting logical relations model for MiniDet shows that
every well-typed program satisfies schedule-independent safety. Next we use Musketeer to prove
specifications for priority writes and deterministic concurrent hash sets, two of the core primitives
that Blelloch et al. [2012] use in several of their examples of internally deterministic algorithms.
Using these specifications, we extend MiniDet and its logical relations model with typing rules for
priority writes and hash sets, showing that schedule-independent safety is preserved.

Finally, putting these pieces together, we turn to parallel array deduplication, one of the example
benchmark problems considered by Blelloch et al. [2012]. We first show that an implementation
of the algorithm they propose for this problem can be syntactically-typed in MiniDet, thereby
showing that it is schedule-independent safe. Next, we use Angelic to verify a correctness property
for this algorithm. Although the algorithm is written using a parallel for-loop that does concurrent
insertions into a hash set, by using Angelic, we can reason as if the parallel loop was a standard,
sequential loop, thereby simplifying verification.

Contributions. The contributions of this paper are the following:
• We identify schedule-independent safety as a key property of deterministic parallel programs.
• We present Musketeer, a separation logic for proving that a program satisfies schedule-
independent safety, meant to be used as a tool for proving automatic approaches correct.
• We present Angelic, a separation logic for proving that one interleaving safely terminates.
• We use Musketeer to verify properties of MiniDet, an affine type system guaranteeing
schedule-independent safety.
• We verify that priority writes and a deterministic concurrent hash set satisfy schedule-
independent safety using Musketeer, and then use this property to verify a deduplication
algorithm using Angelic.
• We formally verify all the presented results [Moine et al. 2025a], including the soundness of
the logics and the examples, in the Rocq prover using the Iris framework [Jung et al. 2018].

2 Key Ideas
In this section, we first give a simple motivating example (§2.1), describe some of the core concepts
behind how Musketeer guarantees schedule-independent safety (§2.2), and conclude by showing
some of the rules of Angelic that allow for reasoning sequentially about a parallel program (§2.3).
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M-Assert
{⊤} assert 𝑣 {𝜆𝑤 _. ⌜𝑤 = () ∧ 𝑣 = true⌝}

M-KSplit
counter 𝑣 (𝑞1 + 𝑞2) (𝑖1 + 𝑖2) ⊣⊢ counter 𝑣 𝑞1 𝑖1 ∗ counter 𝑣 𝑞2 𝑖2

M-KRef
{⊤} ref 𝑖 {𝜆𝑣 _. counter 𝑣 1 𝑖}

M-KAdd
{counter 𝑣 𝑞 𝑖} atomic_add 𝑣 𝑗 {𝜆_ _. counter 𝑣 𝑞 (𝑖 + 𝑗)}

M-KGet {counter 𝑣 1 𝑖} get 𝑣 {𝜆𝑤 _. ⌜𝑤 = 𝑖⌝ ∗ counter 𝑣 1 𝑖}

M-Par
{𝑃1} 𝑒1 {𝑄1} {𝑃2} 𝑒2 {𝑄2}

{𝑃1 ∗ 𝑃2} par 𝑒1 𝑒2 {𝜆𝑣 𝑥 . ∃𝑣1 𝑣2 𝑥1 𝑥2 . ⌜𝑣 = (𝑣1, 𝑣2) ∧ 𝑥 = (𝑥1, 𝑥2)⌝ ∗𝑄1 𝑣1 𝑥1 ∗𝑄2 𝑣2 𝑥2}

Fig. 1. Reasoning Rules for a Concurrent Counter and Key Reasoning Rules of Musketeer

2.1 A Motivating Example
Our example program is named dumas and appears below:

dumas ≜ 𝜆𝑛. let 𝑟 = ref 0 in
par (𝜆_. atomic_add 𝑟 1802) (𝜆_. atomic_add 𝑟 42);
assert (get 𝑟 == 𝑛)

The dumas program takes an argument 𝑛. It first allocates a reference 𝑟 initialized to 0, and then
calls in parallel two closures, one that atomically adds 1802 to 𝑟 , and the other that atomically adds
42. After the parallel phase, the function asserts that the content of 𝑟 is equal to 𝑛.

Imagine we wish to prove that (dumas 1844) is safe—that is, for every interleaving, the program
will never get stuck, and in particular the assertion will succeed. Of course, many existing concurrent
separation logics can easily prove this. In such logics, one can use an invariant assertion to reason
about the shared access to 𝑟 by the two parallel threads. This invariant would ensure that, no matter
which order the threads perform their additions, after both have finished 𝑟 will contain 1844.

We propose an alternate approach that simplifies reasoning by exploiting the internal determinism
in programs like dumas. In our approach, we first prove in a light-weight way that, for any given
value of 𝑛, the order of the parallel additions in (dumas𝑛) does not affect the outcome of the assert.
Then, to prove safety of (dumas𝑛) for the specific value of 𝑛 = 1844, we can just pick one possible
ordering and verify safety of that ordering.

2.2 Verifying Schedule-Independent Safety with Musketeer
Our first contribution isMusketeer, a logic for proving that a program satisfies schedule-independent
safety, i.e. that safety of any one complete execution implies safety of all possible executions.
Although Musketeer is itself a program logic, we stress that Musketeer is not meant to be used
directly. Rather, Musketeer is a kind of intermediate logic designed for proving the soundness of
other light-weight, automatic approaches of ensuring schedule-independent safety such as type
systems. For instance, our main case study focuses on using Musketeer to show the soundness of
an affine type system guaranteeing schedule-independent safety (§7). Nevertheless, for the sake of
explaining the ideas behind Musketeer, here we explain the reasoning rules that would allow one
to verify manually the schedule-independent safety of (dumas𝑛) for all 𝑛.

Key reasoning rules. Musketeer takes the form of a unary separation logic with triples written
{𝑃} 𝑒 {𝑄}, where 𝑃 is a precondition, 𝑒 the program being verified and 𝑄 the postcondition. The
postcondition 𝑄 is of the form 𝜆𝑣 𝑥 . 𝑅, where 𝑣 is the value being returned by the execution of
𝑒 and 𝑥 is a ghost return value. We explain ghost return values in detail later, but for now, they
can be thought of as a special way to existentially quantify variables in the postcondition. This
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Musketeer triple guarantees the following hyper-property: “if one execution of 𝑒 is safe starting
from a heap satisfying 𝑃 and terminates, then every execution of 𝑒 is safe starting from a heap
satisfying 𝑃 and all terminating executions will end in a heap satisfying 𝑄”. The upper part of
Figure 1 shows the main reasoning rules we use for our example (in these rules, the horizontal
bar is an implication in the meta-logic). While the assertions and rules of Musketeer are similar to
standard separation logic rules, there are two key differences. First, Musketeer does not provide the
usual disjunction or existential elimination rules from separation logic. That is, to prove a triple of
the form {𝑃1∨𝑃2} 𝑒 {𝑄}, we cannot in general do case analysis on the precondition and reduce this
to proving {𝑃1} 𝑒 {𝑄} and {𝑃2} 𝑒 {𝑄}. As we will see later, this restriction is necessary because the
imprecision in disjunctions and existentials can encode nondeterministic behavior, where different
executions pick different witnesses.
Second, unlike traditional separation logic rules, rules in Musketeer do not guarantee safety.

Rather, they guarantee that safety is independent of scheduling. Thus, these rules often have weaker
preconditions than standard separation logic rules. The rule M-Assert illustrates this unusual
aspect of Musketeer. This rule applies to an expression assert 𝑣 , for an arbitrary value 𝑣 , and
has a trivial precondition. The postcondition has the pure facts that the return value𝑤 is () and
that 𝑣 equals true, i.e. that the assert did not fail. In contrast, the standard separation logic rule
for assert 𝑣 requires the user to prove that 𝑣 = true! This is because the expression assert 𝑣 is safe
only if the value 𝑣 = true (§3.2). So in conventional separation logic, where a triple implies safety,
the obligation is to show that the assert will be safe. However, in Musketeer, the rule M-Assert
corresponds exactly to the “motto” of Musketeer triples: if one execution of assert 𝑣 is safe and
terminates with value𝑤 such that𝑤 = () and 𝑣 = true, then every execution of assert 𝑣 is safe and
terminates with value𝑤 = (), and 𝑣 = true in those executions too. This property is true in a trivial
way: since the argument 𝑣 in assert 𝑣 is already a value, there is only one possible safe execution
for assert 𝑣 , and such an execution is possible only if 𝑣 = true.1

On the contrary, M-Par has a standard shape. This rule allows for verifying the parallel primitive
par 𝑒1 𝑒2. It requires the user to split the precondition into two parts 𝑃1 and 𝑃2, and to establish the
two triples {𝑃1} 𝑒1 {𝑄1} and {𝑃2} 𝑒2 {𝑄2}. The postcondition of the rule asserts that the value 𝑣
being returned is an immutable pair (𝑣1, 𝑣2) and the ghost return value 𝑥 is itself a pair of two ghost
return values 𝑥1 and 𝑥2, such that 𝑄 𝑣1 𝑥1 and 𝑄 𝑣2 𝑥2 hold.

Verifying dumas. The other rules in Figure 1 are the reasoning rules for the concurrent counter
we use in dumas. They make use of a predicate counter 𝑣 𝑞 𝑖 , asserting that 𝑣 is a concurrent
counter with fractional ownership 𝑞 ∈ (0; 1]. When 𝑞 = 1 the assertion represents exclusive
ownership of the counter, in which case 𝑖 is the value stored in the counter. Otherwise, it asserts
ownership of a partial share of the counter, and 𝑖 is the contribution added to the counter with
this share. M-KSplit shows that counter can be split into several shares. M-KRef verifies ref 𝑖 ,
has a trivial precondition and returns a counter initialized to 𝑖 with fraction 1. M-KAdd verifies
atomic_add 𝑣 𝑗 , where the share may have an arbitrary fraction. M-KGet verifies get 𝑣 , requiring
that counter 𝑣 1 𝑖 holds. The fraction is 1, preventing a concurrent add to 𝑣 . Such a concurrent
add would introduce nondeterminism based on the relative ordering of the add and get, thereby
breaking schedule-independent safety.
Using the above rules, we can show that for any 𝑛, {⊤} (dumas𝑛) {𝜆_ _. ⊤}, that is, without

precondition, the safety of (dumas𝑛) is scheduling independent. To do so, we use M-KRef to

1Note that Musketeer supports a bind rule (M-Bind, Figure 7) that allows the user to reason under an evaluation context.
Hence, Musketeer supports reasoning on an expression (assert𝑒 ) , for an arbitrary expression 𝑒 . To conduct such a proof,
the user should first apply M-Bind and focus on 𝑒 , show that 𝑒 itself satisfies schedule-independent safety, and then for any
value 𝑣 to which 𝑒 may reduce, apply M-Assert on the remaining expression (assert 𝑣) .
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⊤ ⊢ run (assert true) {𝜆𝑣. ⌜𝑣 = ()⌝} A-Assert
run 𝑒1 {𝜆𝑣1 . run 𝑒2 {𝜆𝑣2 .𝜓 (𝑣1, 𝑣2)}} ⊢ run (par 𝑒1 𝑒2) {𝜓 } A-ParSeqL
run 𝑒2 {𝜆𝑣2 . run 𝑒1 {𝜆𝑣1 .𝜓 (𝑣1, 𝑣2)}} ⊢ run (par 𝑒1 𝑒2) {𝜓 } A-ParSeqR

⊤ ⊢ run (ref 𝑖) {𝜆𝑣 . ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ 𝑖} A-Ref
ℓ ↦→ 𝑖 ⊢ run (atomic_add 𝑣 𝑗) {𝜆_. ℓ ↦→ (𝑖 + 𝑗)} A-Add
ℓ ↦→ 𝑖 ⊢ run (get ℓ) {𝜆𝑣 . ⌜𝑣 = 𝑖⌝ ∗ ℓ ↦→ 𝑖} A-Get

Fig. 2. Reasoning Rules for a Concurrent Counter and Key Reasoning Rules of Angelic

initialize the counter, getting counter 𝑟 1 0, which we split into counter 𝑟 (1/2) 0 ∗ counter 𝑟 (1/2) 0,
and then use M-Par. The counter 𝑟 (1/2) 0 given to each thread is sufficient to reason about the add
they each perform, and when we combine the shares they give back, we get counter 𝑟 1 1844. Using
M-KRef, we know that the get 𝑟 returns 1844, leaving us to show {⊤} assert (1844 == 𝑛) {𝜆_ _. ⊤}.

At this point, we would get stuck in a standard separation logic proof, because the standard rule
for assert would require us to prove that (1844 == 𝑛) evaluates to true. However, that would only
be the case if 𝑛 was in fact 1844. Instead, in Musketeer, we can use a rule showing that (1844 == 𝑛)
will evaluate to some Boolean 𝑏, regardless of what value 𝑛 is. At that point, we can use M-Assert
to conclude, even though we don’t know which value 𝑏 will take.

