
Automatic Parallelism Management

SAMWESTRICK, Carnegie Mellon University, USA

MATTHEW FLUET, Rochester Institute of Technology, USA

MIKE RAINEY, Carnegie Mellon University, USA

UMUT A. ACAR, Carnegie Mellon University, USA

On any modern computer architecture today, parallelism comes with a modest cost, born from the creation

and management of threads or tasks. Today, programmers battle this cost by manually optimizing/tuning their

codes to minimize the cost of parallelism without harming its benefit, performance. This is a difficult battle:

programmers must reason about architectural constant factors hidden behind layers of software abstractions,

including thread schedulers andmemorymanagers, and their impact on performance, also at scale. In languages

that support higher-order functions, the battle hardens: higher order functions can make it difficult, if not

impossible, to reason about the cost and benefits of parallelism.

Motivated by these challenges and the numerous advantages of high-level languages, we believe that it has

become essential to manage parallelism automatically so as to minimize its cost and maximize its benefit. This

is a challenging problem, even when considered on a case-by-case, application-specific basis. But if a solution

were possible, then it could combine the many correctness benefits of high-level languages with performance

by managing parallelism without the programmer effort needed to ensure performance. This paper proposes

techniques for such automatic management of parallelism by combining static (compilation) and run-time

techniques. Specifically, we consider the Parallel ML language with task parallelism, and describe a compiler

pipeline that embeds “potential parallelism” directly into the call-stack and avoids the cost of task creation by

default. We then pair this compilation pipeline with a run-time system that dynamically converts potential

parallelism into actual parallel tasks. Together, the compiler and run-time system guarantee that the cost of

parallelism remains low without losing its benefit. We prove that our techniques have no asymptotic impact

on the work and span of parallel programs and thus preserve their asymptotic properties. We implement

the proposed techniques by extending the MPL compiler for Parallel ML and show that it can eliminate the

burden of manual optimization while delivering good practical performance.

CCS Concepts: • Software and its engineering→ Parallel programming languages; Functional languages;
Procedures, functions and subroutines; Compilers.

Additional Key Words and Phrases: parallel programming languages, granularity control, compilers

ACM Reference Format:

Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar. 2024. Automatic Parallelism Management.

Proc. ACM Program. Lang. 8, POPL, Article 38 (January 2024), 32 pages. https://doi.org/10.1145/3632880

1 INTRODUCTION
Parallelism is here to stay. The numbers of cores in multicore chips have increased from a handful

to many dozens in the last decade and brought parallelism to the mainstream. Yet, developing

software that takes advantage of this parallelism continues to be a major challenge. There are two

Authors’ addresses: Sam Westrick, Carnegie Mellon University, Pittsburgh, PA, USA, swestric@cs.cmu.edu; Matthew Fluet,

Rochester Institute of Technology, Rochester, NY, USA, mtf@cs.rit.edu; Mike Rainey, Carnegie Mellon University, Pittsburgh,

PA, USA, me@mike-rainey.site; Umut A. Acar, Carnegie Mellon University, Pittsburgh, PA, USA, umut@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART38

https://doi.org/10.1145/3632880

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0003-2848-9808
HTTPS://ORCID.ORG/0000-0002-4194-7618
HTTPS://ORCID.ORG/0009-0002-9659-1636
HTTPS://ORCID.ORG/0000-0002-2623-4986
https://doi.org/10.1145/3632880
https://orcid.org/0000-0003-2848-9808
https://orcid.org/0000-0002-4194-7618
https://orcid.org/0009-0002-9659-1636
https://orcid.org/0000-0002-2623-4986
https://doi.org/10.1145/3632880


38:2 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

sides to the parallelism challenge. On the correctness side, the culprit is pernicious concurrency

bugs, which are easy to write but hard to find and fix. On the performance side, the culprit is

the (run-time) overhead of parallelism, which requires the programmer to optimize or tune their

code to avoid creating too many parallel threads or tasks, lest it annul the expected benefits. Such

optimization is difficult: it requires a deep understanding of the hardware, the many levels of

abstractions implemented by modern programming languages, and the input data.

Much research on parallelism has focused on the correctness challenge. Researchers have consid-

ered a variety of programming languages, including both functional and procedural, and devoloped

techniques to simplify the development of parallel programs. A long line of research focused on

taking advantage of the absence of data races in functional programming [Arora et al. 2021; Fluet

et al. 2011; Guatto et al. 2018; Li et al. 2007; Marlow and Peyton Jones 2011; Peyton Jones et al. 2008;

Raghunathan et al. 2016; Sivaramakrishnan et al. 2014; Spoonhower 2009; Westrick et al. 2020].

Another long line of research focused on detecting races so as to avoid concurrency bugs [Bender

et al. 2004; Cheng et al. 1998; Feng and Leiserson 1997; Fineman 2005; Flanagan and Freund 2009;

Kini et al. 2017; Mellor-Crummey 1991; O’Callahan and Choi 2003; Raman et al. 2010, 2012; Savage

et al. 1997; Smaragdakis et al. 2012; Utterback et al. 2016; Xu et al. 2020; Yu et al. 2005].

There has also been some research on the performance challenge. Much of this work has focused

on scheduling algorithms, e.g., work stealing, that can guarantee scalability and small overheads

relative to the numbers of threads. Researchers have considered scheduling from a variety of angles,

including time cost [Arora et al. 2001; Eager et al. 1989], data locality [Acar et al. 2002; Blelloch

et al. 2011], and and responsiveness [Muller and Acar 2016; Muller et al. 2023]. Scheduling alone,

however, is not sufficient to control parallelism overhead, because it does not help with the problem

of determining the “degree” of parallelism—concretely, the number of threads/tasks to create at any

point in time. The work on heartbeat scheduling used an amortization technique to control the

degree of parallelism [Acar et al. 2018]. Even though the approach can limit parallelism overhead

in theory, it is not known if it can be realized in a high-level language with powerful features,

including, for example, higher-order functions and automatic memory management.

Automatic Parallelism Management. In this paper, we propose to manage the cost and benefit

of parallelism automatically by a combination of static (language based) and dynamic (run-time

system) techniques. Our aim is to take parallel programs written in a high-level programming

language and compile them to performant executables, without requiring the programmer to

manually tune and prune the amount of parallelism. Specifically, in this paper, we consider fork-

join parallel programs written in a functional programming language with effects, such as the

Parallel ML language, which extends Standard ML. This language offers a primitive, par, which is

used to express parallelism in the fork-join style.

As a simple example of the difficulty of hand-optimizing parallel programs for performance,

consider a parallel, higher-order map function that applies a given function over a sequence. To

control the cost of parallelism, the programmer may attempt to optimize map by rewriting it, so

that “small” pieces of work do not run in parallel, but instead run sequentially. By “small”, we mean

computations whose parallelization costs outweigh the benefit from parallelism. The problem is,

for a higher-order function such as map, there is no way to determine what “small” means.

To see this, consider the following three different calls: map(fLight,s), map(fHeavy,s), and
map(fPar,s). These respectively apply a light/cheap function (fLight), a heavy/expensive function

(fHeavy), and a parallel function (fPar) to the same sequence (s). In the light case, “small” could be,

say, ten applications of fLight. In the heavy case, “small” could be a just a single application of

fHeavy; In the parallel case, it is not clear what “small” is, because it depends on precisely how fPar

is parallelized. The fPar function could even contain another application of map itself.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:3

Clearly, we have no uniform notion of “small”, and it would appear that no single implementation

of map could perform well in all cases. We can complicate the problem further by throwing poly-

morphism into the mix, such that the sequence arguments (s) in the example were all of different

types (e.g., int seq, string seq, and (int seq) seq). Now, the programmer can no longer assume a

fixed type for the sequence, further complicating the reasoning.

The approach proposed in this paper leaves it to the language to manage all this complexity. We

allow the programmer to write just one version of map, which maximally expresses all opportunities

for parallelism. Then, the compiler and the run-time work together to figure out how to parallelize

the computation, guaranteeing that the cost of parallelism remains low without losing its benefit.

The idea behind our approach is to compile each par into a potentially parallel function
call—or pcall, for short—and represent pcalls explicitly as promotable frames in the call-stack.

Each promotable frame can either (1) behave as a standard frame, which executes sequentially,

with nearly zero additional cost, or (2) be promoted into an actual parallel task. In this way, we

shift the overhead of task creation away from par, and instead rely on promotions (which we

schedule separately) to create tasks. The programmer may therefore use par liberally to express all

opportunities for parallelism, without harming performance.

Next, we develop a parallelism management algorithm to schedule promotions dynamically,

during execution. Each promotion creates a task for an outstanding pcall, and thereby exposes

parallelism, but incurs a cost to do so. Our algorithm uses a global amortization technique to

amortize the cost of promotions against the actual work of the computation, while ensuring that a

sufficient amount of parallelism is exposed for performance and scalability. Specifically, to expose

sufficient parallelism, our algorithm uses an insight from heartbeat scheduling [Acar et al. 2018]: the

idea is to promote the oldest outstanding pcall as soon as possible, i.e., as soon as the amortization

policy allows. Each thread performs promotions independently on its own call-stack, thereby

avoiding complications with concurrency and allowing all promotions to proceed in parallel.

