
(POPL 2025 Tutorial Proposal)

MPL: Provably Efficient Parallel Programming

Sam Westrick

Courant Institute of Mathematical Sciences
New York University

New York, NY

shw8119@nyu.edu

Abstract

Parallel programming is infamously error-prone, not only due to correctness issues but also subtle
performance problems which can easily negate the benefits of parallelism. MaPLe (MPL for short) is
a parallel functional language that seeks to address these issues by providing strong guarantees on both
safety and efficiency. A key feature of MPL is that it is provably efficient relative to the work-span cost
model, preserving all logical parallelism in the source program while ensuring low overhead and high
scalability in practice. In this tutorial, we will present MPL, overview the key ideas underpinning its
design, and give a hands-on introduction to writing code with MPL and evaluating the performance of
parallel code in practice.

1 Introduction and Motivation

Recent work on provable efficiency for parallel programming [11, 1, 9, 8, 2, 10] has led to the development of
MaPLe1, or MPL for short. MPL is a parallel functional language based on Standard ML, and extended
with a parallel primitive, called par, which evaluates two thunks in parallel and returns their results as a
tuple.

val par: (unit -> ’a) * (unit -> ’b) -> ’a * ’b

The primitive par alone is surprisingly expressive, as it can be used (often recursively) to implement any
fork-join parallel algorithm. For example, a parallel for-loop can be expressed by splitting the loop range in
half and recursively processing the two halves in parallel, as shown in Figure 1.

Work and span. The function par only expresses logical parallelism, and we rely on the language im-
plementation to figure out how to map computations onto processors, allowing the program to be machine-
independent and portable across different architectures. To reason about performance in a portable way
(independent of a particular machine), we need an abstract cost model which can be instantiated for any
particular machine architecture or configuration.

A particularly popular model which has found widespread use is the work-span model; this model is
popular due to being incredibly simple yet remarkably effective in practice, allowing for accurate prediction

1Available open-source on GitHub at https://github.com/MPLLang/mpl

1

shw8119@nyu.edu
https://github.com/MPLLang/mpl

1 fun parfor(i: int , j: int , f: int -> unit) =
2 if i >= j then
3 ()
4 else if j-i = 1 then
5 f(i)
6 else
7 let val mid = i + (j-i) div 2
8 in par(fn () => parfor(i, mid , f),
9 fn () => parfor(mid , j, f));

10 ()
11 end

Figure 1: Simple implementation of a parallel for-loop in terms of just par.

of scalability across a wide range of multicore architectures. As suggested by the name, the model is based
on two quantities: work and span. Informally, work of a computation is the total number of instructions
that need to be executed and the span is the number of instructions on the critical path.2 Analyzing the
work and span of a program is straightforward according to the following equations.

Work W(par(f,g)) ≜ W(f()) +W(g())

Span S(par(f,g)) ≜ 1 + max(S(f()),S(g()))

Well-known and well-studied scheduling techniques (such as work-stealing) can guarantee that the execution
of a program e using P processors will complete in approximately W(e)/P +S(e) time [3, 6]; this time bound
ensures nearly-optimal performance on any number of processors.

Practical concerns. The W(e)/P +S(e) time bound, which is central to this approach, makes a number
of assumptions. In practice, these assumptions can be unrealistic:

1. The bound assumes that the execution cost of par is free. However, typical implementations of par
require at least a modest number of instructions. If the programmer is not careful to control the
“granularity” of parallelism, the cost of par will dominate the computation and result in significant
slowdowns.

2. The bound assumes that the only synchronization between processors occurs at either the beginning
or end of a par. However, multi-threaded language implementations typically require other synchro-
nizations under the hood (especially in the implementation of automatic memory management systems
and garbage collectors) which limit scalability.

Provable efficiency in MPL. MPL addresses the two issues above through a combination of (and close
interaction between) two features: automatic parallelism management [10], and disentangled memory man-
agement and coscheduling [11, 1, 9, 8, 2]. The resulting system ensures that the cost of the garbage collector
does not interfere with parallelism, and also that the run-time cost of par is nearly zero. As a result, MPL
is able to offer strong performance guarantees in practice with respect to the work-span model.