2.3 Verifying That One Interleaving is Safe and Terminates with Angelic
Now that we know that for all 𝑛, (dumas𝑛) satisfies schedule-independent safety, we can prove
that (dumas 1844) is safe just by showing that one interleaving is safe and terminates. For such a
simple example, it would suffice at this point to simply execute (dumas 1844) once and observe
one safe, terminating execution. We would then be able to conclude that all possible executions
are safe. However, for more complex examples (for example, programs that are parameterized by
an argument from an infinite type), we propose Angelic, a program logic for verifying that one
interleaving is safe and terminates.
Angelic uses a form of weakest-precondition reasoning, with specifications taking the form

𝜑 ⊢ run 𝑒 {𝜓 }, where 𝜑 is the precondition, 𝑒 the program being verified, and𝜓 the postcondition,
of the form 𝜆𝑣 . 𝜑 ′, where 𝑣 is the value being returned. In order to guarantee termination, Angelic’s
WP is defined as a total weakest precondition, that is, the WP is defined as a least fixpoint and does
not mention the so-called later modality. Such a construction is standard, Krebbers et al. [2025,
§4] describes the differences between a WP for partial and total correctness. Hence, run 𝑒 {𝜆_.⊤}
guarantees that one execution of 𝑒 is safe and terminates.
Figure 2 presents a few reasoning rules for Angelic. It is helpful to read these rules backwards,

applying the rule to a goal that matches the right side of the turnstile ⊢ and ending up with a goal of
proving the left side. A-Assert verifies an assertion, for which the argument must be the Boolean
true.2 Indeed, since Angelic guarantees safety, the proof burden is now to show that the assert
will succeed. A-ParSeqL says that to verify par 𝑒1 𝑒2, it suffices to verify sequentially 𝑒1 and then
𝑒2. A-ParSeqR lets us verify the reverse order instead, reasoning first about 𝑒2 and then 𝑒1. As we
will explain later on (§6.2), Angelic more generally allows for selecting any interleaving of steps
within 𝑒1 and 𝑒2 by “jumping” between the two expressions during a proof. Finally, A-Ref, A-Add
and A-Get shows how to reason on a concurrent counter. First, these rules do not involve any
new predicate, and manipulate the plain points-to assertion linked with the counter. Second, no
fractions or invariants are involved. Indeed, in Angelic, there is no need to split and join assertions,
as the parallel primitive can be verified sequentially in any order.
2Angelic supports a bind rule (A-Bind, Figure 11). As in Musketeer, A-Bind allows for reasoning under an evaluation
context. In combination with A-Assert, the user may reason about an expression (assert𝑒 ) for an arbitrary expression 𝑒 .
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Values V 𝑣 ::= () | 𝑏 ∈ {true, false} | 𝑖 ∈ Z | ℓ ∈ L | (𝑣, 𝑣) | 𝜇𝑓 𝑥 . 𝑒
Primitives ⊲⊳ ::= + | − | × | ÷ | mod | == | < | ≤ | > | ≥ | ∨ | ∧
Expressions 𝑒 ::= 𝑣,𝑤 value

𝑥 variable
let𝑥 = 𝑒 in 𝑒 sequencing
if 𝑒 then 𝑒 else 𝑒 conditional
𝜇𝑓 𝑥 . 𝑒 abstraction
𝑒 𝑒 call
𝑒 ⊲⊳ 𝑒 primitive operation
prod 𝑒 𝑒 product
proj𝑘∈{1,2} 𝑒 projections

assert 𝑒 assertion
alloc 𝑒 array allocation
𝑒 [𝑒] array load
𝑒 [𝑒]←𝑒 array store
length 𝑒 array length
par 𝑒 𝑒 parallelism
𝑒 | | 𝑒 active parallel tuple
CAS 𝑒 𝑒 𝑒 𝑒 compare-and-swap

Contexts 𝐾 ::= let𝑥 = □ in 𝑒 | if □ then 𝑒 else 𝑒 | alloc □ | length□ | assert□
| 𝑒 [□] | □[𝑣] | 𝑒 [𝑒]←□ | 𝑒 [□]←𝑣 | □[𝑣]←𝑣

| 𝑒 ⊲⊳ □ | □ ⊲⊳ 𝑣 | 𝑒 □ | □ 𝑣
| CAS 𝑒 𝑒 𝑒 □ | CAS 𝑒 𝑒 □ 𝑣 | CAS 𝑒 □ 𝑣 𝑣 | CAS□ 𝑣 𝑣 𝑣
| prod 𝑒 □ | prod□ 𝑣 | proj𝑘 □

Fig. 3. Syntax of MusketLang

Using these rules, we can verify that ⊢ run (dumas 1844) {𝜆_.⊤} holds, which implies that there
exists one interleaving that is safe and terminates. Combined with the fact that this program has
schedule-independent safety, we conclude that (dumas 1844) is always safe.

3 Syntax and Semantics
MusketLang is a call-by-value lambda calculus with mutable state and parallelism. We first present
its syntax (§3.1) and then its semantics (§3.2). MusketLang is similar to HeapLang, the language that
ships with Iris, except that it implements structured parallelism instead of fork-based concurrency.

3.1 Syntax
Figure 3 presents the syntax of MusketLang. A value 𝑣 ∈ V is either the unit value (), a Boolean 𝑏 ∈
{true, false}, an idealized integer 𝑖 ∈ Z, a location ℓ from an infinite set of locationsL, an immutable
product (𝑣1, 𝑣2) of two values, or a recursive function 𝜇𝑓 𝑥 . 𝑒 .

An expression 𝑒 describe a computation in MusketLang. Recursive functions are written 𝜇𝑓 𝑥 . 𝑒 .
For non-recursive functions, we write 𝜆𝑥. 𝑒 ≜ 𝜇_𝑥 . 𝑒 . We define functions with multiple arguments
as a chain of function constructors. Mutable state is available through arrays. Parallelism is available
through a primitive par 𝑒1 𝑒2, which evaluates to an active parallel tuple 𝑒1 | | 𝑒2. Such a tuple evaluates
the two expressions in parallel and returns their result as an immutable product. MusketLang also
has a primitive compare-and-swap instruction CAS 𝑒1 𝑒2 𝑒3 𝑒4, which targets an array entry and
has 4 parameters: the array location, the offset into the array, the old value and the new value.
References are defined as arrays of size 1 with the following operations:

ref ≜ 𝜆𝑥 . let 𝑟 = alloc 1 in 𝑟 [0]←𝑥 ; 𝑟 get ≜ 𝜆𝑟 . 𝑟 [0] set ≜ 𝜆𝑟 𝑣 . 𝑟 [0]←𝑣

An evaluation context 𝐾 describes an expression with a hole □ and dictates the right-to-left
evaluation order of MusketLang.

3.2 Semantics

Figure 4 presents the head reduction relation 𝑒 \𝜎 head−−−→ 𝑒′ \𝜎 ′, describing a single step of expres-
sion 𝑒 with store 𝜎 into expression 𝑒′ and store 𝜎 ′. A store is a map from location to arrays, modeled
as a list of values. We write ∅ for the empty store and 𝜎 (ℓ) for the list of values at location ℓ in 𝜎 .
To insert or update a location ℓ with array ®𝑣 in store 𝜎 , we write [ℓ := ®𝑣]𝜎 , and similarly write
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HeadIfTrue
if true then 𝑒1 else 𝑒2 \𝜎

head−−−−→ 𝑒1 \𝜎
HeadIfFalse
if false then 𝑒1 else 𝑒2 \𝜎

head−−−−→ 𝑒2 \𝜎

HeadCallPrim
𝑣1 ⊲⊳ 𝑣2

pure−−−→ 𝑣

𝑣1 ⊲⊳ 𝑣2 \𝜎
head−−−−→ 𝑣 \𝜎

HeadAbs
𝜇𝑓 𝑥 . 𝑒 \𝜎 head−−−−→ 𝜇𝑓 𝑥 . 𝑒 \𝜎

HeadLetVal
let𝑥 = 𝑣 in 𝑒 \𝜎 head−−−−→ [𝑣/𝑥]𝑒 \𝜎

HeadAlloc
0 ≤ 𝑖 ℓ ∉ dom(𝜎)

alloc 𝑖 \𝜎 head−−−−→ ℓ \ [ℓ := ()𝑖 ]𝜎
HeadLoad
𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |

®𝑤 (𝑖) = 𝑣

ℓ [𝑖] \𝜎 head−−−−→ 𝑣 \𝜎

HeadStore
𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 |

ℓ [𝑖]←𝑣 \𝜎 head−−−−→ () \ [ℓ := [𝑖 := 𝑣] ®𝑤]𝜎

HeadAssert
assert true \𝜎 head−−−−→ () \𝜎

HeadProduct
prod 𝑣1 𝑣2 \𝜎

head−−−−→ (𝑣1, 𝑣2) \𝜎

HeadProj
𝑘 ∈ {1; 2}

proj𝑘 (𝑣1, 𝑣2) \𝜎
head−−−−→ 𝑣𝑘 \𝜎

HeadLength
𝜎 (ℓ) = ®𝑤 𝑖 = | ®𝑤 |

length ℓ \𝜎 head−−−−→ 𝑖 \𝜎
HeadCASSucc

𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣

CAS ℓ 𝑖 𝑣 𝑣 ′ \𝜎 head−−−−→ true \ [ℓ := [𝑖 := 𝑣 ′] ®𝑤]𝜎

HeadCASFail
𝜎 (ℓ) = ®𝑤 0 ≤ 𝑖 < | ®𝑤 | ®𝑤 (𝑖) = 𝑣0 𝑣0 ≠ 𝑣

CAS ℓ 𝑖 𝑣 𝑣 ′ \𝜎 head−−−−→ false \𝜎
HeadCall
(𝜇𝑓 𝑥 . 𝑒) 𝑣 \𝜎 head−−−−→ [(𝜇𝑓 𝑥 . 𝑒)/𝑓 ] [𝑥/𝑣]𝑒 \𝜎

HeadFork
par 𝑒1 𝑒2 \𝜎

head−−−−→ 𝑒1 | | 𝑒2 \𝜎
HeadJoin

𝑣1 | | 𝑣2 \𝜎
head−−−−→ (𝑣1, 𝑣2) \𝜎

Fig. 4. Head Reduction Relation

StepHead
𝑒 \𝜎 head−−−−→ 𝑒′ \𝜎 ′

𝑒 \𝜎 −→ 𝑒′ \𝜎 ′

StepCtx
𝑒 \𝜎 −→ 𝑒′ \𝜎 ′

𝐾 ⟨𝑒⟩ \𝜎 −→ 𝐾 ⟨𝑒′⟩ \𝜎 ′

StepParL
𝑒1 \𝜎 −→ 𝑒′1 \𝜎 ′

𝑒1 | | 𝑒2 \𝜎 −→ 𝑒′1 | | 𝑒2 \𝜎 ′

StepParR
𝑒2 \𝜎 −→ 𝑒′2 \𝜎 ′

𝑒1 | | 𝑒2 \𝜎 −→ 𝑒1 | | 𝑒′2 \𝜎 ′

Fig. 5. Main Reduction Relation

[𝑖 :=𝑤]®𝑣 to update offset 𝑖 with value𝑤 in array ®𝑣 . The length of an array ®𝑣 is written as |®𝑣 |, and 𝑣𝑖
represents an array of size 𝑖 initialized with value 𝑣 .

Most of the reduction rules are standard. For example, HeadAlloc allocates an array initialized
with the unit value and returns its location, which is selected nondeterministically. HeadLoad and
HeadStore perform loads and stores, respectively. HeadCASSucc and HeadCASFail performs an
atomic compare-and-swap at an offset in an array. HeadAssert reduces an assert statement to a
unit if the asserted value is true; asserts of false are stuck expressions. HeadFork performs a fork,
converting a primitive par operation into an active parallel tuple. HeadJoin takes an active parallel
tuple where both sides have reached a value and converts it into an immutable product.
Figure 5 presents the main reduction relation 𝑒 \𝜎 −→ 𝑒′ \𝜎 ′, describing a parallel step of

computation, potentially under an evaluation context. StepHead performs a head step. StepCtx
performs a computation step under an evaluation context. StepParL and StepParR implement
parallelism: these two rules allow for the main reduction relation to perform nondeterministically
a step to the left or right side of an active parallel tuple, respectively.

We write the reflexive-transitive closure of the reduction relation as 𝑒 \𝜎 −→∗ 𝑒′ \𝜎 ′.
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RedHead
𝑒 \𝜎 head−−−−→ 𝑒′ \𝜎 ′

Red 𝑒 𝜎

RedCtx
Red 𝑒 𝜎

Red (𝐾 ⟨𝑒⟩) 𝜎

RedPar
𝑒1 ∉ V ∨ 𝑒2 ∉ V

𝑒1 ∉ V =⇒ Red 𝑒1 𝜎 𝑒2 ∉ V =⇒ Red 𝑒2 𝜎

Red (𝑒1 | | 𝑒2) 𝜎

Notstuck 𝑒 𝜎 ≜ 𝑒 ∈ V ∨ Red 𝑒 𝜎
Safe 𝑒 ≜ ∀𝑒′ 𝜎 ′ . (𝑒 \ ∅ −→∗ 𝑒′ \𝜎 ′) =⇒ Notstuck 𝑒′ 𝜎 ′

SISafety 𝑒 ≜ ∀𝑣 𝜎. (𝑒 \ ∅ −→∗ 𝑣 \𝜎) =⇒ Safe 𝑒

Fig. 6. Definition of the Red, Notstuck, Safe, and SISafety Predicates

4 A Separation Logic for Proving Schedule-Independent Safety
In this section, we present Musketeer in more detail. First, we define schedule-independent
safety (§4.1). Next, we introduce our notations for triples and assertions (§4.2) and then present
the reasoning rules of Musketeer (§4.3). We conclude with one of the main technical challenges in
working with Musketeer, the absence of a rule for eliminating existentials, and explain how we
overcame this with the novel concept of ghost return values (§4.4).