To formalize the language-based aspect of our approach, we give a semantics for an SSA inter-

mediate representation (IR), endowed with our pcall calling convention, and show how to compile

source-level parallelism into this IR. Next, we present our parallelism management algorithm and

prove that it asymptotically is both work-efficient and span-efficient, i.e., our algorithm bounds the

overhead of parallelism without asymptotically impacting the span (length of the critical path)

of the computation. Finally, we describe in detail how to implement our approach in a state-of-

the-art parallel functional language implementation and evaluate its performance. We show that

our implementation, called MPL
s
(“Sugar MaPLe”), effectively amortizes the cost of parallelism in

programs that maximally expose all parallelism at the source level, and achieves good performance

and scalability in practice. Our specific contributions include the following.

• A compilation technique for potentially parallel function calls (pcall), which execute sequen-

tially by default but can be dynamically promoted into parallel tasks (Section 3). We embed

potential parallelism directly into the call-stack, guaranteeing that pcall has nearly zero cost.

• A semantics for an SSA intermediate language endowed with pcall (Section 3.3), and a

technique for compiling high-level parallelism into pcall (Section 3.2).

• A parallelism management algorithm (Section 4) that dynamically performs promotions and

provably guarantees both low overhead and sufficient parallelism during execution.

• A practical implementation, calledMPL
s
(“Sugar MaPLe”), which extends theMPL [Acar et al.

2020] compiler and run-time system with pcalls and automatic parallelism management

(Section 5).

• An experimental evaluation, demonstrating that MPL
s
successfully amortizes the cost of

parallelism while retaining its benefits (Section 6).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:4 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

fun map(𝑓 , 𝐴) = let

val 𝐵 = Array.allocate |𝐴|
fun go(𝑖, 𝑗) =

if 𝑖 + 1 = 𝑗 then 𝐵 [𝑖] := 𝑓 (𝐴[𝑖])
else

let val 𝑚 =

⌊
𝑖+𝑗
2

⌋
in par(fn () ⇒ go(𝑖,𝑚),

fn () ⇒ go(𝑚, 𝑗)); () end

in go(0, |𝐴|); 𝐵 end

// total work for par is negligible
// w.r.t. total work of many calls to expensiveFunction
fun expensiveFunction(𝑥) = ...

val 𝑋 = [1, 2, . . . , 1000]
map(expensiveFunction,𝑋 )

// total work of par dominates, unless par has nearly zero cost
fun veryCheapFunction(𝑦) = ...

val 𝑌 = [1, 2, . . . , 10000000000]
map(veryCheapFunction,𝑌 )

Fig. 1. The challenge of automatic parallelism management.

2 OVERVIEW AND KEY IDEAS
The source language we consider is an ML-like language with standard features (higher-order

functions, parametric polymorphism, etc.), and with parallelism via the polymorphic function par.

par : (unit→ 𝛼) × (unit→ 𝛽) → 𝛼 × 𝛽
Using par, a programmer can evaluate two functions in parallel and receive their results as a tuple.

Often, par is used recursively to split a problem into many small pieces that can be processed in

parallel. For example, a “parallel for-loop” can be implemented by splitting the index range in half

and then recursively processing the two halves in parallel. This style of parallelism—known as

fork-join parallelism—is well-suited for expressing balanced divide-and-conquer style algorithms.

In this paper, we provide an implementation of par that has nearly zero cost. Specifically, we show
how to compile the expression par(𝑓 , 𝑔) so that, dynamically, a scheduler may choose between

two behaviors for par: either it creates tasks to execute 𝑓 () and 𝑔() in parallel, or it executes 𝑓 ()
and 𝑔() sequentially. Our compiler and dynamic scheduler then work together to automatically
manage parallelism, offering the following performance guarantees.

(1) Work-efficiency: the total overhead of all calls to par is nearly zero. In particular, the

total cost of creating tasks should be small, e.g., 1% of total processor time. Additionally, if

the scheduler chooses not to execute a call par(𝑓 , 𝑔) in parallel, then the cost is no more

expensive than the cost of executing 𝑓 () and 𝑔() sequentially.
(2) Span-efficiency: the theoretical parallelism of the execution is preserved.

Example. To illustrate the challenge of automatic parallelism management, consider the example

shown in Figure 1. On the left is a divide-and-conquer parallel implementation of the function

map. This implementation is “fully parallel” in the sense that it uses par to expose all theoretical

parallelism, with no manual granularity control. Ideally, such an implementation would be sufficient

for all uses of map. On the right are two example calls to map, with two different functions passed as

argument that have different costs. When an expensive function is passed to map, the total cost of

par is negligible relative to the overall computation. However, when an inexpensive function is

passed to map, the total cost of par dominates, unless par has nearly zero cost.

A typical workaround is to use manual granularity control to stop calling par when the size of

the range 𝑗 − 𝑖 is small, e.g., less than 1000. Such a workaround introduces hardcoded, constant

thresholds, which need to be individually tuned, often with a different threshold per callsite. For

example, in Figure 1, we might choose a threshold of 1000 for map(veryCheapFunction,𝑌 ), but
the same threshold is a bad choice for map(expensiveFunction,𝑋 ), because it would eliminate all

parallelism at that callsite (note that the length of 𝑋 is small).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:5

parallel source
language

(higher-order,
polymorphic)

SSA IR
(first-order,

monomorphic)
machine code

w/ pcallmonomorphize,
defunctionalize,
optimize, etc.

allocate registers,
lay out memory,
optimize, etc.

optimize

implement
parallelism with pcall:

potentially parallel
function calls

runtime scheduler

linked
with

executable

pcall
promotion
(dynamic)

Fig. 2. High-level summary of our approach. We leverage a standard compilation pipeline with a first-order

IR. In this IR, we implement a new calling convention: a potentially parallel function call.

2.1 Our Approach
To meet the work- and span-efficiency guarantees described above, our approach consists of a

combination of static and dynamic techniques, as summarized in Figure 2.

Statically, we use a standard compilation pipeline to lower par into a first-order, monomorphic,

intermediate language (IR). In this IR, we make parallel control flow explicit by introducing a new

calling convention: the potentially parallel call, or pcall for short. Each pcall is “potentially”
parallel in the sense that it is sequential by default, but can later be dynamically promoted into a fully
parallel call. After pcall is introduced in the compilation pipeline, the program can be optimized

and compiled to machine code, which is linked with a runtime system and thread scheduler.

Dynamically, our scheduler judiciously selects a subset of outstanding pcalls to be promoted.
To promote a pcall, the scheduler (1) spawns a thread, and (2) adjusts the continuation of the

pcall to synchronize with the spawned thread. If left unpromoted, no thread is spawned, and the

synchronization code is skipped. Notably, our approach requires no dynamic check to distinguish

between promoted and unpromoted pcalls. The only overhead of pcall, then, is the cost of com-

municating with the scheduler, to inform it of potential parallelism. We refer to this process as

marking potential parallelism.

2.1.1 Marking Potential Parallelism. Thepcall calling convention communicates with the scheduler

using the call-stack, specifically by taking advantage of return addresses stored in call-stack frames.

We use two kinds of frames: standard frames, which have a single return address, and promotable
frames, which have three return addresses. Promotable frames have a distinguished “default” return

address which aligns with the layout of standard frames, allowing promotable frames to behave

as though they were standard call frames. Otherwise, the only difference between a standard and

promotable frame is that a promotable frame uses two additional stack slots (to store two additional

return addresses).

When a pcall occurs, a new promotable frame is pushed onto the callstack. The additional return

addresses within this frame are used by the scheduler to dynamically adjust the behavior of the

pcall upon return. By default, the pcall will return to a code path which continues execution

sequentially, with no additional overhead. However, if the scheduler chooses to promote a pcall, it
can do so by overwriting the default return address with one of the additional return addresses

stored in the promotable frame. This causes the pcall to return to a different code path, specifically

to execute code which synchronizes with another thread (spawned by the scheduler). The details

of these different code paths are presented in Section 3.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:6 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

Function Name 𝑓 , 𝑔

Block Label 𝑏

Temporary 𝑥, 𝑦

Value 𝑣 ::= () | true | false | . . .
Primitive Op o ::= . . .

Expression 𝑒 ::= 𝑣 | o(𝑥 ) | . . .
Statement 𝑆 ::= 𝑥 ← 𝑒

Transfer 𝑇 ::= goto 𝑏 (𝑥 ) | if 𝑥 then goto 𝑏 (𝑥 ) else goto 𝑏 (𝑥 ) | call 𝑓 (𝑥 ) ▷ 𝑏 | return (𝑥 )
| pcall 𝑓 (𝑥 ) ▷ (𝑏,𝑏,𝑏 ) | getjoin ▷ 𝑏 | setjoin (𝑥 )

Basic Block 𝐵 ::= block 𝑏 (𝑥 ) =
{

𝑆 ;𝑇
}

Function 𝐹 ::= fun 𝑓 (𝑥 ) = let 𝐵 in
{

𝑆 ;𝑇
}

Program 𝑃 ::= let 𝐹 in 𝑓 ( )

Fig. 3. SSA IR syntax. The language is standard except for the highlighted constructs.