2Alternatively, one can informally think of the span of a computation as the minimum possible execution time, assuming an
idealized machine with infinite processors and no communication or synchronization cost.

2

Motivation for this tutorial. The papers listed above have recently appeared at conferences such as
POPL, ICFP, and PLDI, and therefore the topics are likely to be of interest to POPL conference-goers
and tutorial attendees. As part of the tutorial, we will provide an overview of the research in this area and
introduce key concepts, which will help make these lines of research more accessible to the general community.
Many POPL attendees may also wish to learn more about parallel programming, and we believe that this
tutorial will serve as a good hands-on introduction to the topic, especially demonstrating that state-of-the-
art language implementation technologies simplify the challenge of writing efficient, scalable, and correct
parallel code.

2 Overview

Objectives. Attendees will become familiar with research in the area of provably efficient implementations
and will learn about key concepts and common definitions in these lines of research. Attendees will also gain
hands-on experience with writing parallel code and learn how to analyze and evaluate performance, both in
theory and practice.

Topics to be covered:

• Introduction to provable efficiency and abstract cost models. (This topic goes back at least to the
90s, for example with Blelloch and Greiner’s work on provably efficient implementations [4, 5, 7] and
languages such as NESL.)

• Overview of recent work in this area, especially work relevant to MPL, including automatic parallelism
management and disentangled memory management.

• Introduction to the MPL language.

• Introduction to parallel programming, especially common patterns (e.g. divide-and-conquer), higher-
order parallel primitives (map, filter, reduce, scan, etc.), and common performance issues (e.g.,
granularity control).

• (Hands-on) Parallel programming examples and challenges, with empirical performance analysis.

Presentation approach. Slides and interactive live coding.

Target audience and prerequisite knowledge. This tutorial is meant to be accessible generally to the
POPL community. For the hands-on component, attendees should be familiar with functional programming
(e.g., Standard ML or OCaml or Haskell, etc.) and recursive programming techniques, and should be
comfortable with typical command-line usage. No other specific requirements. A number of programming
challenges will be offered at various levels of difficulty.

Has this tutorial been held previously? No; this would be the first offering.

3

References

[1] Jatin Arora, SamWestrick, and Umut A. Acar. Provably space efficient parallel functional programming.
In Proceedings of the 48th Annual ACM Symposium on Principles of Programming Languages (POPL),
2021.

[2] Jatin Arora, Sam Westrick, and Umut A. Acar. Efficient parallel functional programming with effects.
Proc. ACM Program. Lang., 7(PLDI):1558–1583, 2023.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprogrammed
multiprocessors. In Proceedings of the tenth annual ACM symposium on Parallel algorithms and archi-
tectures, SPAA ’98, pages 119–129. ACM Press, 1998.

[4] Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In Proceedings of the
7th International Conference on Functional Programming Languages and Computer Architecture, FPCA
’95, pages 226–237. ACM, 1995.

[5] Guy E. Blelloch and John Greiner. A provable time and space efficient implementation of NESL. In
Proceedings of the 1st ACM SIGPLAN International Conference on Functional Programming, pages
213–225. ACM, 1996.

[6] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing.
J. ACM, 46:720–748, September 1999.

[7] John Greiner and Guy E. Blelloch. A provably time-efficient parallel implementation of full speculation.
ACM Transactions on Programming Languages and Systems, 21(2):240–285, March 1999.

[8] Sam Westrick. Efficient and Scalable Parallel Functional Programming Through Disentanglement. PhD
thesis, Carnegie Mellon University, August 2022.

[9] Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero cost. In Pro-
ceedings of the 27th ACM SIGPLAN International Conference on Functional Programming, ICFP 2022,
2022.

[10] Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar. Automatic parallelism management.
In Proceedings of the 33rd Annual ACM Symposium on Principles of Programming Languages (POPL),
POPL ’24, 2024.

[11] Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement in nested-parallel
programs. In Proceedings of the 47th Annual ACM Symposium on Principles of Programming Languages
(POPL), 2020.

4

	Introduction and Motivation
	Overview