4.1 Definition of Schedule-Independent Safety
Let us make formal the definition of schedule-independent safety, that is, the property guaranteeing
our motto “if one execution of 𝑒 is safe and terminates, then every execution of 𝑒 is safe”.
What does it mean for a parallel program to be safe? We say that the configuration 𝑒 \𝜎 is

not stuck if either 𝑒 is a value, or every parallel task in 𝑒 that has not reached a value can take
a step—in the latter case, we call the configuration reducible. A program is defined to be safe if
every configuration it can reach is not stuck. In particular, if a program 𝑒 is safe, then no assertion
in 𝑒 can fail, since an assert of a false value is not reducible.
Figure 6 gives the formal definitions. The upper part of Figure 6 defines the property Red 𝑒 𝜎 ,

asserting that the configuration 𝑒 \𝜎 is reducible. RedHead asserts that if 𝑒 can take a head
step, then it is reducible. RedCtx asserts that the reducibility of an expression 𝐾 ⟨𝑒⟩ follows from
reducibility of 𝑒 . RedPar asserts that an active parallel tuple 𝑒1 | | 𝑒2 is reducible if at least one
sub-expression is not a value (otherwise, a join is possible), and each sub-expression that is not a
value is reducible. The lower part of Figure 6 asserts that the property Notstuck 𝑒 𝜎 holds if and
only if either 𝑒 is a value or Red 𝑒 𝜎 holds. Then, Safe 𝑒 says that if 𝑒 \ ∅ can reach 𝑒′ \𝜎 ′ in zero or
more steps, then Notstuck 𝑒′ 𝜎 ′. Finally, the main property SISafety 𝑒 , asserting that the safety of 𝑒
is schedule-independent, is defined. The property says that if some execution of 𝑒 reaches a value 𝑣 ,
then 𝑒 is safe. The soundness Theorem 4.1 of Musketeer guarantees that, for a verified program 𝑒 ,
the property SISafety 𝑒 holds.

4.2 Triples and Assertions
As we saw, Musketeer is a separation logic whose main judgement takes the form of a triple
{𝑃} 𝑒 {𝑄}. In this triple, 𝑃 is the precondition, 𝑒 the program being verified, and𝑄 the postcondition.
The postcondition is of the form 𝜆𝑣 𝑥 . 𝑃 ′, where 𝑣 is the value being returned by the execution
of 𝑒 and 𝑥 is a ghost return value returned by the verification of 𝑒 . Both 𝑃 and 𝑃 ′ are separation
logic assertions, and can be understood as heap predicates: they describe the content of a heap. We
write 𝑃 ∗ 𝑃 ′ for the separating conjunction, 𝑃 −∗ 𝑃 ′ for the separating implication and ⌜𝑃⌝ when
the property 𝑃 holds in the meta-logic (i.e. Rocq). Musketeer offers fractional [Bornat et al. 2005;
Boyland 2003] points-to assertions ℓ ↦→𝑞 ®𝑣 . This assertion says that the location ℓ points to the
array ®𝑣 with fraction 𝑞 ∈ (0; 1]. When 𝑞 = 1 we simply write ℓ ↦→ ®𝑣 . We use the term vProp for the
type of assertions that can be used in Musketeer pre/post-conditions.
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M-If
( 𝑣 = true =⇒ {𝑃} 𝑒1 {𝑄} )
( 𝑣 = false =⇒ {𝑃} 𝑒2 {𝑄} )
{𝑃} if 𝑣 then 𝑒1 else 𝑒2 {𝑄}

M-Conseq
𝑃 −∗ 𝑃 ′ {𝑃 ′} 𝑒 {𝑄 ′} ∀𝑣 𝑥 . 𝑄 𝑣 𝑥 −∗ 𝑄 ′ 𝑣 𝑥

{𝑃} 𝑒 {𝑄}

M-Val
𝑃 −∗ 𝑄 𝑣 𝑥
{𝑃} 𝑣 {𝑄}

M-Alloc {⊤} alloc 𝑤 {𝜆𝑣 (ℓ, 𝑖) . ⌜𝑣 = ℓ ∧ 𝑤 = 𝑖 ∧ 0 ≤ 𝑖⌝ ∗ ℓ ↦→ ()𝑖 }

M-Load {ℓ ↦→𝑞 ®𝑣} ℓ [𝑤] {𝜆𝑣 ′ 𝑖 . ⌜𝑤 = 𝑖 ∧ 0 ≤ 𝑖 < |®𝑣 | ∧ ®𝑣 (𝑖) = 𝑣 ′⌝ ∗ ℓ ↦→𝑞 ®𝑣}

M-Store {ℓ ↦→ ®𝑣} ℓ [𝑤]←𝑣 ′ {𝜆𝑣 ′′ 𝑖 . ⌜𝑣 ′′ = () ∧ 𝑤 = 𝑖 ∧ 0 ≤ 𝑖 < |®𝑣 |⌝ ∗ ℓ ↦→ [𝑖 := 𝑣 ′]®𝑣}
M-Bind
{𝑃} 𝑒 {𝜆𝑣 𝑥 . 𝑄 ′ 𝑣 𝑥} ∀𝑣 𝑥 . {𝑄 ′ 𝑣 𝑥} 𝐾 ⟨𝑣⟩ {𝑄}

{𝑃} 𝐾 ⟨𝑒⟩ {𝑄}

M-Frame
{𝑃} 𝑒 {𝑄}

{𝑃 ∗ 𝑃 ′} 𝑒 {𝜆𝑣 𝑥 . 𝑄 𝑣 𝑥 ∗ 𝑃 ′}

Fig. 7. Selected Reasoning Rules of Musketeer (extends Figure 1)

As described before, the Musketeer triple {𝑃} 𝑒 {𝑄} can be intuitively read as implying the
following hyper-property: “if one execution of 𝑒 is safe starting from a heap satisfying 𝑃 and
terminates, then every execution of 𝑒 is safe starting from a heap satisfying 𝑃 and all terminating
executions will end in a heap satisfying 𝑄”. If 𝑃 and 𝑄 are trivial, then this implies the SISafety
property. This is captured formally in the soundness theorem of the logic.

Theorem 4.1 (Soundness of Musketeer). If {⊤} 𝑒 {𝜆_ _. ⊤} holds, then SISafety 𝑒 holds.

At first, this soundness theorem might seem weak, since it focuses on safety of all executions.
What if we instead want to show that every terminating execution satisfies a stronger postcondi-
tion 𝑄? In general, Theorem 4.1 does not directly imply such a stronger property, but recall that in
MusketLang, safety implies that no assert fails. Thus, by annotating a program with appropriate
assert statements, we can encode various specifications in terms of safety. We illustrated this aspect
in our dumas example (§2.1), where safety implied that the return value across all executions would
equal a particular number.

Although Musketeer is a unary logic with judgements referring to a single program 𝑒 , the above
statement reveals that the judgements are relating together multiple executions of that program.
To make this work, under the hood, Musketeer’s vProp assertions describe not one but two heaps,
corresponding to two executions of the program. This has ramifications for some proof rules (§4.4).
Later, we will see how vProp assertions can be encoded into assertions in a relational logic that
makes these two different heaps more explicit.

4.3 Reasoning Rules for Musketeer
Figure 7 presents selected reasoning rules of Musketeer. Recall that because Musketeer triples do
not imply safety, these rules differ from familiar separation logic rules. We have previously seen
this in the rule M-Assert. A similar phenomenon happens in M-If, which targets the expression
if 𝑣 then 𝑒1 else 𝑒2. In standard separation logic, one must prove that 𝑣 is a Boolean, since otherwise
the if-statement would get stuck. However, in M-If, the user does not have to prove that 𝑣 is a
Boolean. Instead, the rule requires the user to verify the two sides of the if-statement under the
hypothesis that 𝑣 was the Boolean associated with the branch.
M-Alloc, M-Load and M-Store are similar to their standard separation logic counterparts,

except that they do not require the user to show that the allocation size or the loaded or stored
offset are valid integers. M-Alloc targets the expression alloc 𝑤 and has a trivial pre-condition.
The postcondition asserts that the value being returned is a location ℓ and that𝑤 is a non-negative
integer–recall that we can think of the ghost return value (ℓ, 𝑖) as if it were just a special way of
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existentially quantifying the variables ℓ and 𝑖 in the postcondition. The postcondition additionally
contains the points-to assertion ℓ ↦→ ()𝑖 asserting that ℓ points to the array of size 𝑖 initialized with
the unit value. M-Load and M-Store follow the same pattern.
M-Alloc might surprise the reader, since based on the interpretation of triples we described

above, the postcondition seems to imply that every execution of the allocation will return the same
location ℓ . Yet allocation in MusketLang is not deterministic. The resolution of this seeming contra-
diction, is that because MusketLang does not allow for “constructing” a location (e.g. transforming
an integer into a location), there is no way for the program to observe the nondeterminism of
allocations. Hence, from the reasoning point-of-view we can conduct the proof as if allocations
were made deterministically. This subtlety will appear in the model of Musketeer (§5.2).

M-Bind allows for reasoning under a context, and is very similar to the standard separation logic
Bind rule, except that in the second premise, we quantify over not just the possible return values 𝑣 ,
but also the ghost return value 𝑥 . M-Val allows for concluding a proof about a value, allowing the
user of the rule to pick an arbitrary ghost return value 𝑥 . M-Frame shows that Musketeer supports
framing. M-Conseq is the consequence rule of Musketeer: it allows for weakening the precondition
and strengthening the postcondition.

4.4 Existential Reasoning with Ghost Return Values
In separation logic, existential quantification is essential for modularity. Among other things,
it allows for concealing intermediate pointers behind an abstraction barrier. To see how this is
typically done, let us consider an example making use of the following indirection function that
creates a reference to a reference:

indirection ≜ 𝜆𝑣. ref (ref 𝑣)
Without using ghost return value, a possible specification for indirection 𝑣 would be:

{⊤} indirection 𝑣 {𝜆𝑤 _. ∃ℓ . ⌜𝑤 = ℓ⌝ ∗ ∃ℓ ′ . ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]}
In the above specification, the first existential quantification on ℓ does not hide or abstract over
anything, since the returned value𝑤 uniquely characterizes ℓ . However, the existential quantifica-
tion on ℓ ′ is more interesting, as it forms an abstraction barrier: it hides this intermediate location.
Let us now focus on a client of indirection, and try to verify the following triple:

{⊤} get (indirection 𝑣) {𝜆_ _. ⊤}
Making use of M-Bind and then applying the above specification for indirection, we obtain:

{∃ℓ . ⌜𝑤 = ℓ⌝ ∗ ∃ℓ ′ . ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]} get𝑤 {𝜆_ _. ⊤} (intermediate)
We now need to eliminate the existentials on ℓ and ℓ ′ in the precondition by introducing universally-
quantified variables in the meta-logic. More precisely, we would like to apply the following standard
separation logic rule:

∀𝑥 . {𝑃 𝑥} 𝑒 {𝑄}
{∃𝑥 . 𝑃 𝑥} 𝑒 {𝑄}

However, Musketeer does not support this rule. Indeed, although Musketeer is formulated as a unary
logic, it relates two executions of the same program. As we previously alluded to (§4.2), Musketeer’s
vProp assertions are, under the hood, tracking not one, but two heaps: one for each execution of
the same program. The fact that preconditions describe two heaps implies that the precondition
∃𝑥 . 𝑃 𝑥 has two interpretations—one for each heap of the two executions of 𝑒 being tracked by
the triple. Although the precondition holds in both heaps, the witness 𝑥 might differ between the
two. Whereas, in the premise of the above rule, quantifying over 𝑥 at the meta-level means that 𝑥
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is treated as the same in both executions. We present a detailed example of such a case in the
Appendix [Moine et al. 2025b].

As a result, Musketeer only supports the weaker rule M-ElimExist, allowing an existential to be
eliminated when the precondition guarantees that the witness is unique.

M-ElimExist
(∀𝑥 . 𝑃 𝑥 −∗ ⌜𝑈 𝑥⌝) (∀𝑥 𝑦.𝑈 𝑥 ∧𝑈 𝑦 =⇒ 𝑥 = 𝑦) (∀𝑥 . {𝑃 𝑥} 𝑒 {𝑄})

{∃𝑥 . 𝑃 𝑥} 𝑒 {𝑄}
For example, in the above intermediate triple, M-ElimExist would allow to eliminate the

quantification on ℓ , since it is uniquely characterized by𝑤 . However, M-ElimExist is tedious to
use in practice. Moreover, sometimes objects are not uniquely characterized by the precondition,
and yet are chosen deterministically, so that the witnesses ought to be the same in both executions.
For example, in the above intermediate triple, M-ElimExist cannot be used to eliminate the
quantification on ℓ ′.
To solve this issue, we introduce ghost return values. In a Musketeer triple {𝑃} 𝑒 {𝜆𝑣 𝑥 . 𝑄 𝑣 𝑥},

the ghost return value 𝑥 is an object (of an arbitrary type, which is formally a parameter of the triple)
that will eventually be chosen by the user when they apply M-Val. We think of the bound variable 𝑥
as if it were existentially quantified, but the key is that the eventual “witness” selected when using
M-Val will be the same across the two executions under consideration. As a result, instead of having
to use the weak M-ElimExist to eliminate 𝑥 , the ghost return value is automatically eliminated in
a strong way by M-Bind.