2.1.2 Dynamic Promotions. With all potential parallelism marked in call-stacks, the scheduler

is free to choose to promote an outstanding pcall at any moment. Selecting pcalls to promote

requires care, as there is a delicate balance between work-efficiency and span-efficiency: each

promotion exposes more parallelism, but requires more work.

In Section 4, we present a dynamic algorithm that is provably work- and span-efficient. At a high

level, our algorithm tracks the amount of “true” work performed by each thread (which excludes

the cost of promotions) by accumulating tokens periodically during execution. These tokens may

then be spent to perform promotions, guaranteeing that the number of promotions is small relative

to the work of the computation.

To guarantee that sufficient parallelism is exposed, it is important to carefully select which pcalls
are promoted. Here, we use an insight from prior work. In particular, in their work on heartbeat

scheduling, Acar et al. [2018] proved formally that prioritizing the oldest tasks for promotions

guarantees at most a constant factor inflation of the span (i.e., the length of the critical path).

Intuitively, the oldest tasks need to be promoted as soon as possible because these tasks have

already suffered the longest delay (and therefore are most likely to be on the critical path). Our

promotion algorithm is inspired by this prior work, and in particular our proof of span-efficiency

(Section 4, Theorem 4.2) similarly requires that promotions prioritize the oldest tasks. Therefore, in

Section 3 (and especially in the operational semantics of Figure 8), we specialize for this behavior.

This is important for performance, but otherwise not essential to the semantics of pcall.

3 PCALL: POTENTIALLY PARALLEL CALLS
The primary workhorse IR we consider is a first-order SSA (static single assignment) language. Our

pcall primitive is not directly exposed to the user; rather, we show how to compile the source level

par primitive into pcall, leveraging a standard compilation pipeline for functional languages.

In this section, we define the pcall primitive and give it a semantics. At a high level, pcall is
similar to a standard function call, except that it has multiple possible continuations instead of just

one. These multiple continuations are used to endow pcall with two behaviors, one of which is

sequential and another which is parallel. In this way, pcall is potentially parallel.

3.1 Syntax
Figure 3 defines the syntax of the SSA IR we consider. A program in this IR is a collection of

top-level first-order functions where each function is a collection of basic blocks.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:7

A basic block consists of a label, a (potentially empty) list of parameters, a list of statements, and

a transfer which specifies the continuation of the block. Note that we use basic blocks augmented

with parameters, rather than phi nodes.

In keeping with the SSA tradition, we refer to the variables of the language as temporaries,
denoted 𝑥 , 𝑦, etc. Each temporary is assigned exactly once, and may be used in any block dominated

by the block in which the temporary was assigned. For simplicity, we assume temporaries are

uniquely named (i.e., no shadowing). Parameters (of basic blocks and functions) are also temporaries,

and are considered assigned on entry (to the block or function).

Statements perform assignments to temporaries by evaluating simple expressions. These expres-

sions could be operations such as arithmetic, memory allocation, reads and writes, etc. We omit the

details of expressions, as these details are not pertinent to the control flow of the language. We

instead focus on control flow, defined by the transfers of the language.

Standard transfers include unconditional jumps, conditional jumps, function calls, and function

returns. Our extensions to the language are three additional transfers: pcall, getjoin, and setjoin.
The pcall primitive is our main extension, discussed below.

The getjoin and setjoin primitives are used synchronize spawned threads, to implement the

parallel behavior of pcall. Each getjoin statically has a setjoin that it is paired with; the semantics

of the getjoin are to block until the corresponding setjoin occurs, which passes a value to the

getjoin. In other words, these primitives encode a synchronization variable. The syntax of getjoin
has a continuation 𝑏, which has arity 1, and receives the value of the corresponding setjoin as

argument. In contrast, setjoin has no continuation, and instead it terminates the current thread.

We include getjoin and setjoin in the language to make it possible to give a complete operational

semantics (Section 3.3) in terms of threads and thread synchronizations. Note that, in practice, these

transfers are defined by a scheduler which is not “baked into” the compiler proper. This nuance is

discussed in Section 5.1.2.

Call and PCall. The defining feature of our language is that it has two types of calls: standard
function calls, and potentially parallel calls. Standard calls, written call 𝑓 (𝑥1, . . . , 𝑥𝑛) ▷ 𝑏, consist of:
a function name 𝑓 , a (possibly empty) list of arguments 𝑥1, . . . , 𝑥𝑛 , and a return label 𝑏, indicating

where control should return to when the function call returns.

The pcall transfer is similar, except with three return labels instead of one. It is written

pcall 𝑓 (𝑥1, . . . , 𝑥𝑛) ▷ (𝑏seq, 𝑏sync, 𝑏spwn). The first return continuation, 𝑏seq, is used for the se-

quential behavior. By default, pcall will use this continuation, causing it behave identically to call,
i.e., it behaves as a standard function call. The latter two continuations, 𝑏sync and 𝑏spwn, are used

for the parallel behavior: 𝑏spwn points to the code that will be executed in parallel, by a spawned

thread, and 𝑏sync points to the code that will synchronize with the spawned thread.

The intent is that the code path at 𝑏sync will eventually call getjoin to wait for the spawned

thread to complete; similarly, the code path at 𝑏spwn will eventually call setjoin to pass a value

back to the original thread. Importantly, on the sequential code path 𝑏seq, no thread is spawned,

and no synchronization code is necessary.

3.2 Lowering High-Level Parallelism into SSA with PCall
The par function from Section 2 is lowered into SSA in two steps, illustrated in Figures 4 and 5.

First, using standard compilation techniques (in particular, defunctionalization), a source-

level par(𝑓 , 𝑔) expression is compiled into SSA by encoding it as a transfer of the form

par 𝑓top (. . .), 𝑔top (. . .) ▷ 𝑏. This transfer resembles a normal function call, but it calls two functions

instead of one. (Note the similarity with call transfer of Figure 3.) Figures 4a and 4b respectively

show (a) an example expression par(𝑓 , 𝑔), and (b) the resulting code after compiling into SSA. The

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:8 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

let 𝑥 = . . . in let 𝑦 = . . . in let 𝑧 = . . . in
let 𝑓 = fn () ⇒ . . . 𝑥 . . . in
let 𝑔 = fn () ⇒ . . . 𝑦 . . . 𝑧 . . . in
let 𝑟 = par(𝑓 , 𝑔) in
. . . 𝑟 . . .

(a) Example source

fun 𝑓top (𝑥 ) = . . . 𝑥 . . .

fun 𝑔top (𝑦, 𝑧 ) = . . . 𝑦 . . . 𝑧 . . .

fun main( ) =
let

. . .

block seq_enter (𝑟 ′
1
) = {call 𝑔top (𝑦, 𝑧 ) ▷ seq_exit }

block seq_exit (𝑟 ′
2
) = {goto finish_par (𝑟 ′

1
, 𝑟 ′

2
) }

block sync_enter (𝑟 ′′
1
) = {getjoin ▷ sync_exit }

block sync_exit (𝑟 ′′
2
) = {goto finish_par (𝑟 ′′

1
, 𝑟 ′′

2
) }

block spwn_enter ( ) = {call 𝑔top (𝑦, 𝑧 ) ▷ spwn_exit }

block spwn_exit (𝑟 ′′′
2
) = {setjoin(𝑟 ′′′

2
) }

block finish_par (𝑟1, 𝑟2 ) = {𝑟 ← (𝑟1, 𝑟2 ) ; goto after_par ( ) }
block after_par ( ) = . . . 𝑟 . . .

in { 𝑥 ← . . . ; 𝑦 ← . . . ; 𝑧 ← . . . ;

pcall 𝑓top (𝑥 ) ▷ (seq_enter, sync_enter, spwn_enter ) }

(c) After eliminating par, replacing with pcall, getjoin, and
setjoin.

fun 𝑓top (𝑥 ) = . . . 𝑥 . . .

fun 𝑔top (𝑦, 𝑧 ) = . . . 𝑦 . . . 𝑧 . . .

fun main( ) =
let

. . .

block finish_par (𝑟1, 𝑟2 ) =
{𝑟 ← (𝑟1, 𝑟2 ) ; goto after_par ( ) }

block after_par ( ) = . . . 𝑟 . . .

in { 𝑥 ← . . . ; 𝑦 ← . . . ; 𝑧 ← . . . ;

par 𝑓top (𝑥 ), 𝑔top (𝑦, 𝑧 ) ▷ finish_par }

(b) Translation into SSA with par transfer,
to be eliminated

Fig. 4. Implementing parallelism using pcall in SSA.

