
Automatic Parallelism Management

Sam Westrick
New York University

1

Matthew 
Fluet
RIT

joint work with:

Umut 
Acar
CMU

Mike 
Rainey

CMU

Colin 
McDonald

CMU

Managing Parallelism Workshop

Simons Institute, UC Berkeley 
October 2025

2

(POPL 2024)

MaPLe Compiler (mpl)

• safe, “mostly functional” language with parallelism

• efficient parallel memory management and scheduling 
(based on “disentanglement”)

• used by 500+ students at Carnegie Mellon University 
and New York University in parallel algorithms courses

• competitive performance vs PBBS parallel C/C++ code

3

github.com/MPLLang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b
val parfor: int * int * (int -> unit) -> unit
...

4

includes...
- over 30 state-of-the-art parallel algorithms and applications

- ported from C/C++ ParlayLib, PBBS, GBBS, Ligra, PAM, ...

betweenness centrality

breadth-first search

minimum spanning tree

maximum independent set

low-diameter decomposition

triangle counting

delaunay triangulation

nearest neighbors

quickhull

2D range query

seam carving

raytracing

tinykaboom

GIF encode+decode

reverb

WAV encode+decode

tokenization

deduplication

grep

word-count

longest palindrome

suffix array
dense+sparse matrix mult

integration

linear regression

graphs

geometry

images

audio

text

numeric

github.com/MPLLang/parallel-ml-benchBenchmark Suite

porting methodology
- preserve high-level algorithms, data structures

- e.g., C/C++ array of structs ⟺ MPL sequence of tuples

- make use of common primitives: scan, reduce, filter, etc.

- ensure same memory representation and access pattern 

(as much as possible)
rough summary
- on 72 cores: up to 40x speedup over sequential C/C++

- across all core counts: generally within 1-2x of parallel C/C++

- active research on closing the gap: 

more control over memory layouts, loop unrolling, etc.

5

The Granularity Control Problem
(* do func(...) in parallel for every
 * leaf in the tree
 *)
fun traverse(tree, func) =
 case tree of
 | Leaf{x} => func(x)
 | Node{l, r, ...} =>
 (par(fn () => traverse(l, func),
 fn () => traverse(r, func)); ())

fun traverse(tree, func) =

 case tree of
 ...

if size(tree) <= GRAIN_SIZE then
 sequential_traverse(tree, func)
else

10x (or more) performance 
gap in practice

slow

fast

6

The Granularity Control Problem

(* do func(...) in parallel for every
 * leaf in the tree
 *)
fun traverse(tree, func) =
 if size(tree) <= GRAIN_SIZE then
 sequential_traverse(func, tree)
 else
 case tree of
 | Leaf{x} => func(x)
 | Node{l, r, ...} =>
 (par(fn () => traverse(l, func),
 fn () => traverse(r, func)); ())

what grain size
should you pick?

traverse(tiny_tree, expensive_func)

traverse(t, fn x =>
 let n = foo(x)
 parfor(0, n, fn i => ...)
)

traverse(huge_tree, cheap_func)

7

The Granularity Control Problem

- lots of existing work 
(lazy scheduling, lazy binary splitting / lazy
tree splitting, heartbeat scheduling,
oracle-guided control, static cut-offs, cost
annotations, profiling techniques...)

- we want...
- fully general solution

- provably efficient

- implementable and effective in practice

- how much parallelism should I expose? 
(how “fine-grained” should my tasks be?)

- can this be automated?

8

Automatic Parallelism Management

in the compiler... 
nearly zero cost implementation of par
- by default, par executes sequentially

- can be promoted to create parallel tasks

- how? dynamic replacement of call-stack frames

in the run-time system... 
provably efficient scheduling 
of promotions

language primitive:

par(f,g) executes f() and g() in parallel

compiler and run-time system cooperate to guarantee efficiency

9

parallel source
language

(higher-order,
polymorphic)

SSA IR
(first-order,

monomorphic)
machine code

w/ pcallmonomorphize,
defunctionalize,
optimize, etc.

allocate registers,
lay out memory,
optimize, etc.

optimize

implement
parallelism with pcall:

potentially parallel
function calls

runtime scheduler

linked
with

executable

pcall
promotion
(dynamic)

Compilation

args
...

local vars
...