Let us go back to our indirection example. We prove a specification for indirection in which ℓ ′ is
bound in a ghost return value, instead of as an existential:

{⊤} indirection 𝑣 {𝜆𝑣 ℓ ′ . ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]}
As we use this specification to reason about (get (indirection 𝑣)), M-Bind will eliminate ℓ ′ auto-
matically, and we can use M-ElimExist to eliminate ℓ , reducing the proof to:

{ℓ ↦→ [ℓ ′] ∗ ℓ ′ ↦→ [𝑣]} get ℓ {𝜆_ _. ⊤}
allowing us to proceed and conclude, since there is no longer an existential to eliminate.

We extensively use ghost return values for the verification of MiniDet, our case study (§7). For
instance, we use a ghost return value to record the content of references in the typing environment.

5 Unchaining the Reasoning with Chained Triples
For an expression 𝑒 , a Musketeer triple guarantees the property “if one execution of 𝑒 is safe and
terminates, then every execution of 𝑒 is safe”. In order to justify the validity of the reasoning rules
for Musketeer triples, we generalize the above property and define an intermediate logic called
ChainedLog which targets two expressions 𝑒𝑙 and 𝑒𝑟 and guarantees the property “if one execution
of 𝑒𝑙 is safe and terminates, then every execution of 𝑒𝑟 is safe”. We first present chained triples (§5.1)
and present some associated reasoning rules (§5.2). Finally, we explain how we encode Musketeer
triples using chained triples (§5.3).

5.1 Chained Triples as a Generalization of Musketeer Triples
In ChainedLog, a chained triple takes the form:

{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
The assertions 𝜑𝑙 and 𝜑𝑟 are the preconditions of 𝑒𝑙 and 𝑒𝑟 , respectively. The assertions𝜓𝑙 and𝜓𝑟 are
both of the form 𝜆𝑣. 𝜑 , where 𝑣 is a return value, and are the postconditions of 𝑒𝑙 and 𝑒𝑟 , respectively.
Intuitively, the above chained triple says that, if there exists a reduction of 𝑒𝑙 starting from a heap
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satisfying 𝜑𝑙 , that is safe and terminates on a final heap with a value 𝑣𝑙 satisfying𝜓𝑙 𝑣𝑙 , then every
reduction of 𝑒𝑟 starting from a heap satisfying𝜑𝑟 is safe and if it terminates, it does so on a final heap
with a value 𝑣𝑟 satisfying𝜓𝑟 𝑣𝑟 . Moreover, chained triples guarantee determinism (for simplicity,
see our commentary of C-Par), that is, 𝑣𝑙 = 𝑣𝑟 . Formally, we have the following soundness theorem:

Theorem 5.1 (Soundness of Chained Triples). If {⊤} 𝑒𝑙 {_.⊤ | ⊤} 𝑒𝑟 {𝜆_.⊤} holds, and if
there exists a value 𝑣 and a store 𝜎 such that 𝑒𝑙 \ ∅ −→∗ 𝑣 \𝜎 , then the property Safe 𝑒𝑟 holds.

In particular, chained triples do not guarantee safety for 𝑒𝑙 , but they do guarantee safety for 𝑒𝑟 .
We call the triples “chained” because enjoy the following rule that allows us to chain facts from
one execution to the other:

C-Chain
{𝜑𝑙 } 𝑒𝑙 {𝜆𝑣𝑙 .𝜓𝑙 𝑣𝑙 ∗ 𝜑 | 𝜑𝑟 } 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 }
{𝜑𝑙 } 𝑒𝑙 {𝜆𝑣𝑙 .𝜓𝑙 𝑣𝑙 | 𝜑 −∗ 𝜑𝑟 } 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 }

It is best to read this rule from the bottom up. Below the line, using the precondition for 𝑒𝑟 requires
showing 𝜑 . Above the line, the rule allows us to discharge this assumption by showing that 𝜑 holds
in the postcondition of 𝑒𝑙 . That is, if some knowledge 𝜑 is needed in order to verify the safety of 𝑒𝑟 ,
then this knowledge can be gained from an execution of 𝑒𝑙 .

Assertions 𝜑 of ChainedLog are ground Iris assertions of type iProp. As previously intuited (§4.2),
they include two forms of points-to assertions, one for each side of the triple. We write ℓ ↦→𝑙𝑙𝑙

𝑞 ®𝑣
the points-to assertion for the left expression, and ℓ ↦→𝑟𝑟𝑟

𝑞 ®𝑣 for the right expression. Moreover,
ChainedLog makes use of a left-allocation token, written leftalloc ℓ . This (non-persistent) assertion
witnesses that ℓ has been allocated by the left expression and plays a key role for allocations.

5.2 Reasoning Rules for Chained Triples
Figure 8 presents selected reasoning rules for chained triples. Before commenting on these rules,
let us underline a caveat of chained triples, explaining in part why we only use them as a model for
Musketeer: chained triples do not support a Bind rule.3 Hence, non-structural rules for chained
triples explicitly mentions a stack of contexts, written ®𝐾 .

Let us again start with the rules for reasoning about an assertion. C-AssertL allows for reasoning
about assert 𝑣 on the left-hand side. Because this rule targets the left hand-side, there is no safety-
related proof obligation, hence the premise of the rule allows the user to suppose that 𝑣 = true.
C-AssertR is, on the contrary, similar to a standard separation logic rule for assertions: the assertion
must target a Boolean, and this Boolean must be true.
C-AllocL allows for reasoning about an allocation of an array on the left-hand side. Again,

there is no safety proof obligation, so the user gets to suppose that the argument of the allocation
is a non-negative integer. The precondition is then augmented with a points-to assertion to a
universally quantified location ℓ as well as the allocation token leftalloc ℓ . This latter assertion plays
a role in C-AllocR, which allows for reasoning about an allocation on the right-hand side. Indeed,
the assertion leftalloc ℓ appears in the precondition of the right-hand side. This assertion allows for
predicting the location allocated on the right-hand side. As a result, the premise of C-AllocR does
not universally quantify over the location allocated–the name ℓ is reused. The user can transmit a
leftalloc ℓ assertion from the left-hand side to the right-hand side using C-FrameL and C-Chain.

This rule may seem surprising, since allocation is nondeterministic in MusketLang, yet this rule
appears to ensure that the right-hand side allocation returns the same location as the left-hand
side. The key is that a right-hand points-to assertion of the form ℓ ↦→𝑟𝑟𝑟

𝑞 ®𝑣 does not mean that the

3The absence of a Bind rule comes from the chaining intention of these triples: the user needs to terminate the reasoning
on the whole left-hand side expression before reasoning on the right-hand side.
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C-AssertL
𝑣 = true =⇒ {𝜑𝑙 } ®𝐾𝑙 ⟨()⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨assert 𝑣⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-AssertR
{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨()⟩ {𝜓𝑟 }

{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 } ®𝐾𝑟 ⟨assert true⟩ {𝜓𝑟 }

C-AllocL
∀ℓ 𝑖 . 𝑣 = 𝑖 ∧ 0 ≤ 𝑖 =⇒ {𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙 ()𝑖 ∗ leftalloc ℓ} ®𝐾𝑙 ⟨ℓ⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

{𝜑𝑙 } ®𝐾𝑙 ⟨alloc 𝑣⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-AllocR
0 ≤ 𝑖 {𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟 ()𝑖 } ®𝐾𝑟 ⟨ℓ⟩ {𝜓𝑟 }
{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ leftalloc ℓ} ®𝐾𝑟 ⟨alloc 𝑖⟩ {𝜓𝑟 }

C-LoadL
∀𝑖 𝑤 . 𝑣 = 𝑖 ∧ 0 < 𝑖 ≤ |®𝑣 | ∧𝑤 = ®𝑣 (𝑖) =⇒ {𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙

𝑞 ®𝑣} ®𝐾𝑙 ⟨ ®𝑤⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

{𝜑𝑙 ∗ ℓ ↦→𝑙𝑙𝑙
𝑞 ®𝑣} ®𝐾𝑙 ⟨ℓ [𝑣]⟩ {𝜓𝑟 | 𝜑𝑟 } ®𝐾𝑟 ⟨𝑒𝑟 ⟩ {𝜓𝑟 }

C-LoadR
0 < 𝑖 ≤ |®𝑣 | ∧𝑤 = ®𝑣 (𝑖) {𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟

𝑞 ®𝑣} ®𝐾𝑟 ⟨𝑤⟩ {𝜓𝑟 }

{𝜑𝑙 } ®𝐾𝑙 ⟨𝑒𝑙 ⟩ {𝜓𝑙 | 𝜑𝑟 ∗ ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣} ®𝐾𝑟 ⟨ℓ [𝑖]⟩ {𝜓𝑟 }

C-Par

{𝜑𝑙1} 𝑒𝑙1 {𝜓𝑙1 | 𝜑𝑟1} 𝑒𝑟1 {𝜓𝑟1} {𝜑𝑙2} 𝑒𝑙2 {𝜓𝑙2 | 𝜑𝑟2} 𝑒𝑟2 {𝜓𝑟2}
∀𝑣1 𝑥1 𝑣2 𝑥2 . {𝜓𝑙1𝑣1 𝑥1 ∗ 𝜓𝑙2 𝑣2 𝑥2} ®𝐾𝑙 ⟨(𝑣1, 𝑣2)⟩ {𝜓𝑙 | 𝜓𝑟1𝑣1 𝑥1 ∗ 𝜓𝑟2 𝑣2 𝑥2} ®𝐾𝑟 ⟨(𝑣1, 𝑣2)⟩ {𝜓𝑟 }

{𝜑𝑙1 ∗ 𝜑𝑙2} ®𝐾𝑙 ⟨par 𝑒𝑙1 𝑒𝑙2⟩ {𝜓𝑙 | 𝜑𝑟1 ∗ 𝜑𝑟2} ®𝐾𝑟 ⟨par 𝑒𝑟1 𝑒𝑟2⟩ {𝜓𝑟 }

C-FrameL
{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }

{𝜑𝑙 ∗ 𝜑0} 𝑒𝑙 {𝜓𝑙 ∗ 𝜑0 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
C-FrameR

{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 } 𝑒𝑟 {𝜓𝑟 }
{𝜑𝑙 } 𝑒𝑙 {𝜓𝑙 | 𝜑𝑟 ∗ 𝜑0} 𝑒𝑟 {𝜆𝑣𝑟 .𝜓𝑟 𝑣𝑟 ∗ 𝜑0}

Fig. 8. Selected Reasoning Rules for Chained Triples

specific location ℓ has that value in the right-hand side execution. Rather, it means that there exists
some location which points to ®𝑣 on the right-hand side, and we can reason as if that location were
equivalent to ℓ , under some implicit permutation renaming of locations. In other words, as we
alluded to earlier in Section 4.3 when discussing the nondeterminism of allocation in Musketeer,
the logic ensures that the specific location of an allocation does not matter, since we do not support
casting integers to pointers.

Our approach of using the leftalloc ℓ assertion has two consequences. First, as we will see (§5.3),
it will allow us to define Musketeer triples in terms of chained triples where both the left- and
right-hand side coincide; such a definition would be impossible if the allocation on the left and on
the right-hand side could return different names. Second, it bounds the number of allocations on the
right-hand side by the number of allocations on the left-hand side. We posit that this limitation can
be lifted by distinguishing between synchronized locations, whose name come from the left-hand
side, and unsynchronized one. We were able to conduct our case studies without such a feature.
C-LoadL and C-LoadR follow the same spirit as the previous rules: the rule for the left-hand

side has no safety proof obligation, but the right-hand size has a standard separation logic shape.
C-Par targets a parallel primitive and is a synchronization point: both the left- and right-hand

side must face a parallel primitive. The rule mimics a standard Par rule on both sides at once. In
particular, it requires the user to split the preconditions of the left- and right-hand sides, which
will be given to the corresponding side of the active parallel pair. The bottom premise of C-Par
requires the user to verify the continuation, after the execution of the parallel primitive ended.
This premise also show the (external) determinism guaranteed by chained triple: the execution is
resumed on both sides with the same result of the parallel execution: the immutable pair (𝑣1, 𝑣2).
Note also that both sides agree on the ghost return values.
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vProp ≜ B→ iProp ∀𝑥 . 𝑃 𝑥 ≜ 𝜆𝑏.∀𝑥 . 𝑃 𝑥 𝑏
𝑃1 ∗ 𝑃2 ≜ 𝜆𝑏. 𝑃1 𝑏 ∗ 𝑃2 𝑏 ∃𝑥 . 𝑃 𝑥 ≜ 𝜆𝑏. ∃𝑥 . 𝑃 𝑥 𝑏
𝑃1 −∗ 𝑃2 ≜ 𝜆𝑏. 𝑃1 𝑏 −∗ 𝑃2 𝑏 ℓ ↦→𝑞 ®𝑣 ≜ 𝜆𝑏. if 𝑏 then ℓ ↦→𝑙𝑙𝑙

𝑞 ®𝑣 else ℓ ↦→𝑟𝑟𝑟
𝑞 ®𝑣

Fig. 9. Definition of vProp assertions

{𝑃} 𝑒 {𝑄} ≜ ∀ ®𝐾 𝜑𝑙 𝜑𝑟 𝜓𝑙 𝜓𝑟 .(
∀𝑣 𝑥 . {𝑄 𝑣 𝑥 true ∗ 𝜑𝑙 } ®𝐾 ⟨𝑣⟩ {𝜓𝑙 | 𝑄 𝑣 𝑥 false ∗ 𝜑𝑟 } ®𝐾 ⟨𝑣⟩ {𝜓𝑟 }