seq_enter

seq_exit

sync_enter

sync_exit

spwn_enter

spwn_exit

pcall ftop(…)

call gtop(…) getjoin

setjoin

call gtop(…) 

finish_par

after_par

goto

goto goto

(thread terminates)

par ftop(…), gtop(…)

finish_par

after_par

goto

eliminate par

Fig. 5. Control flow graph for our approach, illustrating Figures 4b and 4c. The left (corresponding to Figure 4b)

shows the control flow before eliminating par. The right (corresponding to Figure 4c) shows the control flow

with pcall. Rectangles are basic blocks. Each block ends with a transfer, which has one or more successor

blocks.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:9

Thread Identifier 𝑡

Value Mapping X,Y ∈ (Temporary) ⇀ (Value)
Promotion Mark 𝜌 ::= none | promotable(𝑏,𝑏 )
Join Obligation 𝜎 ::= none | child(𝑡 )

Stack Frame 𝑘 ::= frame(𝜌, 𝜎, X, 𝑓 , 𝑏 )
Stack K ::= • | K ;𝑘

Thread State T ::= thread(K, 𝜎, X, 𝑓 , {𝑆 ;𝑇 } )
Thread Pool P ∈ (Thread Identifier) ⇀ (Thread State)

Fig. 6. SSA IR: stacks and threads for operational semantics.

thread
σ=none

(standard frame)
frame
ρ=none
σ=none

Call

Return

(promotable frame)
frame
ρ=promotable(…)
σ=none

(promoted frame)
frame
ρ=none
σ=child(…)

PCall

Return

Promote

(obligated to join)
thread
σ=child(…) Return

Join

Fig. 7. Overview of calling convention,

from caller’s perspective. Arrows corre-

spond to rules of Figure 8.

SSA-level functions 𝑓top and 𝑔top are the result of defunctionalizing the first-class functions 𝑓 and 𝑔.

The continuation block 𝑏 has arity 2, expecting the results of 𝑓top and 𝑔top to be passed as argument.

Second, shown in Figures 4b, 4c, and 5, we eliminate the par transfer via an SSA-to-SSA transla-

tion. This translation introduces pcall, as well as getjoin and setjoin. In the resulting code, we

begin by calling 𝑓top (. . .) using a pcall instead of a standard function call. There are then three

possible continuations of pcall: seq_enter, sync_enter, and spwn_enter, which are used to implement

two different behaviors.

• If the pcall is never promoted, only the seq_enter path is used. This path simply calls

𝑔top (. . .) sequentially after completing 𝑓top (. . .).
• If the pcall is promoted, only the sync_enter and spwn_enter paths are used. In this case,

the runtime system creates a new thread. The new thread executes the path starting at

spwn_enter. From the perspective of the new thread, it is as though the function call 𝑓top (. . .)
completed but returned no result. In the meantime, the original thread is still working on

the call 𝑓top (. . .). When 𝑓top (. . .) returns, the original thread will execute the path starting at

sync_enter. On this path, the original thread simply performs a getjoin, which blocks until

the corresponding setjoin occurs. Finally, the original thread can continue with finish_par.

3.3 Operational Semantics
We specify the meaning of pcall by presenting an operational semantics for the language. The

semantics is a small-step semantics of the form 𝐹 ⊢ P ↦−→ P, where 𝐹 is a collection of first-order

function definitions, and P is a pool of active threads. The syntax for threads and thread pools is

given in Figure 6, and an overview of the calling convention is shown in Figure 7. The rules of the

operational semantics are shown in Figure 8.

3.3.1 Overview of Operational Semantics. The high-level idea of the operational semantics is to

augment the frames of a standard call-stack with two additional components: a promotion mark 𝜌 ,

and a join obligation 𝜎 . These components are managed by the calling convention of the language,

and are used to keep track of both promoted and unpromoted pcalls, as well as to allow concurrent

threads to synchronize with each other.

This aspect of the design is intricate, so we give a diagram in Figure 7. In the diagram, the arrows

correspond to rules in the operational semantics, and the white boxes represent different states

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:10 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

Auxiliary Definitions: Function and Block Lookup

𝐹 ∋ fun 𝑓 (𝑥) = let _ in
{

𝑆 ; 𝑇
}

FuncLookup(𝐹, 𝑓 ) = ((𝑥), {𝑆 ; 𝑇 })
𝐹 ∋ fun 𝑓 (_) = let 𝐵 in _ 𝐵 ∋ block 𝑏 (𝑥) =

{

𝑆 ; 𝑇
}

BlockLookup(𝐹, 𝑓 , 𝑏) = ((𝑥), {𝑆 ; 𝑇 })

Auxiliary Definitions: Oldest Promotable Frame

NoPromotableFrames(K) 𝑘p = frame(promotable(_), _, _, _, _)
SplitOldestPromotable(K ;𝑘p) = K ;𝑘p; •

SplitOldestPromotable(K) = K1;𝑘p;K2 K′
2
= K2;𝑘

SplitOldestPromotable(K ;𝑘) = K1;𝑘p;K′2

NoPromotableFrames(•)
NoPromotableFrames(K)

NoPromotableFrames(K ; frame(none, _, _, _, _))

Execution 𝐹 ⊢ P ↦−→ P

T = thread(K, 𝜎,X, 𝑓 , {𝑆1; 𝑆2; . . . ;𝑇 })
X′ = . . . apply 𝑆1 to X . . . T ′ = thread(K, 𝜎,X′, 𝑓 , {𝑆2; . . . ;𝑇 })

𝐹 ⊢ P[𝑡 ↩→ T] ↦−→ P[𝑡 ↩→ T ′]
Stmt

T = thread(K, 𝜎,X, 𝑓 , {call 𝑔(𝑥1, . . . , 𝑥𝑛) ▷ 𝑏})
FuncLookup(𝐹, 𝑔) = ((𝑦1, . . . , 𝑦𝑛), {𝑆 ;𝑇 }) Y = [𝑦1 ↩→ X(𝑥1), . . . , 𝑦𝑛 ↩→ X(𝑥𝑛)]
K′ = K ; frame(none, 𝜎,X, 𝑓 , 𝑏) T ′ = thread(K′,none,Y, 𝑔, {𝑆 ;𝑇 })

𝐹 ⊢ P[𝑡 ↩→ T] ↦−→ P[𝑡 ↩→ T ′]
Call

T = thread(K,none,Y, _, {return (𝑦1, . . . , 𝑦𝑛)})
K = K′; frame(_, 𝜎,X, 𝑓 , 𝑏) BlockLookup(𝐹, 𝑓 , 𝑏) = ((𝑥1, . . . , 𝑥𝑛), {𝑆 ;𝑇 })
X′ = X[𝑥1 ↩→ Y(𝑦1), . . . , 𝑥𝑛 ↩→ Y(𝑦𝑛)] T ′ = thread(K′, 𝜎,X′, 𝑓 , {𝑆 ;𝑇 })

𝐹 ⊢ P[𝑡 ↩→ T] ↦−→ P[𝑡 ↩→ T ′]
Return

T = thread(K,none,X, 𝑓 , {pcall 𝑔(𝑥1, . . . , 𝑥𝑛) ▷ (𝑏seq, 𝑏sync, 𝑏spwn)})
FuncLookup(𝐹, 𝑔) = ((𝑦1, . . . , 𝑦𝑛), {𝑆 ;𝑇 }) Y = [𝑦1 ↩→ X(𝑥1), . . . , 𝑦𝑛 ↩→ X(𝑥𝑛)]

K′ = K ; frame(promotable(𝑏sync, 𝑏spwn),none,X, 𝑓 , 𝑏seq)
T ′ = thread(K′,none,Y, 𝑔, {𝑆 ;𝑇 })
𝐹 ⊢ P[𝑡 ↩→ T] ↦−→ P[𝑡 ↩→ T ′]

PCall

T1 = thread(K, 𝜎,X, 𝑓 , {𝑆1;𝑇1})
SplitOldestPromotable(K) = K1; frame(promotable(𝑏sync, 𝑏spwn),none,Y, 𝑔, _);K2

K′ = K1; frame(none, child(𝑡2),Y, 𝑔, 𝑏sync);K2 T ′
1
= thread(K′, 𝜎,X, 𝑓 , {𝑆1;𝑇1})

BlockLookup(𝐹, 𝑔, 𝑏spwn) = ((), {𝑆2;𝑇2}) T2 = thread(•,none,Y, 𝑔, {𝑆2;𝑇2}) 𝑡2 fresh

𝐹 ⊢ P[𝑡1 ↩→ T1] ↦−→ P[𝑡1 ↩→ T ′1 ] [𝑡2 ↩→ T2]
Promote

T1 = thread(K, child(𝑡2),X, 𝑓 , {getjoin ▷ 𝑏}) T2 = thread(_, _,Y, _, {setjoin(𝑦)})
BlockLookup(𝐹, 𝑓 , 𝑏) = ((𝑥), {𝑆 ;𝑇 }) X′ = X[𝑥 ↩→ Y(𝑦)] T ′

1
= thread(K,none,X′, 𝑓 , {𝑆 ;𝑇 })

𝐹 ⊢ P[𝑡1 ↩→ T1] [𝑡2 ↩→ T2] ↦−→ P[𝑡1 ↩→ T ′1 ]
Join

Fig. 8. SSA IR: operational semantics (selected rules only). Rules Promote and Join respectively spawn and

synchronize threads. It is correct for Promote to happen any time. For performance, Promote must happen

enough (for parallelism) and also not too much (for work-efficiency). In Section 4, we describe an algorithm for

controlling when Promote occurs.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:11

that an executing function can be in, forming a small state machine. When a function is actively

being executed by a thread (i.e., when the function currently has no outstanding callees), we label

it simply as a thread. Otherwise, when a function is suspended waiting for an outstanding callee,

it is pushed onto the call-stack as a frame.
The following three types of frames are used within the call-stack.

