Automatic Parallelism Management

joint work with:

Sam Westrick
New York University

Ll A

Matthew Colin Mike Umut

Fluet McDonald Rainey Acar
RIT CMU CMU CMU

Managing Parallelism Workshop
Simons Institute, UC Berkeley
October 2025 1

(POPL 2024)

Automatic Parallelism Management

SAM WESTRICK, Carnegie Mellon University, USA
MATTHEW FLUET, Rochester Institute of Technology, USA
MIKE RAINEY, Carnegie Mellon University, USA

UMUT A. ACAR, Carnegie Mellon University, USA

On any modern computer architecture today, parallelism comes with a modest cost, born from the creation
and management of threads or tasks. Today, programmers battle this cost by manually optimizing/tuning their
codes to minimize the cost of parallelism without harming its benefit, performance. This is a difficult battle:
programmers must reason about architectural constant factors hidden behind layers of software abstractions,
including thread schedulers and memory managers, and their impact on performance, also at scale. In languages
that support higher-order functions, the battle hardens: higher order functions can make it difficult, if not
impossible, to reason about the cost and benefits of parallelism.

Motivated by these challenges and the numerous advantages of high-level languages, we believe that it has
become essential to manage parallelism automatically so as to minimize its cost and maximize its benefit. This
is a challenging problem, even when considered on a case-by-case, application-specific basis. But if a solution
were possible, then it could combine the many correctness benefits of high-level languages with performance

MaPLe Compiler (mpl) github.com/MPLLang/mpl

o safe, “mostly functional” language with parallelism

val par: (unit —> ‘a) *x (unit —> ‘b) —> ‘a x ‘b
val parfor: int *x int *x (int —-> unit) —> unit

Rk)
o efficient parallel memory management and scheduling
(based on “disentanglement”)

e used by 500+ students at Carnegie Mellon University
and New York University in parallel algorithms courses

e competitive performance vs PBBS parallel C/C++ code

BenChmark Suite github.com/MPLLang/parallel-ml-bench 0

graphs betweenness centrality includes
breadth-first search | | |
minimum spanning tree - over 30 state-of-the-art parallel algorithms and applications
maximum independent set - :
ow-diameter decomposition " ported from C/C++ ParlayLib, PBBS, GBBS, Ligra, PAM, ...
triangle counting :

geometry delaunay triangulation portmg methOdOIOgy _

nearest neighbors - preserve high-level algorithms, data structures
quickhull
2D range query - e.g., C/C++ array of structs < MPL sequence of tuples

mages | seam carving - make use of common primitives: scan, reduce, filter, etc.
raytracing .
tinykaboom - ensure same memory representation and access pattern

| GIF encode+decode (aS much as possible)
audio reverb
WAV encode+decode rough summary
text | tokenization :

deduplication - on 72 cores: up to 40x speedup over sequential C/C++
gre% t - across all core counts: generally within 1-2x of parallel C/C++
WOord-coun . .
longest palindrome - active research on closing the gap:
suftix array more control over memory layouts, loop unrolling, etc.

numeric dense+sparse matrix mult
integration 4
linear rearaccion

The Granularity Control Problem

(* do func(...) in parallel for every
* leaf 1n the tree
X))
fun traverse(tree, func) =

case tree of

| Leaf{x} => func(x)

| Node{l, r, ...} =>

(par(fn () => traverse(l, func),
fn () => traverse(r, func)): ())

fun traverse(tree, func) =

if size(tree) <= GRAIN SIZE then
sequential_traverse(tree, func)
else

case tree of

slow

10x (or more) performance
gap In practice

fast

The Granularity Control Problem

what grain size
should you pick?

(* do func(...) in parallel for every
* leaf 1n the tree
X) traverse(tiny tree, expensive_func)

fun traverse(tree, func) =
if size(tree) <= GRAIN SIZE then

Sequential_traverse(func, tree) traverse(huge_tree, cheap_func)
else
case tree of

Leaf{x} => func(x) traverse(t, fn x =>

Node{l, r, ...} => let n = foo(x)

(par(fn () => traverse(1l, func)

’ parfor(®, n, fn i => ...)
fn () => traverse(r, func)); ()))

The Granularity Control Problem

- how much parallelism should | expose?
(how “fine-grained” should my tasks be?)

- can this be automated?