)
−∗

{𝑃 true ∗ 𝜑𝑙 } ®𝐾 ⟨𝑒⟩ {𝜓𝑙 | 𝑃 false ∗ 𝜑𝑟 } ®𝐾 ⟨𝑒⟩ {𝜓𝑟 }

Fig. 10. Definition of Musketeer Triples

5.3 Encoding Musketeer in ChainedLog
We now discuss how to encode Musketeer into ChainedLog. Recall that Musketeer’s assertions have
the type vProp. We encode these as functions from Booleans to iProp, the ground type of ChainedLog
assertions. The idea is that the vProp tracks two heaps, and we use the Boolean parameter of the
function to indicate which side of the ChainedLog the assertion is being interpreted to: true indicates
the left side, and false the right side. The formal definition of vProp assertions appears in Figure 9.
The Boolean parameter is threaded through the separating star and implication, and similarly for
the ∀ and ∃ quantifier. The points-to assertion simply cases over the Boolean and returns the left
or right version of the points-to. Entailment is defined as 𝑃1 ⊢ 𝑃2 ≜ ∀𝑏. 𝑃1 𝑏 ⊢ 𝑃2 𝑏.
Next, we can encode Musketeer triples as shown in Figure 10. A Musketeer triple {𝑃} 𝑒 {𝑄}

is mapped to a chained triple where both sides refer to the expression 𝑒 use the precondition 𝑃
instantiated with Booleans corresponding to the appropriate side. Because chained triples do not
support a bind rule, the encoding is written in a continuation passing style: rather than having 𝑄
in the post-condition of the chained triple, we instead quantify over an evaluation context ®𝐾 that
represents an arbitrary continuation to run after 𝑒 . This continuation is assumed to satisfy a chained
tripled in which 𝑄 occurs in the preconditions. We additionally quantify over several assertions 𝜑𝑙 ,
𝜑𝑟 ,𝜓𝑙 , and𝜓𝑟 that are used to represent additional resources used by the continuation.

6 A Separation Logic for Verifying One Interleaving
We now return to Angelic, our program logic verifying that one interleaving of a MusketLang
program is safe and terminates. We first present the assertions of Angelic (§6.1) and then present
selected reasoning rules (§6.2).

6.1 Assertions of Angelic
Assertions of Angelic are Iris assertions of type iProp, written 𝜑 . The fractional points-to assertion
of Angelic takes the form ℓ ↦→𝑞 ®𝑣 (while we reuse the syntax of the points-to assertion from
Musketeer, the two assertions are different—recall that Angelic and Musketeer are totally disjoint).
A key aspect of Angelic is that this logic has two reasoning modes. First, the running mode

takes the form run 𝑒 {𝜓 }, where 𝑒 is the expression being logically “run” and𝜓 is a postcondition,
The assertion run 𝑒 {𝜓 } is close to a weakest-precondition (WP). In fact, it enjoys all the rules of a
standard separation logic WP. However, the running mode enjoys additional rules that allow one
to dynamically “select” and verify just one interleaving. This selection is made possible thanks to a
second mode, that we call the scheduler mode. The scheduler mode involves two key assertions.
First, 𝔤𝔬𝔞𝔩 is an opaque assertion, intuitively representing the proof obligation to verify the whole
program. Second, the assertion yielded𝜋 𝑒 asserts the ownership of the task 𝜋 , and that this task
yielded facing expression 𝑒 .
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A-Alloc
⌜0 ≤ 𝑖⌝

run (alloc 𝑖) {𝜆𝑣 . ∃ℓ . ℓ ↦→ ()𝑖 }

A-Load
⌜0 ≤ 𝑖 < |®𝑣 |⌝ ℓ ↦→𝑞 ®𝑣

run (ℓ [𝑖]) {𝑤. ⌜𝑤 = ®𝑣 (𝑖)⌝ ∗ ℓ ↦→𝑞 ®𝑣}

A-Bind
run 𝑒 {𝜆𝑣. run (𝐾 ⟨𝑣⟩) {𝜓 }}

run (𝐾 ⟨𝑒⟩) {𝜓 }

A-Store
⌜0 ≤ 𝑖 < |®𝑣 |⌝ ℓ ↦→®𝑣

run (ℓ [𝑖]←𝑣 ′) {𝑤. ⌜𝑤 = ()⌝ ∗ ℓ ↦→ [𝑖 := 𝑣 ′]®𝑣}

A-Call
run ( [𝜇𝑓 𝑥 . 𝑒/𝑓 ] [𝑣/𝑥]𝑒) {𝜓 }

run (𝜇𝑓 𝑥 . 𝑒) 𝑣 {𝜓 }

A-Conseq
run 𝑒 {𝜓 ′}

( ∀𝑣 . 𝜓 ′ 𝑣 −∗ 𝜓 𝑣 )
run 𝑒 {𝜓 }

Yield
∀𝜋. yielded𝜋 𝑒 −∗ (∀𝑣 . yielded𝜋 𝑣 −∗ 𝜓 𝑣 −∗ 𝔤𝔬𝔞𝔩) −∗ 𝔤𝔬𝔞𝔩

run 𝑒 {𝜓 }

Resume
yielded𝜋 𝑒 run 𝑒 {𝜆𝑣 . yielded𝜋 𝑣 −∗ 𝔤𝔬𝔞𝔩}

𝔤𝔬𝔞𝔩

Fork
∀𝜋1 𝜋2 . yielded𝜋1 𝑒1 −∗ yielded𝜋2 𝑒2 −∗ (∀𝑣1 𝑣2 . yielded𝜋1 𝑣1 −∗ yielded𝜋2 𝑣2 −∗ 𝜓 (𝑣1, 𝑣2) −∗ 𝔤𝔬𝔞𝔩) −∗ 𝔤𝔬𝔞𝔩

run (par 𝑒1 𝑒2) {𝜓 }

Fig. 11. Selected Reasoning Rules of Angelic (extends Figure 2)

The logic satisfies the following soundness theorem:

Theorem 6.1 (Soundness of Angelic). If run 𝑒 {𝜆_.⊤} holds, then there exists a value 𝑣 and a
store 𝜎 such that 𝑒 \ ∅ −→∗ 𝑣 \𝜎 .

6.2 Reasoning Rules of Angelic
Figure 11 presents the key reasoning rules allowing the user to select and verify an interleaving.
These inference rules are at the iProp level: their premises are implicitly separated by ∗, and the
implication between the premise and the conclusion is stated as the entailement ⊢.
The upper part of Figure 11 showcases that the run mode of Angelic is, for its sequential part,

similar to a standard separation logic. A-Alloc performs an allocation, A-Load a load and A-Store
a store—here, the allocation size and various offsets must be valid. A-Call verifies a function call.
A-Conseq shows that the user can make the postcondition stronger. A-Bind allows for reasoning
under an evaluation context.
The lower part of Figure 11 focuses on the scheduler mode of Angelic. Yield asserts (reading

the rule from bottom to top) that the proof of run 𝑒 {𝜓 } can pause, and switch to the scheduler
mode—that is, a proof where the target is 𝔤𝔬𝔞𝔩. To prove this target, the user gets to assume that
some (universally quantified) task 𝜋 yielded with expression 𝑒 , and that when this expression will
have reduced to a value 𝑣 satisfying𝜓 , then 𝔤𝔬𝔞𝔩 will hold.
Resume is the companion rule of Yield: it asserts that in order to prove 𝔤𝔬𝔞𝔩, the user has to

give up the ownership of a task 𝜋 facing an expression 𝑒 and switch back to the running mode to
verify that run 𝑒 {𝜆𝑣. yielded𝜋 𝑣 −∗ 𝔤𝔬𝔞𝔩}.

Fork shows the real benefit of the scheduler mode. This rule asserts that, for verifying the
parallel primitive par 𝑒1 𝑒2, the user can switch to the scheduler mode. In this mode, the user gets to
suppose that two tasks 𝜋1 and 𝜋2 yielded at 𝑒1 and 𝑒2, respectively. Moreover, the user can suppose
that, when these two tasks would have completed their execution and reached values 𝑣1 and 𝑣2
such that𝜓 (𝑣1, 𝑣2) hold, the 𝔤𝔬𝔞𝔩 will hold. At this point, the user can choose which of 𝑒1 and 𝑒2 to
begin verifying using Resume.
Recall in Section 2.3 we saw rules A-ParSeqL and A-ParSeqR allowing one to verify a parallel

composition by picking either a left-then-right or right-then-left sequential ordering. These two
rules can be derived from the more general constructs of Angelic that we have now seen. For
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𝜏 ≜ ⊥ | empty | unit | bool | int | 𝜏 → 𝜏 | (𝜏 × 𝜏) | ref𝜏
Γ ∈ Var ⇀ 𝜏

empty · empty ≜ empty int · int ≜ int
unit · unit ≜ unit (𝜏1 × 𝜏2) · (𝜏 ′1 × 𝜏 ′2) ≜ ((𝜏1 · 𝜏 ′1) × (𝜏2 · 𝜏 ′2))
bool · bool ≜ bool (𝜏1 → 𝜏2) · (𝜏 ′1 → 𝜏 ′2) ≜ if (𝜏1 = 𝜏 ′1 ∧ 𝜏2 = 𝜏 ′2) then𝜏1 → 𝜏2 else⊥

Fig. 12. Syntax of MiniDet Type System

example, in order to show that A-ParSeqL holds, we first apply Fork, then use Resume for the
expression 𝑒1. We then use A-Conseq with Resume for expression 𝑒2 and conclude.

7 Case Studies
To showcase Musketeer, we start by using it to prove the soundness of a simple affine type system
that ensures schedule-independent safety (§7.1). We then extend this type system with two core
algorithmic primitives proposed by Blelloch et al. [2012] for ensuring internal determinacy: priority
writes (§7.2) and deterministic hash sets (§7.3). Interestingly, while these primitives appear to be
internally deterministic to their client, their implementation is not: they observe internal state of
shared data structures that may be concurrently modified. Yet, we show that they satisfy schedule-
independent safety. Because all well-typed programs in this system have schedule-independent
safety, we can use Angelic to reason about them, as we demonstrate by verifying a parallel list
deduplication example (§7.4).

7.1 MiniDet: An Affine Type System for Determinism
This section presents MiniDet, an affine type system for MusketLang that ensures determinism.
Like many other substructural type systems, the types in MiniDet can be thought of as tracking
ownership of resources such as array references, thereby preventing threads from accessing shared
resources in a way that would introduce nondeterministic behaviors.

Syntax. The syntax of types in MiniDet appears in Figure 12. A type 𝜏 is either the invalid type ⊥
(used only internally), the empty type, describing an unknown value without ownership, the unit
type unit, the Boolean type bool, the integer type int, the arrow type 𝜏1 → 𝜏2, the immutable
product (𝜏1 × 𝜏2) or the reference type ref𝜏 . A typing environment Γ is a finite map from variables
to types. We write dom(Γ) for its domain.
The type system is affine meaning that, when splitting a typing context in two, a variable can

only appear in one sub-context at a time. However, variables with types whose inhabitants have no
associated notion of ownership, or variables with types with fractional reasoning, can be split and
joined. In order to capture this notion, we equip types with a monoid operation _ · _ taking two
types as arguments and producing a new type. In particular, when 𝜏 · 𝜏 = 𝜏 , it means that a variable
of type 𝜏 can be duplicated. The definition of the monoid operation appears in the lower part of
Figure 12. The missing cases are all sent to ⊥. In particular these definitions prevent a reference
from being duplicated. We extend the monoid operation to typing environments by defining Γ1 · Γ2
as the function that maps the variable 𝑥 to 𝜏1 if Γ1 (𝑥) = 𝜏1 and 𝑥 is not in the domain of Γ2, 𝜏2 if
Γ2 (𝑥) = 𝜏2 and 𝑥 is not in the domain of Γ1, and 𝜏1 · 𝜏2 if Γ1 (𝑥) = 𝜏1 and Γ2 (𝑥) = 𝜏2.
The typing judgement of MiniDet takes the form Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′, and asserts that 𝑒 has type 𝜏

and transforms the typing environment Γ into Γ′.