(1) A standard frame corresponds to a standard function call, and is identified by the condition

𝜌 = none ∧ 𝜎 = none.
(2) A promotable frame corresponds to a pcalled function which has not been promoted, and

is identified by the condition 𝜌 = promotable(. . .) ∧ 𝜎 = none.
(3) A promoted frame corresponds to a pcalled function which has already been promoted,

and is identified by the condition 𝜌 = none ∧ 𝜎 = child(. . .).
When a function frame is promoted, the semantics sets 𝜎 = child(𝑡); at this point, the function is

then obligated to join with the spawned child thread, 𝑡 , before the function itself performs a pcall
or returns. Note that this obligation is met by the transformation that introduces pcall, as shown
in Figure 5. By requiring a join with the spawned child, the semantics ensures that the lifetime of

the child thread aligns with the lifetime of the pcalled function, which is necessary to match the

intended semantics of the source-level par. In our operational semantics, the obligation to join is

encoded in rules PCall and Return, both of which get stuck if the current thread has 𝜎 ≠ none.
It is important to emphasize that these nuances in the semantics are intentional: we designed

the semantics with the goal of having a single, uniform mechanism for function returns, regardless

of whether the callee was called or pcalled. In particular, on return to a caller, the promotion mark

of the caller is simply thrown away. The performance implications of this design are significant: if

not promoted, a pcall is nearly identical to a standard call; the only difference is a small amount

of additional data (the promotion mark, 𝜌) stored in the frame.

3.3.2 Detailed Description of Operational Semantics.

Threads, frames, and call-stacks. We denote call-stacks by K , which are stacks of frames. When a

thread performs a functional call (Figure 8, either rule Call or rule PCall), a new frame is pushed

onto the stack. Similarly, when a function call returns (rule Return), the most recent frame is

popped. Each frame 𝑘 stores the promotion mark 𝜌 and join obligation 𝜎 as described above, as

well as a collection of stack slots X (mapping temporaries to values), a function name 𝑓 , and a

return block label, 𝑏.

Threads, denoted T , consist of a call-stack K together with (what essentially amounts to) the

data of a “current” frame. Specifically, a thread(K, 𝜎,X, 𝑓 , {𝑆1; . . . 𝑆𝑛 ;𝑇 }) is currently executing

the statements {𝑆1; . . . 𝑆𝑛 ;𝑇 } inside function 𝑓 , with current temporaries X, in the call stack K .

Calls and returns. Standard function calls are defined by rule Call. In this rule, when a

thread of the form thread(K, 𝜎,X, 𝑓 , . . .) wishes to call a function, it does so by pushing

frame(none, 𝜎,X, 𝑓 , 𝑏) onto its call-stack, where 𝑏 is the return block of the call.

Similarly, potentially parallel calls (pcalls) are defined by rule PCall. In this rule, when a

thread of the form thread(K,none,X, 𝑓 , . . .) wishes to pcall a function, it does so by pushing

frame(promotable(𝑏sync, 𝑏spwn),none,X, 𝑓 , 𝑏seq) onto its call-stack, where 𝑏seq, 𝑏sync, and 𝑏spwn
are the three continuations of the pcall.
Note that the semantics has only one Return rule. That is, to return from a function call, the

language blindly returns to the label in the most recent frame, and ignores the promotion mark 𝜌 .

Promotion. In the semantics, the rule Promote causes a thread to promote one promotable

frame in the thread’s call-stack. In principle, any frame could be promoted, but we specialize

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:12 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

the semantics to select the oldest promotable frame, as this is what our parallelism management

algorithm requires (Section 4). We use an auxiliary definition, SplitOldestPromotable, to find an

appropriate promotable frame within the call-stack.

The frame selected for promotion has the form frame(promotable(𝑏sync, 𝑏spwn),none,Y, 𝑔, _).
The rule Promote spawns a new thread with identifier 𝑡2, and then updates the selected frame to

frame(none, child(𝑡2),Y, 𝑔, 𝑏sync). Three components of the frame are updated: (1) the promotion

mark is set to none, indicating that this frame is no longer promotable; (2) the join obligation is

set to child(𝑡2), where 𝑡2 is the identifier of the newly spawned thread of this promotion; (3) the

return label is set to 𝑏sync, which will cause the thread to execute the appropriate synchronization

code when it returns to this frame. Finally, the newly spawned thread is initialized with a copy of

the value mapping Y (copied from the promoted frame), and immediately begins execution at the

𝑏spwn codepath. In the rule, an auxiliary function BlockLookup is used to look up the body of this

block, which has arity 0.

Synchronization. By storing the join obligation 𝜎 explicitly, we allow for the getjoin and setjoin
primitives to synchronize with each other. In particular, in rule Join, we see that a thread labeled

𝑡1 is waiting on a getjoin, and the join obligation of that thread is set to child(𝑡2). Meanwhile,

thread 𝑡2 has reached a setjoin. The two threads then synchronize by passing the argument of the

setjoin to the continuation of the getjoin, i.e., thread 𝑡2 passes a value to thread 𝑡1. Finally, the

thread 𝑡2 terminates and is removed from the thread pool, and thread 𝑡1 continues with its join

obligation updated to none.

4 PARALLELISM MANAGEMENT ALGORITHM
The semantics of Section 3 allows for promotions (via rule Promote of Figure 8) at any time.

Although correct for execution, this is inefficient. Here, we present a parallelism management algo-

rithm that restricts promotions to guarantee low overhead (work efficiency) and while preserving

parallelism (span efficiency). The algorithm tracks the amount of work performed during execution

and uses this information to promote a subset of outstanding potentially parallel calls.

4.1 Token Accounting Algorithm
Our parallelism management algorithm uses an amortization technique. During execution, threads

explicitly track the amount of work that they perform, excluding promotions. Promotions are then

performed only when their cost can be charged against non-promotion work.

Ideally, to track work, each thread would count exactly the number of steps it performs. However,

this approach is too fine-grained to be implemented efficiently. We therefore coarsen the approach:

rather than count every step, threads instead periodically collect some number of work tokens,
and then spend tokens to perform promotions.

Algorithm description. After every 𝑁 steps of work, each thread receives 𝐶 work tokens. (The

variables 𝐶 and 𝑁 are tunable parameters; see Section 4.3 for a discussion, and Section 5.2 for

implementation details.) These tokens are then spent to perform promotions:

• Every time a thread receives tokens, it checks if there is a promotable frame in its own

call-stack; if so, it spends a token and performs one promotion. This is repeated until the

thread either runs out of tokens, or no longer has promotable frames in its call-stack. Any

unspent tokens are saved.

• Every time a thread performs a pcall, it checks how many saved tokens it has. If the thread

has at least one saved token, it immediately performs one promotion and spends a token.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:13

Accumulating and distributing tokens. Note that a thread may accumulate many tokens, for exam-

ple, by performing a long sequential task without any pcalls. Our technique allows accumulated

tokens to be distributed among threads without violating work-efficiency in essentially any manner.

For example, one strategy would be to have a global pool of work tokens where excess tokens

are accumulated, allowing threads to share tokens freely with other threads as needed. Another

strategy would be to give each processor a pool of tokens, and to integrate with scheduling to

distribute tokens (e.g., by stealing half of another processor’s tokens at each successful steal in a

work-stealing scheduler).

In our implementation, we use a simple heuristic which distributes tokens locally, at spawns

and joins. When a thread spawns a child, the parent passes half of its (unused) tokens to the child.

When a child joins with its parent, it passes its (unused) tokens to the parent. This heuristic has the

tendency to distribute tokens evenly across divide-and-conquer computations.

4.2 Work- and Span-efficiency
By explicitly accounting for work tokens, our algorithm enforces both work-efficiency and span-

efficiency, as stated in the bounds shown below. In particular, the additional cost of promotions

increases the work and span of a computation each by at most a constant multiplicative factor.

Note that these bound are precise, not asymptotic.

Theorem 4.1 (Work-efficiency). Consider a program with work 𝑊 , excluding the work of
promotions. The number of promotions performed will be at most 𝐶

𝑁
𝑊 . Therefore, if promotion costs 𝜏

work, the total amount of work (including the cost of promotions) is
(
1 + 𝐶 ·𝜏

𝑁

)
𝑊 .

Theorem 4.2 (Span-efficiency). Consider a program with span 𝑆 , excluding the cost of promotions.
The overall span, including the cost of promotions, is at most (𝜏 +𝑁 )𝑆 , where 𝜏 is the cost of promotion.