...
local vars

...

ret_spwn
ret_sync
ret_seq

10

PCall Calling Convention
PCall(func, args, ret_seq, ret_sync, ret_spwn)

args
...

local vars
...

(caller)

func

...
local vars

...

ret

Call(func, args, ret)

IF NEVER PROMOTED...
- behaves the same as normal Call
- caller resumes at ret_seq
- ret_sync and ret_spwn are discarded

...
local vars

...

ret_spwn
ret_sync
ret_seq

11

PCall Promotion

promote

...
local vars

...

ret_sync

...
local vars

...

ret_spwn

new task

(caller) (caller)

12

Scheduling Promotions
- each promotion exposes parallelism but incurs a cost

- idea: amortize cost of promotion against “true” work

- algorithm

- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the

outermost (oldest) outstanding PCall 
(in the thread’s own call-stack)

13

Promotion Stacks
- for outermost promotion: 

need O(1) access to oldest promotable frame

- dynamically maintain promotion stacks during execution:

- at PCall, push onto bottom of promotion stack: 
 promo_stack[bot] = <frame_pointer>;
 bot++;

- at ret_seq, unconditional pop: 
 bot--;

- at ret_sync, unconditional pop and reset top: 
 bot--; top = bot;

- at promotion: 
 promote(promo_stack[top])
 top++;

. .
 .

. .
 .

14

Work and Span Efficiency
- our algorithm

- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the outermost (oldest) frame

- token accounting overcomes rapid heartbeat requirement: now can use much larger N

- work analysis: straightforward

- sequential work W increases to at most (1 + τC/N) W

- span analysis:

- naive reduction to Heartbeat Scheduling yields loose bound

- from Heartbeat Scheduling (C = 1, can never “save” a token):

- idealized span S increases to at most (1 + N/τ) S

- so, with tokens:

- idealized span S increases to at most O(S)

spawn

spawn spawn

heartbeat
schedule

spawn

spawnspawn

at most 
constant factor 
stretch of
critical path

16

Parallelism Overhead (lower is better)

overhead

46x

old MaPLe (v0.4) new MaPLe (v0.5.x) 
(with automatic parallelism management)

64-core performance

two versions of each bench

- NoGran: 

no granularity control

- Manual: 

manual granularity control

overhead = 
Time(NoGran) / Time(Manual)

17

(* combine {f(i): lo <= i < hi}
 * w.r.t. associative g(-,-) *)
fun reduce(g, z, lo, hi, f) =
 if lo >= hi then z else
 if lo+1 = hi then f(lo) else
 let val mid = lo + (hi-lo) div 2
 val (a, b) = par(fn () => reduce(lo, mid, f),
 fn () => reduce(mid, hi, f))
 in g(a, b)
 end

n-1 midpoint calculations
n-1 PCalls + n-1 regular calls: 
 2(n-1) stack frame push/pop in total

18

“algorithmic” gap between 
sequential and parallel alternatives

(* sequential accumulating loop *)
fun reduce(g, a, lo, hi, f) =
 if lo >= hi then a else
 reduce(g, g(a,f(lo)), lo+1, hi, f)

(* combine {f(i): lo <= i < hi}
 * w.r.t. associative g(-,-) *)
fun reduce(g, z, lo, hi, f) =
 if lo >= hi then z else
 if lo+1 = hi then f(lo) else
 let val mid = lo + (hi-lo) div 2
 val (a, b) = par(fn () => reduce(lo, mid, f),
 fn () => reduce(mid, hi, f))
 in g(a, b)
 end

19

Auto Par Management of Loops+Reductions
(WIP)

20

Parallelism Overhead (lower is better)
bfs

bignum-add

delaunay

grep

linefit

mandelbrot

map-heavy

map-light

msort

nearest-nbrs

nqueens

primes

sparse-mxv-csr

suffix-array

triangle-count

wc

0 5 10 15 20 25 30

old MaPLe (v0.4) new MaPLe (v0.5.x) new new MaPLe (WIP)

(with auto par management 
for 2-way par)

(with auto par management 
for 2-way par

and loops+reductions)

overhead of no granularity control
vs manually tuned