Typing rules. Selected typing rules appear in Figure 13. T-Var types variable 𝑥 at type 𝜏 if 𝑥
has type 𝜏 in the typing environment. The returned environment is empty. T-Unit, T-Bool and
rule T-Int type unboxed values. T-Assert types an assert primitive. T-Let types a let-binding
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T-Var
{𝑥 := 𝜏} ⊢ 𝑥 : 𝜏 ⊣ ∅

T-Unit
∅ ⊢ () : unit ⊣ ∅

T-Bool
∅ ⊢ 𝑏 : bool ⊣ ∅

T-Int
∅ ⊢ 𝑖 : int ⊣ ∅

T-Assert
Γ ⊢ 𝑒 : bool ⊣ Γ′

Γ ⊢ assert 𝑒 : unit ⊣ Γ′

T-Let
Γ1 ⊢ 𝑒1 : 𝜏1 ⊣ Γ′1

[𝑥 := 𝜏1]Γ′1 ⊢ 𝑒2 : 𝜏2 ⊣ Γ2

Γ1 ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜏2 ⊣ del𝑥 Γ2

T-Weak
Γ1 ⊆ Γ′1 Γ2 ⊆ Γ′2
Γ′1 ⊢ 𝑒 : 𝜏 ⊣ Γ′2

Γ1 ⊢ 𝑒 : 𝜏 ⊣ Γ2

T-Abs
Γ = Γ · Γ

[𝑓 := 𝜏 → 𝜏 ′] [𝑥 := 𝜏]Γ ⊢ 𝑒 : 𝜏 ′ ⊣ ∅
Γ ⊢ 𝜇𝑓 𝑥 . 𝑒 : 𝜏 → 𝜏 ′ ⊣ ∅

T-App
Γ1 ⊢ 𝑒1 : 𝜏 ⊣ Γ2

Γ2 ⊢ 𝑒2 : 𝜏 → 𝜏 ′ ⊣ Γ3

Γ1 ⊢ 𝑒2 𝑒1 : 𝜏 ′ ⊣ Γ3

T-Ref
Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′

Γ ⊢ ref 𝑒 : ref𝜏 ⊣ Γ′

T-Get
{𝑥 := ref𝜏} ⊢ get𝑥 : 𝜏 ⊣ {𝑥 := ref empty}

T-Set
Γ ⊢ 𝑒 : 𝜏 ⊣ {𝑥 := ref empty} · Γ′

Γ ⊢ set𝑥 𝑒 : unit ⊣ {𝑥 := ref𝜏} · Γ′

T-Par
Γ1 ⊢ 𝑒1 : 𝜏1 ⊣ Γ′1 Γ2 ⊢ 𝑒2 : 𝜏2 ⊣ Γ′2

Γ1 · Γ2 ⊢ par 𝑒1 𝑒2 : (𝜏1 × 𝜏2) ⊣ Γ′1 · Γ′2

T-Frame
Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′

Γ0 · Γ ⊢ 𝑒 : 𝜏 ⊣ Γ0 · Γ′

Fig. 13. Selected Typing Rules of MiniDet

let𝑥 = 𝑒1 in 𝑒2 at type 𝜏2 with initial context Γ1 if 𝑒1 has type 𝜏1 under the same context and produces
context Γ2, and if 𝑒2 has type 𝜏2 under the context Γ1 in which 𝑥 has type 𝜏1. The produced context of
the let-binding is Γ2 from which 𝑥 has been deleted. T-Abs types a function with recursive name 𝑓 ,
argument 𝑥 and body 𝑒 , of type 𝜏 → 𝜏 ′ and with typing environment Γ. This environment must be
duplicable, that is Γ = Γ · Γ. This duplicability implies that Γ contains no types with ownership,
that is, for now, no references. The precondition requires that 𝑒 has type 𝜏 ′ in Γ, augmented with 𝑓
of type 𝜏 → 𝜏 ′ and 𝑥 of type 𝜏 . T-App types a function call and is straightforward. T-Ref types a
reference allocation. T-Get types a get operation on a variable 𝑥 . This rule requires that 𝑥 is of
some type ref𝜏 , returns a type 𝜏 and updates the binding of 𝑥 to ref empty. This is because get
returns the ownership of the content of the cell—meaning that the cell does not hold recursive
ownership of its contents anymore.4 T-Set is the dual, and types the expression set𝑥 𝑒 . This rule
requires that 𝑒 is of some type 𝜏 and that, in the resulting environment, 𝑥 is of type ref empty. The
set operation returns unit and updates the type of 𝑥 to ref𝜏 , “filling” the cell. T-Par types a parallel
primitive, and is similar to the related separation logic rules. Indeed, T-Par requires splitting the
context in two parts, that will be used to type separately the two sub-tasks, whose result typing
context will be merged in the result typing context of the rule. Finally, T-Frame allows for framing
a part of the context for local reasoning, and T-Weak allows for removing bindings from the input
and output typing environments.

Soundness of MiniDet. The above system prevents data-races, and hence guarantees that well-
typed programs have schedule-indepedent safety, as formalized by the following lemma.

Lemma 7.1 (Soundness of MiniDet). If ∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ holds, then SISafety 𝑒 holds.

To prove this theorem, we use program logic-based semantic typing [Timany et al. 2024b]. With
this technique, we associate a triple (in our case, a Musketeer triple) to a typing judgement, and

4We could have derived another rule for get on a reference whose content is not tied to any ownership. We follow this
approach when extending the type system with priority writes (§7.2).
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𝑠 ≜ sinvalid | snone | sprod 𝑠 𝑠 | sref 𝑣 𝑠 | sarrow𝛾 𝑀 ∈ Var ⇀ 𝜏 𝑉 ∈ Var ⇀ V

J empty | snone | 𝑣 K ≜ ⊤ J bool | snone | 𝑣 K ≜ ⌜∃𝑏. 𝑣 = 𝑏⌝
J unit | snone | 𝑣 K ≜ ⌜𝑣 = ()⌝ J int | snone | 𝑣 K ≜ ⌜∃𝑖 . 𝑣 = 𝑖⌝

J (𝜏1 × 𝜏2) | sprod 𝑠1 𝑠2 | 𝑣 K ≜ ∃𝑣1 𝑣2 . ⌜𝑣 = (𝑣1, 𝑣2)⌝ ∗ J𝜏1 | 𝑠1 | 𝑣1 K ∗ J𝜏2 | 𝑠2 | 𝑣2 K
J ref𝜏 | sref𝑤 𝑠 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ℓ ↦→ [𝑤] ∗ J𝜏 | 𝑠 | 𝑤 K

J𝜏 → 𝜏 ′ | sarrow𝛾 | 𝑣 K ≜ ∃𝑃 .𝛾 Z⇒ 𝑃 ∗ � 𝑃 ∗
onlyleft (�∀𝑤 𝑠. {⊲ 𝑃 ∗ J𝜏 | 𝑠 | 𝑤 K} (𝑣 𝑤) {𝜆𝑣 ′ 𝑠′ . J𝜏 ′ | 𝑠′ | 𝑣 ′ K})

J Γ | 𝑀 | 𝑉 K ≜ ⌜dom(Γ) = dom(𝑀) = dom(𝑉 )⌝ ∗ ∗𝑥∈dom(Γ) J Γ(𝑥) | 𝑀 (𝑥) | 𝑉 (𝑥) K
where onlyleft (𝑃) ≜ 𝜆𝑏. if 𝑏 then (𝑃 true) else⊤

J Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′ K ≜ ∀𝑀𝑉 .

{J Γ | 𝑀 | 𝑉 K} ([𝑉 /]𝑒) {𝜆𝑣 (𝑠, 𝑀 ′) . ⌜Γ ≈ Γ′ ∧ 𝑀 ≈ 𝑀 ′⌝ ∗ J𝜏 | 𝑠 | 𝑣 K ∗ J Γ′ | 𝑀 ′ | 𝑉 |dom(Γ′ ) K}

Fig. 14. Semantic Interpretation of MiniDet

show that whenever the typing judgement holds, the corresponding triple is valid. The soundness
theorem of the type system is then derived from the soundness of the underlying logic.

The Musketeer triple associated to a typing judgement makes use of a logical relation. Typically,
when using program logic-based semantic typing, a logical relation is a relation expressed in the
assertions of the underlying logic that relates a type to a value it inhabits. In our case, however,
the logical relation involves three parameters: a type, a value, and a shape. The shape captures the
“determinism” of each type and will be used in connection with ghost return values. For example,
the shape of a reference is the actual value stored in this reference, and the shape of a function
records that the function’s environment is deterministic.
Figure 14 defines the format of shapes. A shape 𝑠 as either an invalid shape (whose purpose is

similar to the invalid type, as we equip shapes with a monoid operation), the none shape, storing
no information, the product shape sprod 𝑠1 𝑠2, the reference shape sref 𝑣 𝑠 , where 𝑣 represents the
content of the reference and 𝑠 the shape associated with 𝑣 and finally the arrow shape sarrow𝛾 ,
where 𝛾 is the name of an Iris ghost cell [Jung et al. 2018].

The logical relation J𝜏 | 𝑠 | 𝑣 K, shown in Figure 14 then relates a type 𝜏 , a shape 𝑠 , and a value 𝑣 .
This relation is itself of type vProp. Unboxed types are interpreted as expected, associated the
with snone shape. Products must be associated to the product shape and a product value, and the
interpretation must recursively hold. For the reference type ref𝜏 , the shape must be a reference
shape sref𝑤 𝑠 , 𝑣 must be a location ℓ such that ℓ points to𝑤 and that recursively J𝜏 | 𝑠 | 𝑤 K holds.
Note that the interpretation of a reference expresses the ownership of the associated points-to.
Besides, the content of the reference𝑤 is not existentially quantified, but rather given by the shape.
The case of an arrow 𝜏 → 𝜏 ′ is subtle and differs from the approach used in other program

logic based logical relations. In the usual approach, the interpretation of 𝜏 → 𝜏 ′ says that 𝑣 is in
the relation if for any 𝑤 in the interpretation of 𝜏 , a Hoare triple of a certain form holds for the
application 𝑣 𝑤 . Unfortunately, this approach cannot be used directly with Musketeer. The reason is
that the usual approach exploits the fact that the underlying logic is higher-order and impredicative,
so that a Hoare triple is itself an assertion that can appear in the pre/post-condition of another
triple. In contrast, in Musketeer, the assertions appearing in pre/post-conditions are vProps, but the
triple itself is not a vProp, it is an iProp in the underlying chained logic, as we saw in §5.
To work around this, we define an operation onlyleft that takes an iProp and coerces it into a

vProp by requiring the proposition to only hold for the left-hand side. Using this, the logical relation
asserts that, only in the left case, for any value𝑤 and shape 𝑠 , a Hoare triple holds for 𝑣 𝑤 . In this
triple, the precondition requires J𝜏 | 𝑠 | 𝑤 K, and the postcondition says that the result will satisfy
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the interpretation of 𝜏 ′. The precondition additionally requires 𝑃 to hold for some existentially
quantified vProp predicate 𝑃 . ( Technically, 𝑃 is assumed to hold under a later modality ⊲, but this
detail can be ignored.) This 𝑃 will correspond to the resources associated with whatever variables
from a typing environment the function closes over. Thus, 𝑃 is required to hold under the Iris
persistent modality �, ensuring that the proposition is duplicable—recall that the typing rule T-Abs
requires functions to close over only duplicable environments. Finally, there is one last trick: to
ensure that this existential quantification over 𝑃 can later be eliminated using M-ElimExist, the
witness is made unique by using an Iris saved predicate assertion, lifted at the vProp level and
written 𝛾 Z⇒ 𝑃 , which states that 𝛾 is the name of a ghost variable that stores the assertion 𝑃 . The 𝛾
here is bound as part of the shape sarrow𝛾 . Since a ghost variable can only store one proposition,
only one 𝑃 can satisfy this assertion.
Figure 14 then defines the interpretation of a typing environment Γ, a shape environment 𝑀

and a value environment 𝑉 , written J Γ | 𝑀 | 𝑉 K as the lifting per-variable 𝑥 of the logical relation.
Using this, we obtain the interpretation of the typing judgement Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′. This interpretation
universally quantifies over a shape environment 𝑀 and a variable environment 𝑉 , and asserts
a Musketeer triple. The precondition is the interpretation of the environments, and targets an
expression [𝑉 /]𝑒 , that is, the expression 𝑒 with variables replaced by values as specified by 𝑉 . The
postcondition binds a return value 𝑣 as well as a ghost return value consisting of a shape 𝑠 and
a shape environment 𝑀 ′. The postcondition asserts that the two typing environment Γ and Γ′

are similar, written Γ ≈ Γ′ and that the shape environments 𝑀 and 𝑀 ′ are also similar, with
(overloaded) notation𝑀 ≈ 𝑀 ′. Intuitively these relations guarantee that variables did not change
in nature in environments (e.g. a reference stayed a reference, and a reference shape stayed a
reference shape, even if the content may have changed). We formally define these statements in the
Appendix [Moine et al. 2025b]. The postcondition finally asserts that the return value is related to 𝜏
and 𝑠 and that the returned environment Γ′ is correct with𝑀 ′ and the same variables 𝑉 , dropping
unneeded bindings.

With these definitions, we state the fundamental lemma of the logical relation.

Lemma 7.2 (Fundamental). If Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′ holds then J Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′ K holds too.

From this lemma, it is easy to prove the soundness of MiniDet (Lemma 7.1). Let us suppose that
∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ holds. We apply Lemma 7.2 and learn that J ∅ ⊢ 𝑒 : 𝜏 ⊣ ∅ K holds too. Unfolding
definitions and applying M-Conseq, this fact implies that {⊤} 𝑒 {𝜆_ _. ⊤} holds. We conclude by
applying the soundness of Musketeer (Theorem 4.1).

7.2 Priority Writes
In this section, we extend MiniDet with rules for priority writes [Blelloch et al. 2012]. A priority
write targets a reference 𝑟 on an integer 𝑥 and atomically updates the content 𝑦 of 𝑟 to 𝑥 max𝑦.
As long as there are no concurrent reads, priority writes can happen in parallel: because max is
associative and commutative, the order in which the parallel write operations happen does not
matter. Conversely, so long as there are no ongoing concurrent writes, reads from the reference
will be safe and deterministic—and such reads can also happen in parallel. Thus, priority writes
are deterministic so long as they are used in a phased manner, alternating between concurrent
writes in one phase, and concurrent reads in the next. For simplicity, we consider priority writes
on integers equipped with the max function.