4.3 Tunable Parameters: Set and Forget
Our algorithm has two tunable parameters: 𝐶 and 𝑁 , where 𝐶 is the number of tokens generated

by each thread after every 𝑁 steps of work. These parameters only need to be set once, to control

the cost of promotions. In particular, our work-efficiency bound (Theorem 4.1) clarifies that the

ratio
𝐶 ·𝜏
𝑁

should be set close to 0, where 𝜏 is the cost of a promotion. For example, setting this ratio

to .01 would guarantee that the cost of promotions consumes at most 1% of total processor time.

This bound holds for all programs.

Our span-efficiency bound (Theorem 4.2) additionally suggests that 𝑁 should be set as small as

possible, as increasing 𝑁 decreases parallelism. In practice, 𝑁 cannot be made arbitrarily small. As

we discuss further in Section 5, the parameter 𝑁 is determined by a signal handling mechanism

which polls to check if a periodic signal has arrived. To limit the cost of signal handling, 𝑁 must be

set to a reasonably large interval. Therefore, rather than tuning 𝑁 , we can instead control the cost

of promotions by selecting an appropriate value for 𝐶 .

5 IMPLEMENTATION
We implemented our PCall SSA IR (Section 3) and our parallelism management algorithm (Sec-

tion 4) in the context of a compiler and runtime system dubbed MPL
s
(“Sugar MaPLe”). MPL

s
is a

modification of MPL (“MaPLe”) [Acar et al. 2020], which has been exploring efficient and scalable

parallel functional programming by coupling thread scheduling and memory management for

nested fork-join parallelism [Acar et al. 2015] through disentanglement [Arora et al. 2021; Westrick

et al. 2022, 2020] and hierarchical heaps [Guatto et al. 2018; Raghunathan et al. 2016]. MPL is

itself a modification of MLton [MLton nd; Weeks 2006], a whole-program optimizing compiler

for Standard ML. MPL and MPL
s
inherit many features from MLton, especially in terms of the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:14 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

compiler proper; the most substantial changes are localized to the runtime system to support thread

scheduling and memory management and to the implementation of the (extended) standard library,

where a significant portion of thread scheduling and memory management is implemented in

source SML code with calls to MPL/MPL
s
runtime-system functions as necessary.

In this section, we present an overview of several important aspects of theMPL
s
implementation,

including compiler changes to support the PCall SSA IR and the integration of parallelism manage-

ment with the thread-scheduling and memory-management components of MPL. We note that,

althoughMPL
s
and MLton are whole-program optimizing compilers, whole-program compilation

is not required to implement the special behavior of pcall.

5.1 Implementing the PCall SSA IR in MLton/MPLs

Implementing a novel control-flow construct such as pcall in an industrial-strength, optimizing

compiler would appear to be a significant and invasive undertaking. At a very-high level, extending

a compiler with support for pcall requires three major categories of changes:

(1) Front-end changes, which introduce a mechanism (e.g., special syntax or primitive function)

by which source code can indicate function calls that should be executed as pcalls along
with the three return continuations.

(2) Middle-end changes, which explicitly represent pcalls in IRs and update analysis and opti-

mization passes to handle pcalls.
(3) Back-end changes, which implement the pcall calling convention and emit pcall frames.

Our claim is that the implementation effort required to support pcall in a production compiler can

be surprisingly low and our evidence is the implementation ofMPL
s
as a set of changes toMPL.

Although these particular changes to this particular compiler may not be directly transferable to

other systems, we give a moderate level of detail in order to support our claim with an accounting

of the effort required to implement pcall in MPL
s
.

Through a fortunate combination of compiler-construction and functional-programming tech-

niques and building on our expertise with the compiler infrastructure, we were able to implement

pcall in MLton/MPL
s
by making mostly local changes to the codebase. In total, changes were

limited to less than 2000 lines (1.2%) of the 162K LOC that comprise the compiler proper. This does

not include the runtime system or standard library, which includeMPL
s
’s thread scheduling and

parallelism management algorithm, as these are implemented outside of the compiler proper.

To implement the PCall SSA IR, we added just three new compiler primitives, modified the

middle-end IRs to support the pcall transfer, and introduced new forms of call-stack frames.

5.1.1 MLton Compilation Preliminaries. MLton’s approach to compilation can be summarized

as whole-program optimization using a simply-typed first-order intermediate language. MLton

is a batch compiler and does not support separate compilation; rather, all SML source code con-

tributing to the program is compiled as a single compilation unit. Complete knowledge of the

program is necessary for the critical steps used to convert SML’s modules, parametric polymor-

phism, and higher-order functions into a simply-typed first-order intermediate representation;

it also allows for aggressive control-flow and data-representation optimizations. Briefly, SML’s

modules are eliminated by defunctorization [Elsman 1999]; parametric polymorphism is elimi-

nated by monomorphisation [Tolmach and Oliva 1998], yielding a simply-typed program; and

higher-order functions are eliminated by defunctionalization [Reynolds 1972] using a monovariant

whole-program control-flow analysis [Cejtin et al. 2000], yielding a first-order program.

Most of MLton’s optimizations are performed on simply-typed, first-order SSA-based intermedi-

ate representations. MLton’s SSA IRs are very similar to the one presented in Section 3 (minus the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:15

. . . callee frame . . .
args from / results to caller

RetAddr
. . .

local vars

. . .

. . .

(a) call Frame

. . . callee frame . . .
args from / results to caller

RetAddrseq
RetAddrsync
RetAddrspwn

. . .

local vars
. . .

. . .

(b) pcall_seq Frame

. . . callee frame . . .
args from / results to caller

RetAddrsync
DataPtr

RetAddrspwn
. . .

local vars
. . .

. . .

(c) pcall_sync Frame

RetAddrspwn
DataPtr

RetAddrspwn
. . .

local vars
. . .

(d) pcall_spwn Frame

Fig. 9. Frames (stack grows upward)

constructs expressing parallelism). To efficiently compile SML, MLton’s SSA IRs also include trans-

fers for tail calls, non-tail calls that install exception handlers, raising exceptions, and case dispatch

on algebraic datatypes.MLton’s three SSA IRs use successively lower-level data representations,

but are otherwise nearly identical in terms of control-flow transfers.

After the SSA IR optimizations, MLton gathers garbage-collection information and translates to

a low-level untyped IR that makes the call stack explicit. Finally, MLton generates either C, LLVM,

native x86, or native amd64 code that is compiled and linked with the runtime-system library;MPL

and MPL
s
are restricted to using the C code generator.

Stacks, Frames, and Calling Conventions. To support precise garbage collection, the runtime system

must walk call stacks in order to identify roots. A call stack is a single (contiguous) heap-allocated

object. The lower-address portion is filled with a linear sequence of frames and the remaining

higher-address portion is reserved to accommodate pushing additional frames at function calls. A

stack-top pointer points to the top of the frame of the active function and determines the boundary

between the used and reserved portion of the call stack. A call stack can be relocated and resized

(increasing or decreasing its reserved space) during garbage collection.

A (normal) call frame collects function-local variables that are live at the call and stores

a return address at the top (highest-address) of the frame (see Figure 9a); it implements a

frame(none,none,X, 𝑓 , 𝑏) from the operational semantics of Section 3. The calling convention is

simple: the caller writes arguments just above its frame (in what will become the bottom of the

frame of the callee). The returning convention is equally simple: the callee writes results at the

bottom of its frame and jumps to the return address found just below its frame.

Each return address can be mapped, via statically allocated data structures emitted by the

compiler, to frame information that includes a kind (normally CALL_RET_FRAME), a frame size, and

a pointer to an array that records the offsets of pointers within the frame that are live at the return

address. To walk a call stack, a runtime-system function simply iterates over each frame by reading

the return address pointed to by the stack-top pointer and decrementing the stack-top pointer

by the size recorded in the corresponding frame info until the stack-top pointer is equal to the

beginning of the stack object.

Threads and Signal-Handling. A thread is a heap-allocated object that pairs a call stack with

additional data. A thread is an explicit object that can be manipulated by the source program.

One such manipulation is through a signal handler. The signal handler is an arbitrary SML

function of type Thread.t -> unit; the signal handler receives the thread object of the thread that

was interrupted by the arrival of the signal. Through the thread object, the signal handler has

(indirect) access to the call stack of the interrupted thread.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:16 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

5.1.2 Implementing par in Source SML Code with Compiler Primitives. To expose parallelism,MPL
s

provides the user with a function par of type (unit→ 𝛼) × (unit→ 𝛽) → 𝛼 × 𝛽 . One strategy
would be to make par a compiler primitive and translate it to uses of pcall, getjoin, and setjoin
primitives and/or IR constructs, as described in Section 3.2. However, getjoin and setjoin are

really synchronization operations
1
that are implemented, along with the thread scheduler, in source

SML code. It would be infeasible and impractical to bake these operations into the compiler.