- lots of existing work
(lazy scheduling, lazy binary splitting / lazy
tree splitting, heartbeat scheduling,
oracle-quided control, static cut-offs, cost

annotations, profiling techniques...)
- we want...
- fully general solution

- provably efficient
- Implementable and effective in practice

Compiling Loop-Based Nested Parallelism for

Irregular Workloads
Yian Su Mike Rainey Nick Wanninger Nadharm Dhiantravan
Northwestern University =~ Carnegie Mellon University =~ Northwestern University Northwestern University
Evanston, IL, USA Pittsburgh, PA, USA Evanston, IL, USA Evanston, IL, USA
Jasper Liang Umut A. Acar Peter Dinda Simone Campanoni
Northwestern University =~ Carnegie Mellon University =~ Northwestern University Northwestern University
Evanston, IL, USA Pittsburgh, PA, USA Evanston, IL, USA Evanston, IL, USA

Task Parallel Assembly Language for
Uncompromising Parallelism

Mike Rainey Ryan R. Newton Kyle Hale
Carnegie Mellon University Facebook Illinois Institute of Technology
Pittsburgh, PA, USA New York, NY, USA Chicago, IL, USA

Heartbeat Scheduling:
Provable Efficiency for Nested Parallelism

Umut A. Acar Arthur Charguéraud Adrien Guatto

Carnegie Mellon University and Inria Inria and Univ. of Strasbourg, ICube Inria
USA France France

umut@cs.cmu.edu arthur.chargueraud@inria.fr adrien@guatto.org

Mike Rainey Filip Sieczkowski
Inria and Center for Research in Inria

Extreme Scale Technologies (CREST) France
USA filip.sieczkowski@inria.fr

Towards Zero Spawn Overhead: Work Stealing Without Deques

Aaron Handleman' Kyle Singer* Tao B. Schardl* I-Ting Angelina Lee'

ahandleman@wustledu kdsinger@mit.edu neboat@mit.edu angelee@wustl.edu

* Massachusetts Institute of Technology CSAIL

" Washington University in St. Louis
Cambridge, Massachusetts, USA

St. Louis, Missouri, USA

Automatic Parallelism Management

language primitive:
par(f,g) executes f() and g() in parallel

compiler and run-time system cooperate to guarantee efficiency

In the run-time system...
provably efficient scheduling
of promotions

In the compiler...
nearly zero cost implementation of par

- by default, par executes sequentially

- can be promoted to create parallel tasks

- how? dynamic replacement of call-stack frames

Compilation

parallel source
language

(higher-order,

polymorphic)

—_—

monomorphize,
defunctionalize,
optimize, etc.

implement

parallelism with pcall:
potentially parallel

Ofunction calls

SSA IR
(first-order,
monomorphic)

()

optimize

runtime scheduler
~

linked
with

y 4

machine code

—————————————————————

allocate reqisters,
lay out memory,
optimize, etc.

w/ pcall

N
\ Ppcall

) promotion
s (dynamic)

executable

PCall Calling Convention

Call(func, args, ret) PCall(func, args, ret _seq, ret_sync, ret_spwn)
loca.ll .va rs locall. .va 'S IF NEVER PROMOTED...
(caller) e e - behaves the same as normal Call
ret_spwn - caller resumes at ret_seq
ret_sync - ret_sync and ret_spwn are discarded
ret ret_seq
args args
func loca.ll .va r's loca.l. .va r's

10

PCall Promotion

(caller)

local vars

ret_spwn
ret_sync
ret_seq

promote '

11

(caller)

local vars

ret_sync

local vars

ret_spwn

Scheduling Promotions —

o

- each promotion exposes parallelism but incurs a cost

- Idea: amortize cost of promotion against “true” work

- algorithm

- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the
outermost (oldest) outstanding PCa Ll
(in the thread’s own call-stack)

1
-

12

Promotion Stacks

- for outermost promotion:
need O(1) access to oldest promotable frame

- dynamically maintain promotion stacks during execution:

- at PCall, push onto bottom of promotion stack:
promo_stack[bot] = <frame_pointer>;
bot++;

- at ret_seq, unconditional pop:
bot—;

- at ret_sync, unconditional pop and reset top:
bot——; top = bot;

- at promotion:
promote(promo_stack|[top])
Top++;

13

Work and Span Efficiency

- our algorithm
- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the outermost (oldest) frame

- token accounting overcomes rapid heartbeat requirement: now can use much larger N
- work analysis: straightforward

- sequential work W increases to at most (1 + TC/N) W
- span analysis:

- naive reduction to Heartbeat Scheduling yields loose bound

- from Heartbeat Scheduling (C = 1, can never “save” a token):

- idealized span S increases to at most (1 + N/T) S
- so, with tokens:

- idealized span S increases to at most O(S)
14

heartbeat
schedule

at most
constant factor
stretch of
critical path

Parallelism Overhead (lower is better)

bfs
bignum-add
delaunay
grep

linefit
mandelbrot
map-heavy
map-light
msort
nearest-nbrs
nqueens
primes
sparse-mxv-csr
suffix-array

triangle-count By

WC

& old MaPLe (v0.4) @ new MaPLe (v0.5.x)
(with automatic parallelism management)

64-core performance
two versions of each bench

- NoGran:
no granularity control

- Manual.
manual granularity control

overhead =
Time(NoGran) / Time(Manual)

46X

10 15 20 25 30

overhead

16

(x combine {f(i): lo <= i < hi}
x wW.r.t. associative g(-,-) x)
fun reduce(g, z, lo, hi, f) =
1f lo >= hi then z else
if lo+1 = hi then f(lo) else
let val mid = 1o + (hi-1lo) div 2
val (a, b) = par(fn () => reduce(lo, mid, f),
fn () => reduce(mid, hi, f))
in g(a, b)
end

n-1 midpoint calculations
n-1 PCalls + n-1 regular calls:
2(n-1) stack frame push/pop in total

17

(x combine {f(i): lo <= i < hi}
*x w.r.t. associative g(-,-))
fun reduce(g, z, lo, hi, f) =
1f lo >= hi then z else
if lo+1 = hi then f(lo) else
let val mid = 1o + (hi-1o0) div 2
val (a, b) = par(fn ()
fn ()
in g(a, b)
end

“algorithmic” gap between
sequential and parallel alternatives

(* sequential accumulating loop)
fun reduce(g, a, lo, hi, f) =

1f lo >= h1i then a else

reduce(g, g(a,f(lo)), lo+l, hi, f)

18

=> reduce(lo, mid, f),
=> reduce(mid, hi, f))

Zero-Overhead Parallel Scans for Multi-Core CPUs

Ivo Gabe de Wolff David P. van Balen
Utrecht University Utrecht University
Netherlands Netherlands
Abstract

We present three novel parallel scan algorithms for multi-
core CPUs which do not need to fix the number of avail-
able cores at the start, and have zero overhead compared
to sequential scans when executed on a single core. These
two properties are in contrast with most existing parallel
scan algorithms, which are asymptotically optimal, but have
a constant factor overhead compared to sequential scans
when executed on a single core. We achieve these properties
by adapting the classic three-phase scan algorithms. The
resulting algorithms also exhibit better performance than
the original ones on multiple cores. Furthermore, we adapt
the chained scan with decoupled look-back algorithm to
also have these two properties. While this algorithm was
originally designed for GPUs, we show it is also suitable
for multi-core CPUs, outperforming the classic three-phase
scans in our benchmarks, by better using the caches of the
processor at the cost of more synchronisation. In general
our adaptive chained scan is the fastest parallel scan, but in

Gabriele K. Keller
Utrecht University

Netherlands

Trevor L. McDonell
Utrecht University

Netherlands

Given an array, a scan computes for each element the
combined value of all prior elements (including or excluding
its own value, for respectively an inclusive or exclusive scan).
The scan uses a binary operator @ to combine two elements,
and can be implemented sequentially as follows:

function scan_seQ(T* input, T* output, size, T initial)
accum « initial
foriino...sizedo

accum «— accum @ input[i]

output(i] « accum
return accum

If the operator @ is associative, the scan can be executed
in parallel. In this paper, we introduce scan algorithms for
thread-level parallelism on CPUs which exhibit faster per-
formance than the state of the art algorithms. We address
the cost of performing scans in parallel on multi-core CPUs.
Most existing parallel scan algorithms are asymptotically
optimal. However, they typically have a constant factor over-
head over sequential scans, as they traverse the data multiple

Auto Par Management of Loops+Reductions

(WIP)) V—J\/—

f(0) (1) f(2)

t split within f(2) if possible ...
K f(3) f(4) £(5) f(6)

£(7)
+—
f(8)

\ f(9) f(10)

I

f(11), f(12)

| — —

f(13), f(14)

1

19

Parallelism Overhead (lower is better)

bfs
bignum-add
delaunay

grep

linefit
mandelbrot
map-heavy
map-light
msort
nearest-nbrs
nqueens
primes
sparse-mxv-csr
suffix-array
triangle-count

wWC

!

5

overhead of no granularity control

vs manually tuned

15

20

® old MaPLe (v0.4)

B new MaPLe (v0.5.x)

(with auto par management
for 2-way par)

new new MaPLe (WIP)

(with auto par management
for 2-way par
and loops+reductions)

30