Implementation of priority writes. Figure 15 shows the implementation of priority references.
Allocating a priority reference with palloc just allocates a reference. The priority read pread is
just a plain get operation. A priority write pwrite is a function with recursive name 𝑓 taking two
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palloc ≜ 𝜆𝑛. ref 𝑛 pread ≜ 𝜆𝑟 . get 𝑟
pwrite ≜ 𝜇𝑓 𝑟 𝑥 . let𝑦 = get 𝑟 in if 𝑥 < 𝑦 then () else if CAS 𝑟 0𝑥 𝑦 then () else 𝑓 𝑟 𝑥

Fig. 15. Implementation of Priority Writes

𝜏 ≜ · · · | pwrite𝑞 | pread𝑞
pwrite𝑞1 · pwrite𝑞2 ≜ pwrite (𝑞1 + 𝑞2) pread𝑞1 · pread𝑞2 ≜ pread (𝑞1 + 𝑞2)

T-PAlloc
Γ ⊢ 𝑒 : int ⊣ Γ′

Γ ⊢ palloc 𝑒 : pwrite 1 ⊣ Γ′
T-PWrite

Γ ⊢ 𝑒 : int ⊣ Γ′ Γ′ (𝑥) = pwrite𝑞

Γ ⊢ 𝑒 : pwrite 𝑥 𝑒 ⊣ Γ′

T-PRead
{𝑥 := pread𝑞} ⊢ pread𝑥 : int ⊣ {𝑥 := pread𝑞}

T-Update
Γ { Γ′ Γ′ ⊢ 𝑒 : 𝜏 ⊣ Γ′′

Γ ⊢ 𝑒 : 𝜏 ⊣ Γ′′

U-Refl
𝜏 { 𝜏

U-Pair
𝜏1 { 𝜏 ′1 𝜏2 { 𝜏 ′2

(𝜏1 × 𝜏2) { (𝜏 ′1 × 𝜏 ′2)
U-R2W
pread 1 { pwrite 1

U-W2R
pwrite 1 { pread 1

Fig. 16. Extension of MiniDet with Priority Writes

arguments: 𝑟 , the reference to update, and 𝑥 , the integer to update the reference with. The function
tests if the content 𝑦 of the reference is greater than 𝑥 . If 𝑥 < 𝑦, the function returns, because
𝑥 max𝑦 = 𝑦. Else, the function attempts to overwrite 𝑦 with 𝑥 in 𝑟 with a CAS, and loops if it fails.

As noted by Blelloch et al. [2012], if we break the abstractions of the priority reference, the
implementation of pwrite is not internally deterministic: because pwrite reads 𝑟 , a location that
can be written by a parallel task, different interleavings might see different values. However,
because pwrite is carefully designed, these nondeterministic observations are not externally visible
and do not impact the safety of the program. As we will see, this latter fact allow us to derive a
Musketeer triple API to priority writes. However, because nondeterminism is involved internally
in the implementation, we conduct the proof at the level of ChainedLog.

Extension of MiniDet. Figure 16 shows how we extend our type system. We add two new type
constructors, pwrite𝑞 and pread𝑞, asserting that the reference is in a write phase with fraction 𝑞
or a read phase with fraction 𝑞, respectively. The monoid on types is extended to sum fractions.
This definition implies, as we will see, that writes can happen in parallel with writes, and reads can
happen in parallel with reads.

The lower part of Figure 16 shows the new typing rules. T-PAlloc allocates a priority reference
and returns a type pwrite 1. T-PWrite types a priority write on some reference 𝑥 bound to the
type pwrite𝑞. In particular, this rule does not require the full fraction 1, meaning that the write
operation can happen in parallel of other write operations. T-PRead types a read similarly. Again
this rule does not require the full fraction. T-Update allows for updating a typing context Γ into Γ′

as long as Γ { Γ′. This relation is defined pointwise over the elements of the environments as the
update relation 𝜏 { 𝜏 ′ which is defined last in Figure 16. U-Refl asserts that a type can stay the
same, U-Pair distributes over pairs, U-R2W transforms a read type into a write one, if the fraction
is the full permission 1. This precondition on the fraction is important: it asserts that no parallel
task use the priority reference. U-W2R is symmetrical.

Extending the soundness proof. To extend the soundness proof to support these new rules, we first
prove specifications for the priority reference operations in Musketeer, shown in the upper part
of Figure 17. These specifications involve two predicates: ispw ℓ 𝑞 𝑖 , asserting that ℓ is a priority
reference, and that ℓ is in its concurrent phase with fraction 𝑞 and stores (at least) 𝑖 . Symmetrically,
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{⊤} palloc 𝑖 {𝜆𝑟 _. ispw ℓ 1 𝑖}
{ispw ℓ 𝑞 𝑖} pwrite ℓ 𝑗 {𝜆𝑟 ℓ . ⌜𝑣 = ℓ⌝ ∗ ispw ℓ 𝑞 (𝑖max 𝑗)}
{ispr ℓ 𝑞 𝑖} pread ℓ {𝜆𝑟 _. ⌜𝑣 = 𝑖⌝ ∗ ispr ℓ 1 𝑖}

ispw ℓ (𝑞1 + 𝑞2) (𝑖max 𝑗) ⊣⊢ ispw ℓ 𝑞1 𝑖 ∗ ispw ℓ 𝑞2 𝑗
ispr ℓ (𝑞1 + 𝑞2) 𝑖 ⊣⊢ ispr ℓ 𝑞1 𝑖 ∗ ispr ℓ 𝑞2 𝑖

ispw ℓ 1 𝑖 ⊣⊢ ispr ℓ 1 𝑖

𝑠 ≜ · · · | spwrite 𝑖 | spread 𝑖
J pwrite𝑞 | spwrite 𝑖 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ispw ℓ 𝑞 𝑖
J pread𝑞 | spwrite 𝑖 | 𝑣 K ≜ ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ ispr ℓ 𝑞 𝑖

Fig. 17. Specifications of Priority Writes and Logical Interpretation

alloc_fill ≜ 𝜆𝑛 𝑣. fill (alloc 𝑛) 𝑣

init ≜ 𝜆ℎ 𝑛.

assert (𝑛 ≥ 0);
let𝑑 = ref () in
let𝑎 = alloc_fill𝑛 𝑑 in

(𝑎, 𝑑, ℎ)

elems ≜ 𝜆(𝑎, 𝑑, ℎ) .
filter_compact𝑎 𝑑

add ≜ 𝜆(𝑎, 𝑑, ℎ) 𝑥 .
let𝑝𝑢𝑡 = 𝜇𝑓 𝑥 𝑖.

let𝑦 = 𝑎[𝑖] in
if𝑥 == 𝑦 then () else
if𝑥 == 𝑑 then (if CAS𝑎 𝑖 𝑑 𝑥 then () else 𝑓 𝑥 𝑖) else
let 𝑗 = (𝑖 + 1)mod (length𝑎) in
if𝑥 < 𝑦 then 𝑓 𝑥 𝑗 else (if CAS𝑎 𝑖 𝑦 𝑥 then 𝑓 𝑦 𝑗 else 𝑓 𝑥 𝑖) in

𝑝𝑢𝑡 𝑥 ((ℎ 𝑖)mod (length𝑎))

Fig. 18. Implementation of a Deterministic Concurrent Hash Set

ispr ℓ 𝑞 𝑖 asserts that ℓ is in its read phase. The specification of palloc 𝑖 asserts that this function
call returns a location ℓ such that ispw ℓ 𝑞 1 holds. The specification of pwrite ℓ 𝑗 updates a share
ispw ℓ 𝑞 𝑖 into ispw ℓ 𝑞 (𝑖max 𝑗). The specification of pread ℓ asserts that this function call returns
the content of a priority reference, if this reference is in its read phase.

The central part of Figure 17 shows the splitting and joining rules of the ispw and ispr assertions.
It also shows that one can update a ispw assertion into a ispr assertion, and vice-versa, as long as
the fraction in 1 (formally, these conversions involve the so-called ghost updates [Jung et al. 2018]).

The lower part of Figure 17 intuits how we extend the logical relation backing the soundness of
our type system. We add two shapes, one for each phase. We then extend the logical relation as
expected, making use of the previous assertions.

7.3 Deterministic Concurrent Hash Sets
Next, we extend MiniDet with a deterministic concurrent hash set, inspired by Shun and Blelloch
[2014]. This hash set allows for concurrent, lock-free insertion, and offers a function elems that
returns an array with the inserted elements in some arbitrary but deterministic order. This hash set
is implemented as an array, and makes use of open addressing and linear probing to handle collision.
The key idea to ensure determinism is that neighboring elements in the array are ordered according
to a certain total order relation. As we will see, insertion preserves the ordering, which in turn
ensures determinism of the contents of the array. Shun and Blelloch [2014] also propose a deletion
function, which we do not verify. The hash set usage must be phased: insertion is allowed to take
place in parallel as long as no task calls the function elems.

Implementation of our hash set. Figure 18 presents the implementation of the deterministic hash
set. While in our mechanization we support a hash set over arbitrary values, for space constraints we
present here an implementation specialized to integers, equipped with the comparison function <.

A new hash set is initialized with the function initℎ 𝑛, which returns a tuple (𝑎, 𝑑, ℎ), where 𝑎 is
the underlying array, 𝑑 is a dummy element (in our case, a fresh reference containing the unit value)
representing an empty slot in the array. The function ℎ is the hash function. The implementation
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𝜏 ≜ · · · | intarray𝑞 | intset𝑞
intarray𝑞1 · intarray𝑞2 ≜ intarray (𝑞1 + 𝑞2) intset𝑞1 · intset𝑞2 ≜ intset (𝑞1 + 𝑞2)
T-AAlloc
Γ1 ⊢ 𝑒1 : int ⊣ Γ2 Γ2 ⊢ 𝑒2 : int ⊣ Γ3

Γ ⊢ alloc_fill 𝑒2 𝑒1 : intarray 1 ⊣ Γ3

T-ALoad
Γ1 ⊢ 𝑒 : int ⊣ Γ2 Γ2 (𝑥) = intarray𝑞

Γ1 ⊢ 𝑥 [𝑒] : int ⊣ Γ2

T-AStore
Γ1 ⊢ 𝑒1 : int ⊣ Γ2

Γ2 ⊢ 𝑒2 : int ⊣ Γ3 Γ3 (𝑥) = intarray 1
Γ ⊢ 𝑥 [𝑒2]←𝑒1 : unit ⊣ Γ3

T-SAlloc
Γ ⊢ 𝑒 : int ⊣ Γ′

(∀𝑥 . {⊤} ℎ 𝑥 {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ(𝑥)⌝})
Γ ⊢ initℎ 𝑒 : intset 1 ⊣ Γ′

T-SAdd
Γ ⊢ 𝑒 : int ⊣ Γ′ Γ′ (𝑥) = intset𝑞

Γ ⊢ add𝑥 𝑒 : unit ⊣ Γ′
T-SElems

Γ ⊢ 𝑒 : intset 1 ⊣ Γ′

Γ ⊢ elems 𝑒 : intarray 1 ⊣ Γ′

Fig. 19. Extension of MiniDet with Integer Arrays and Hash Set

uses a helper routine, alloc_fill𝑛 𝑑 , which allocates an array and fills it with the value 𝑣 using a
function fill, which we omit for brevity. The function elems (𝑎, 𝑑, ℎ) returns a fresh array containing
the elements of 𝑎 obtained by filtering those equal to the dummy element 𝑑 . The key challenge in
the design is to ensure that this operation will be deterministic: in conventional linear probing hash
tables, the order of elements in the array would depend on the order of insertions, so concurrent
insertions would lead to nondeterministic orders.

To avoid this nondeterminism, the function add (𝑎, 𝑑, ℎ) 𝑥 , which inserts 𝑥 in the hash set (𝑎, 𝑑, ℎ),
enforces an ordering on elements in the array according to the comparison function <. The code
makes use of a recursive auxiliary function 𝑝𝑢𝑡 , parameterized by an element 𝑥 and an index 𝑖 ,
which tries to insert 𝑥 at 𝑖 . The function 𝑝𝑢𝑡 loads the content of the array 𝑎 at offset 𝑖 and names
it 𝑦. If 𝑦 is equal to 𝑥 , then 𝑥 is already in the set and the function returns. If 𝑦 is equal to the dummy
element, the function tries a CAS to replace 𝑦 with 𝑥 , and loops in case the CAS fails. Otherwise, 𝑦
is an element distinct from 𝑥 . The function names the next index 𝑗 = (𝑖 + 1)mod (length𝑎) and
tests if 𝑥 < 𝑦. If 𝑦 is greater than 𝑥 , the function tries to insert 𝑥 at the next index 𝑗 by doing a
recursive call of 𝑓 𝑥 𝑗 . If 𝑥 is greater than 𝑦, the function tries to replace 𝑦 with 𝑥 with a CAS, and
loops if the CAS fails. If the CAS succeeds, the function removed 𝑦 from the hash set, and must
hence insert it again by doing a recursive call 𝑓 𝑦 𝑗 .

The function add then simply calls 𝑝𝑢𝑡 to insert 𝑥 at the initial index (ℎ 𝑥)mod (length𝑎).

Extension of MiniDet. Figure 19 presents the extension of MiniDet with this hash set. To avoid
issues related to ownership of the elements in the set, we consider a hash set containing integers.