Therefore, we take a different approach. We introduce a polymorphic higher-order pcall prim-

itive and implement par using pcall in source SML code. The pcall primitive has the type

(𝛼 → 𝛽) × 𝛼 × (𝛽 → 𝛾) × (𝛽 → 𝛾) × (unit→ 𝛿) → 𝛾 , where pcall(f,x,seq,sync,spwn) roughly

corresponds to the pcall 𝑓 (𝑥) ▷ (𝑏seq, 𝑏sync, 𝑏spwn) transfer from Section 3, except that the pcall

primitive returns the result of either seq or sync (implicitly joining their control-flow), while the

pcall transfer allows the control-flow of 𝑏seq and 𝑏sync to be arbitrary. The only assumption that the

compiler makes about the pcall primitive is that the spwn argument function does not terminate

with a value and instead exits the executing thread (as is the semantics of setjoin in Section 3).

Using pcall, we can give a simplified implementation of par.

fun par (f: unit -> 'a, g: unit -> 'b): 'a * 'b =

let fun seq rf = (rf, g ())

fun sync rf = let val j: 'b join = getPCallData () in (rf, getJoin j) end
fun spwn () = let val j: 'b join = getPCallData ()

in setJoin (j, g ()) ; Thread.exit () end
in pcall (f, (), seq, sync, spwn) end

fun handler t = (... spawnOldestPCallAndSetData (t, newJoin ()) ... ; ())

val _ = Signal.setHandler (Signal.SIGALRM, handler)

The SML functions getJoin and setJoin use a (scheduler-defined) data structure of type 𝛽 join to

synchronize and pass a value of type 𝛽 . Note that the join value is only required if the parallelism

exposed by pcall is promoted and sync and spwn are executed. Rather than always executing

newJoin when par is called, which would be unnecessary overhead when the parallelism is not

promoted, newJoin is only executed when a promotion occurs and the join value is stored in both

the new thread’s copied frame and the promoted frame (similar to child(_) in the operational

semantics of Section 3). The join value can be accessed within sync and spwn via a (polymorphic)

primitive getPCallData used at the type unit→ 𝛽 join.
We use an interval timer to regularly deliver a SIGALRM signal to the program and install

a signal handler that grants work tokens and attempts promotions, implementing our paral-

lelism management algorithm (Section 4). The critical operation is a (polymorphic) primitive

spawnOldestPCallAndSetData (t, d), which walks the call stack of an interrupted thread t, promot-

ing the oldest promotable frame and storing (a pointer to) an arbitrary heap-allocated data object

d in both the new thread’s copied frame and the promoted frame; in practice, the data object is

always a join value.

Note that while getPCallData and spawnOldestPCallAndSetData could be implemented by

runtime-system functions (indeed, the latter is translated to a foreign C call to a runtime-system

function late in compilation), it is nonetheless important that they are exposed as a compiler

primitives. This is because various flow analyses in the compiler must “see” that values that

flow in to spawnOldestPCallAndSetData flow out of getPCallData. Moreover, getPCallData can be

implemented efficiently in the compiler when frames and the call stack are made explicit.

While the actual implementation of par in source SML code is somewhat more sophisticated,

reifying and propagating exceptions raised by f and g and making use of additional (opaque) foreign

1
Essentially, Id-style I-structures [Arvind et al. 1989], with additional support to integrate with MPL memory management.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:17

C runtime-system functions, no additional primitives beyond pcall, spawnOldestPCallAndSetData,

and getPCallData are required. The rest of this subsection therefore focuses on the compiler changes

required to support these primitives.

5.1.3 Front-End Changes. None! No changes to the syntax or type checking of the language were

made. Compiler primitives are exposed as SML functions in a generic manner and the pcall,

spawnOldestPCallAndSetData, and getPCallData primitives required no special handling. Because

Standard ML is a higher-order language, it is easy to expose the non-trivial control-flow of pcall as
a higher-order primitive; if the host language were first-order, it would almost certainly require

syntax changes in order to support pcall. The earliest phase of the compiler that required changes

was the closure-conversion phase.

5.1.4 Closure-Conversion Changes. The closure-conversion phase of the compiler is responsible for

transforming a higher-order IR into a first-order SSA-based IR, using defunctionalization [Reynolds

1972] guided by a monovariant whole-program control-flow analysis [Cejtin et al. 2000].

Although pcall is the first higher-order primitive to be added to the compiler, it posed lit-

tle difficulty for the control-flow analysis or defunctionalization transformation. To analyze

pcall(f,x,seq,sync,spwn), we arrange for x to flow as an argument to f, the result of f to flow as an

argument to both seq and sync, and the results of seq and sync to flow to the result of the pcall; addi-

tionally, we analyze spwn as though it were called. Defunctionalization of pcall(f,x,seq,sync,spwn)

is only slightly more involved. The pcall primitive is translated to a PCall transfer with a new

top-level function as the target, f and x as the arguments, and three new blocks 𝑏seq, 𝑏sync, and 𝑏spwn
as the continuations. The new top-level function takes f and x and performs the defunctionalized

call of f x. Both 𝑏seq and 𝑏sync are of arity 1 (receiving the result of f x as a variable rf) and proceed

to control-flow graphs that, respectively, perform the defunctionalized calls of seq rf and spwn rf

and then join at the block receiving the result of the pcall primitive. 𝑏spwn is of arity 0 and proceeds

to a control-flow graph that performs the defunctionalized call of spwn ().

5.1.5 SSA IR Middle-End Changes. Most of MLton’s optimizations are performed on three simply-

typed, first-order SSA-based IRs; these optimizations and supporting infrastructure make up over

20% of the compiler. Each SSA IR was extended with a PCall transfer similar to the pcall transfer
of Section 3: taking a function name, a list of actual arguments, and three continuation blocks.

Although there are over 30 individual optimization passes on these SSA IRs, extending them to

support PCallwas greatly simplified by good compiler-construction techniques. For example, many

optimization analyses require visiting the blocks of a function’s control-flow graph in depth-first

or dominator order. Such traversals are captured by infrastructure functions; it sufficed to update

these infrastructure functions with the control-flow graph edges implied by the PCall transfer.

Similarly, many optimization analyses are formulated as whole-program flow analyses that, among

other things, require matching Return transfers with receiving continuation blocks. A generic flow

analysis is provided by the infrastructure and it sufficed to update this generic flow analysis with

support for PCall. Elsewhere, we could simply share code with or copy and lightly edit the code

for the implementation of a (normal) Call transfer; with additional refactoring, more code could be

shared between Call and PCall transfers.

One optimization pass that does treat Call and PCall differently is the inlining pass. A function

cannot be inlined at a PCall, because that would eliminate the mark of potential parallelism. This

is not disasterous, since the fork-join parallel algorithms that we consider make use of (non-tail)

recursive functions that cannot be inlined. Also, note that while inlining at a PCall is disallowed,

inlining at Calls within a PCalled function is allowed; for example, while the recursive and pcalled

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:18 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

go function from Figure 1 cannot be inlined, it is likely that the map function will be specialized to

the argument function f and f can be inlined within go.

5.1.6 Frame, Calling Convention, and Back-End Changes. To mark and realize the potential paral-

lelism of a pcall, we introduced three new forms of call-stack frames (see Figures 9b, 9c, and 9d).

A pcall_seq frame (Figure 9b) implements a frame(promotable(𝑏sync, 𝑏spwn),none,X, 𝑓 , 𝑏seq).
The frame info corresponding to RetAddrseq is given a new PCALL_SEQ_RET_FRAME kind. Since a
pcall_seq frame can continue executing at any of its return addresses, the frame info corresponding

to RetAddrseq records the set of live pointers as the union of the variables that are live at the

beginning of RetAddrseq, RetAddrsync, and RetAddrspwn.
We can describe the essence of the implementation of spawnOldestPCallAndSetData (t, d). First,

the oldest pcall_seq frame of the thread t is identified by walking the call stack and looking at

frames with the PCALL_SEQ_RET_FRAME kind. Next, the pcall_seq frame is copied (including all of

the local variables, which include the live/free variables of RetAddrspwn/𝑏spwn and which may be

pointers to heap-allocated objects, but no copying of heap-allocated objects is necessary) to the

bottom of a new call stack and the RetAddrspwn is written to the top of the copied frame and the

heap-object pointer d is written just below, converting it to a pcall_spwn frame (Figure 9d; note

that a pcall_spwn frame is necessarily the only frame on its call stack). Finally, the RetAddrsync is
written to the top of the identified pcall_seq frame and the heap-object pointer d is written just

below, converting it to a pcall_sync frame (Figure 9c).

The frame infos corresponding to RetAddrsync and RetAddrspwn can be given the

CALL_RET_FRAME kind, since, these frames have no special behavior. Because the DataPtr slot

of pcall_sync and pcall_spwn frames holds a heap-object pointer, it must be treated as a live

pointer when tracing such frames, else the object could be garbage collected between the time

of the promotion and the resumption of the frame. Therefore, the frame infos corresponding to

RetAddrsync and RetAddrspwn include the DataPtr slot among the set of live pointers along with

the variables that are live at the beginning of RetAddrsync and RetAddrspwn, respectively.
Making a pcall is just as efficient as making a normal call: the caller writes arguments to the

call stack just above its frame, writes the three appropriate return addresses to the top of its frame,

and jumps to the callee; the callee, whether called or pcalled, increments the stack-top pointer

to the top of its frame. Moreover, returning from a pcall to either RetAddrseq or RetAddrsync is
exactly the same as returning from a call: the callee writes results to the call stack at the bottom of

its frame, decrements the stack-top pointer to just below the bottom of its frame, and jumps to the

return address now pointed to by the stack-top pointer. Returning to RetAddrspwn is exactly the

same as returning from a runtime-system function C call: jump to the return address pointed to by

the stack-top pointer.