We add two new types: intarray𝑞 describing an array of integers with a fraction 𝑞 and intset𝑞 a
hash set of integers with a fraction 𝑞. The monoid on types is extended to sum the fractions.
T-AAlloc types the allocation of an array filled with a default element. T-ALoad types a load

operation on an array bound to the variable 𝑥 . This operation requires any fraction of intarray.
T-AStore types a store operation but requires full ownership of the array—that is, the fraction 1.

T-SAlloc allocates a hash set. This rule has one non-syntactical precondition, which cannot be
handled by a type system. It requires that the hash functionℎ, the first parameter of add, implements
some arbitrary pure function ℎ𝑎𝑠ℎ : V → 𝑍 . This proof can be derived in Musketeer, and ensures
that calls to the hash function are deterministic. T-SAlloc returns a intset type with fraction 1.
T-SAdd types an add operation on a hash set 𝑥 with an arbitrary fraction 𝑞, meaning that this

operation can happen in parallel. T-SElems types the elems operation, requiring the full ownership
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(∀𝑥 . {⊤} ℎ 𝑥 {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ(𝑥)⌝})
{⊤} initℎ 𝑖 {𝜆𝑣 _. hashset 𝑣 1 ∅}

{hashset 𝑣 𝑞 𝑋 } add 𝑣 𝑖 {𝜆𝑟 _. hashset 𝑣 𝑞 ({𝑖} ∪ 𝑋 )}
{hashset 𝑣 1𝑋 } elems 𝑣 {𝜆𝑣 ′ (ℓ, ®𝑤). ⌜𝑣 ′ = ℓ⌝ ∗ ℓ ↦→ ®𝑤}

hashset 𝑣 (𝑞1 + 𝑞2) (𝑋1 ∪ 𝑋2) ⊣⊢ hashset 𝑣 𝑞1 𝑋1 ∗ hashset 𝑣 𝑞2 𝑋2

𝑠 ≜ · · · | sintset𝑋 J intset𝑞 | sintset𝑋 | 𝑣 K ≜ hashset 𝑣 𝑞 𝑋

Fig. 20. Specifications of a Deterministic Hash Set and Logical Interpretation

parfor ≜ 𝜇𝑓 . 𝜆𝑖 𝑗 𝑘 .

if ( 𝑗 − 𝑖) ==0 then ()
else if ( 𝑗 − 𝑖) == 1 then 𝑘 𝑖
else let𝑚𝑖𝑑 = 𝑖 + (( 𝑗 − 𝑖)/2) in

par (𝑓 𝑖 𝑚𝑖𝑑 𝑘) (𝑓 𝑚𝑖𝑑 𝑗 𝑘)

dedup ≜ 𝜆ℎ 𝑎.

let 𝑠𝑡𝑎𝑟𝑡 = 0 in
let 𝑙𝑒𝑛 = length𝑎 in

let 𝑠 = initℎ (𝑙𝑒𝑛 + 1) in
parfor 𝑠𝑡𝑎𝑟𝑡 𝑙𝑒𝑛 (𝜆𝑖. add 𝑠 (𝑎[𝑖]));
prod𝑎 (elems 𝑠)

Fig. 21. Implementation of parfor and dedup Functions

of a hash set, and producing a fresh array. This operation consumes the hash set argument; this is
for simplicity: the hash set is only read and is in fact preserved by the operation.

Extending the soundness proof. The upper part of Figure 20 presents the Musketeer specifications
of the hash set operations. These specifications make use of an assertion hashset 𝑣 𝑞 𝑋 asserting
that 𝑣 is a hash set with fraction 𝑞 and content at least 𝑋 , a set of values. When 𝑞 = 1, then 𝑋 is
exactly the set of values in the set. The specification of initℎ 𝑖 returns a fresh set with fraction 1 and
no elements, provided that the parameter ℎ behaves correctly. The specification of add 𝑣 𝑖 verifies
the insertion of an integer 𝑖 in a hash set 𝑣 with an arbitrary fraction 𝑞 and current content𝑋 , which
the function call updates to ({𝑖} ∪ 𝑋 ). Since we specialize to hash sets of integers, we know that
the inserted value will not be the dummy element. In our mechanization, we offer a more general
specification, allowing the user to insert other pointers as long as they ensure that the inserted
pointer is not the dummy element. Perhaps most importantly, the specification of elems 𝑣 consumes
an assertion hashset 𝑣 1𝑋 with fraction 1 and produces an array ℓ with a deterministic content ®𝑤 .
Figure 20 then gives the reasoning rule for splitting a hashset assertion, enabling parallel use.

The lower part of Figure 20 shows how we extend the logical relation. We add a shape sintset𝑋 ,
where 𝑋 a set of integers. The interpretation of intset𝑞 with shape sintset𝑋 and value 𝑣 is then
simply hashset 𝑣 𝑞 𝑋 .

7.4 Deduplication via Concurrent Hashing
For our last example, we consider array deduplication, one of the parallel benchmark problems
proposed by Blelloch et al. [2012]. The task is to take an array of elements and return an array
containing the same elements but with duplicates removed. The solution proposed by Blelloch
et al. [2012] is to simply insert all the elements in parallel into a deterministic hash set and
then return the elements of the hash set. Figure 21 presents dedup, an implementation of this
algorithm in MusketLang. To do the parallel inserts, it uses a helper routine called parfor 𝑖 𝑗 𝑘 ,
which runs (𝑘 𝑛) in parallel for all 𝑛 between 𝑖 and 𝑗 . Our goal is to prove that dedup satisfies
schedule-independent safety, and then prove a specification in Angelic. Throughout this proof,
we assume that we have some hash function ℎ such that ∀𝑥 . {⊤} (ℎ 𝑥) {𝜆𝑣 _. ⌜𝑣 = ℎ𝑎𝑠ℎ 𝑥⌝} and
∀𝑥 . run (ℎ 𝑥) {𝜆𝑣 . ⌜𝑣 = ℎ𝑎𝑠ℎ 𝑥⌝}, where ℎ𝑎𝑠ℎ is some function in the meta-logic.

Our first step is to show that dedup can be typed in MiniDet. This follows by using a typing rule
for parfor (given in the Appendix [Moine et al. 2025b]), and the earlier typing rules we derived
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for the hash set. Using these, we derive ∅ ⊢ dedupℎ : intarray𝑞 → (intarray𝑞 × intarray 1) ⊣ ∅.
Thus, for a well-typed input array 𝑎, dedupℎ 𝑎 satisfies schedule-independent safety.

We then verify dedup using Angelic. The proof uses Angelic reasoning rules for the hash
set, shown in the Appendix [Moine et al. 2025b], which are similar to the earlier Musketeer
specifications (§7.3), except for three key points. First, the Angelic specification shows that, for a set
𝑣 with content 𝑋 , elems 𝑣 returns an array ®𝑤 which contains just the elements of the set 𝑋 . Second,
the representation predicate for the hash set has no fraction: there is never a need for splitting it in
Angelic. Third, as we require the user to prove termination, the representation predicate tracks
how many elements have been inserted, and does not allow inserting into a full table.
Finally, we use a derived specification for parfor 𝑖 𝑗 𝑘 that allows us to reason about it as if it

were a sequential for-loop:

forspec 𝑖 𝑗 𝑘 𝜑 ⊢ run (parfor 𝑖 𝑗 𝑘) {𝜆𝑣 . ⌜𝑣 = ()⌝ ∗ 𝜑}
Here, forspec 𝑖 𝑗 𝑘 𝜑 is defined recursively as

forspec 𝑖 𝑗 𝑘 𝜑 ≜
(
⌜𝑖 ≥ 𝑗⌝ ∗ 𝜑

)
∨

(
⌜𝑖 < 𝑗⌝ ∗ run (𝑘 𝑖) {𝜆𝑣 . ⌜𝑣 = ()⌝ ∗ forspec (𝑖 + 1) 𝑗 𝑘 𝜑}

)
In this definition, either 𝑖 ≥ 𝑗 and the postcondition holds (since there are no recursive calls
to be done), or 𝑖 < 𝑗 , and the user has to verify 𝑘 𝑖 , and show that forspec (𝑖 + 1) 𝑗 𝑘 𝜑 holds
afterward. Essentially, this generalizes the idea we saw earlier in A-ParSeqL, by having us verify an
interleaving that executes each task sequentially from 𝑖 to 𝑗 . With these specifications, we deduce
the following Angelic specification for dedup:

ℓ ↦→𝑞 ®𝑣 ⊢ run (dedupℎ ℓ) {𝜆𝑣. ∃ℓ ′ ®𝑤. ℓ ↦→𝑞 ®𝑣 ∗ ℓ ′ ↦→ ®𝑤 ∗ ⌜deduped ®𝑤 ®𝑣⌝}

8 Related Work
Deterministic parallel languages. As shown in Section 7.1, Musketeer can be used to prove the

soundness of language-based techniques for enforcing determinism. A large body of such techniques
exist, and it would be interesting to apply Musketeer to some of these. In general, these languages
typically ensure determinism by restricting side effects (e.g., in purely functional languages) or by
providing the programmer with fine-grained control over scheduling of effects (e.g., in the form of
a powerful type-and-effect system). Examples include seminal works such as Id [Arvind et al. 1989]
and NESL [Blelloch et al. 1994] as well as related work on Deterministic Parallel Java [Bocchino Jr.
et al. 2009, 2011], parallelism in Haskell [Jones et al. 2008; Keller et al. 2010; Chakravarty et al. 2011,
2001; Marlow et al. 2011], the LVars/LVish framework [Kuper et al. 2014a,b; Kuper and Newton
2013], Liquid Effects [Kawaguchi et al. 2012]. Manticore [Fluet et al. 2007], SAC [Scholz 2003],
Halide [Ragan-Kelley et al. 2013], Futhark [Henriksen et al. 2017], and many others.

It is typically challenging to formally prove sequentialization or determinization results for these
kinds of languages, particularly in an expressive language with features like higher-order state
and recursive types. For example, Krogh-Jespersen et al. [2017] point out that it took 25 years
for the first results proving that in a type-and-effect system, appropriate types can ensure that
a parallel pair is contextually equivalent to a sequential pair. They show how a program-logic
based logical relation, like the one we used in Section 7, can vastly simplify such proofs. Musketeer
provides a program logic that is well-suited for constructing models to prove whole-language
determinism properties. Although not discussed in this paper, we have already completed a proof
of schedule-independent safety for a simplified model of the LVars framework. We believe similar
results may be possible for other deterministic-by-construction languages.

Logic for hyperproperties. So-called relational program logics have been developed to prove
hyperproperties. Naumann [2020] provides an extensive survey of these logics. A number of such
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logics support very general classes of hyperproperties [D’Osualdo et al. 2022; Sousa and Dillig 2016].
However, most of the relational logics building on concurrent separation logic have been restricted
∀∃ hyperproperties [Liang and Feng 2016; Frumin et al. 2021; Gäher et al. 2022; Timany et al. 2024a].
Because schedule-independent safety is a ∀∀ property, it falls outside the scope of these logics,
which motivated our development of ChainedLog. In the world of ∀∀ hyperproperties, several
Iris-based relational logics have been proposed. For example, Frumin et al. [2021] and Gregersen
et al. [2021] verify variations of non-interference in a sequential setting. Both works require that
both executions terminate. However, their underlying relational logics do not support Musketeer’s
distinctive feature: the chaining rule C-Chain. In another setting, Timany et al. [2017] present a
logical relation showing that Haskell’s ST monad [Launchbury and Peyton Jones 1995] properly
encapsulates state. They show such a result using a state-independence property which intuitively
asserts that, for a well-typed program, if one execution terminates with a particular initial heap,
then every execution terminates with any other initial heap.

Most logics for hyperproperties are structured as relational logics. However, some, like Musketeer,
prove a hyperproperty through unary reasoning. For example, Dardinier and Müller [2024], target
arbitrary hyperproperties for a pure language, with a triple referring to a single expression, but
with pre/post-conditions describing multiple executions. Eilers et al. [2023] present CommCSL,
a concurrent separation logic for proving abstract commutativity, that is, where two operations
commute up-to some abstract interface. This idea appears for example in the API for priority
writes, which implies that writes commutes (§7.2). In contrast with our approach, CommCSL is
globally parameterized by a set of specifications the logic ensures commute. In Musketeer, no such
parameterization is needed: proof obligations are entirely internalized.

Commutativity-Based Reasoning. Schedule-independent safety reduces the problem of verifying
safety for all executions of a program to just verifying safety of any one terminating execution.
This can be seen as an extreme form of a common technique in concurrent program verification, in
which the set of possible executions of a program is partitioned into equivalence classes, and then
a representative element of each equivalence class is verified [Farzan 2023]. This approach has its
origins in the work of Lipton [1975], and typically uses some form of analysis to determine when
statements in a program commute in order to restructure programs into an equivalent form that
reduces the set of possible nondeterministic outcomes [Elmas et al. 2009; Kragl and Qadeer 2021;
von Gleissenthall et al. 2019; Farzan et al. 2022]. For programs satisfying schedule-independent
safety, there is effectively only one equivalence class, allowing a user of Angelic to dynamically
select one ordering to verify.

9 Conclusion and Future Work
Schedule-independent safety captures the essence of why internal determinism simplifies reasoning
about parallel programs. In this paper, we have shown how Musketeer provides an expressive
platform for proving that language-based techniques ensure schedule-independent safety, and how
Angelic can take advantage of schedule-independent safety. One limitation of schedule-independent
safety is that it is restricted to safety properties. In future work, it would be interesting to extend
Musketeer for proving that liveness properties, such as termination, are also schedule-independent.
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