To minimize overhead, it is important that a callee’s entry and exit operations are agnostic

with respect to being called or pcalled. This is enabled in our system by passing arguments

and results above the return address(es), in the frame of the callee. It is also important that

spawnOldestPCallAndSetData is able to locate the frame slots that are read and modified when

promoting a pcall_seq frame. This is enabled in our system by using the slots below the RetAddrseq,
at fixed offsets relative to the top of the frame. MLton’s existing calling convention made this a

natural approach, but it is not the only one. Implementing pcall in another system may require

thinking about the best way to adapt an existing calling convention to achieve these properties.

The changes to the back end of the compiler are minimal: associate the appropriate frame infos

for the return addresses of a PCall transfer and implement the PCall transfer, which is identical

to Call except for writing two additional return addresses to the top of the frame. Finally, the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:19

getPCallData primitive is implemented by fetching the DataPtr slot from the current frame, which

is at a fixed offset relative to the top of the frame.

5.2 Parallelism Management
To implement our parallelism management algorithm (Section 4), we equip each thread in the

system with a count of how many work tokens it has saved, and install a signal handler on a

regularly delivered SIGALRM signal (specifically an interval timer) to generate tokens and perform

promotions. Recall that our algorithm (Section 4) has two tunable parameters, 𝐶 and 𝑁 . In our

implementation, 𝑁 is the determined by the interval of the SIGALRM signal, and 𝐶 is the number of

tokens delivered to each active thread when the signal is received. We set 𝑁 to 500𝜇s, which is the

smallest interval for which we could reliably receive signals at a regular rate, and then set 𝐶 to 30,

which comes out to at least 500/30 ≈ 16𝜇s of work per promotion, on average.

5.3 Integration with Work-Stealing Scheduler
MPL

s
schedules work onto processors with a work-stealing scheduler, inherited fromMPL. This

scheduler features a standard optimization known as the clone optimization [Frigo et al. 1998], which
avoids the cost of fully instantiating a thread in the case where a spawned task is not stolen. Our

approach integrates seamlessly with this optimization, resulting in three different representations

for parallel tasks used throughout execution. (1) If unpromoted, a task is represented by a

promotable frame. (2) If promoted but not stolen, a task is represented by a single heap-allocated

frame, stored in a scheduler queue. If it stays unstolen, the only additional cost is removing it

from the queue. (This is the “fast clone” of the clone optimization.) (3) If promoted and stolen,

a task becomes a runnable thread, represented by a heap-allocated call stack and any associated

scheduling metadata.

One remaining question is whether or not the token accounting algorithm (Section 4) can benefit

from handling unstolen threads differently from stolen threads. We found that penalizing unstolen

threads helped ensure that the number of unstolen threads remains low across different processor

counts. Specifically, in the case where the child thread is unstolen, we throw away the child’s

tokens. Note that throwing away excess tokens is always safe, with respect to amortization of the

cost of par.

5.4 Integration with MPL Memory Management
One final issue in our implementation is the integration with MPL’s memory management system,

which is largely specific toMPL and may not be an issue in other systems. The issue is thatMPL

allocates new hierarchical heaps at each par. This cost, although small, would nevertheless be

prohibitively expensive if it were to happen at every pcall. Therefore, we only allocate new heaps

when threads are spawned (i.e., at promotions). The impact is that some objects allocated by a

child task instead appear to have been allocated by the parent, which can introduce additional

down-pointers into the system, but is nevertheless safe for the disentanglement invariants [Westrick

et al. 2020] thatMPL’s architecture relies on.

6 EVALUATION
We evaluate the performance of our implementation, called MPL

s
(“Sugar MaPLe”). For our evalua-

tion, we consider a benchmark suite consisting of both “fully parallel” benchmarks (Section 6.1)

which use par liberally (without any manual granularity control), as well as manually tuned ver-

sions of the same benchmarks, which use manual granularity control to reduce the number of calls

to par and optimize for performance. All our experiments in this section use exactly the same

source code across different systems.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:20 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

Our evaluation consists of four parts:

(1) In Section 6.3 we demonstrate the effectiveness of automatic parallelism management by

comparing MPL
s
against MPL [Acar et al. 2020], the compiler on which MPL

s
is based. MPL

features an eager implementation of par, which pays a modest cost for every call, as is typical

in existing parallel systems. On the fully parallel benchmarks, we show that MPL
s
can be as

much as 14x faster than MPL on 64 cores, with an average of 4x faster. This performance

advantage is due toMPL
s
’s guaranteed amortization of the cost of par.

(2) In Section 6.4, we evaluate the effectiveness of our token accounting algorithm presented

in Section 4. For this evaluation, we compare against the original heartbeat algorithm (as

proposed by Acar et al. [2018]), which is similar to our algorithm except that it does not

attempt to save unused tokens. The results show an average of 24% improvement, with a

max in one case of 3x.

(3) In Section 6.5, we measure low overheads (less than 2x on average) and good scalability (27x

speedup on average) for the fully parallel benchmarks in comparison to MLton [MLton nd],

which generates fast sequential code. These results show thatMPL
s
is able to simultaneously

amortize the overhead of par without sacrificing parallelism.

(4) In Section 6.6, we investigate the impact of manual granularity control by comparing the

fully parallel benchmarks against their manually tuned counterparts. That is, we compare

the performance of different benchmark codes on the same system (as opposed to the other

comparisons, which consider the same benchmark codes on different systems). By compar-

ing the performance gap between untuned (fully-parallel) and manually tuned codes, we

determine how much each system individually relies on manual tuning for performance. Our

results show thatMPL relies heavily on manual tuning, with an average performance gap

of 7x on 64 cores, and a maximum of 46x in one case. In contrast, forMPL
s
, manual tuning

offers less than 2x performance improvement on average, with a max of 6x in one case. On 64

cores, the maximum is only 3.3x. This demonstrates that our approach significantly reduces

the need for programmers to manually tune and prune parallelism by hand.

6.1 Benchmarks
We consider a number of parallel benchmarks taken from the Parallel ML Benchmark Suite [Westrick

2022], covering multiple problem domains, including graph processing, computational geometry,

text analysis, numerical algorithms, etc. These benchmarks are mostly written in terms of library

functions (map, scan, reduce, filter, etc.) with manual granularity control in the form of constant

thresholds, hard-coded into the program source. Often, grain sizes had been tuned per call-site, by

passing a grain size as an additional argument to a function. For example, it is common to see code

such as map(1000, 𝑓 , 𝐴), where the first argument is the grain size.

As we discuss below in more detail, we modified these benchmarks to remove any manual

pruning of parallelism (e.g., granularity control via hard-coded constant thresholds), producing a

new version of the benchmarks which is “fully parallel”. These modified benchmarks are what we

use for our evaluation.

Fully parallel programs. One especially common form of manual pruning found in real-world

code is manual granularity control in the form of hardcoded constant thresholds. We investigated

the use of hardcoded thresholds throughout the benchmarks, and classified each threshold into

one of two categories: (1) par-grains, whose purpose is to optimize performance by reducing the

number of calls to par, thus amortizing its overhead, and (2) algorithmic grains, whose purpose is

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:21

Table 1. Times (seconds), performance improvements of MPL
s
relative to MPL, and analysis of number of

pars and promotions, for the fully parallel benchmarks.

𝑇1 𝑇64

MPL

MPL
s

(Ours)

MPL

MPL
s MPL

MPL
s

(Ours)

MPL

MPL
s #par #promote

#par
#promote

work(𝜇s)

promotion

bfs 7.47 4.32 1.73 .281 .115 2.44 36 M 76 K 473 57

bignum-add 4.39 1.48 2.97 .218 .028 7.79 32 M 17 K 1833 85

delaunay 7.38 7.56 0.98 .275 .290 0.95 2.0 M .18 M 11.2 42

grep 9.55 3.87 2.47 .406 .076 5.34 60 M 45 K 1320 86

linefit 10.7 2.58 4.15 .518 .066 7.85 67 M 36 K 1890 73

mandelbrot 4.52 2.87 1.57 .163 .049 3.33 17 M 29 K 603 100

map-heavy 3.63 3.69 0.98 .058 .060 0.97 3.9 K 3.0 K 1.26 1210

map-light 17.3 3.93 4.40 .773 .078 9.91 .13 B 45 K 2996 88

msort 7.14 4.99 1.43 .222 .093 2.39 19 M 58 K 333 86

nearest-nbrs 1.39 1.25 1.11 .031 .026 1.19 1.5 M 18 K 83.5 71

nqueens 8.23 3.07 2.68 .431 .053 8.13 55 M 31 K 1791 101

primes 21.1 5.75 3.67 .942 .124 7.60 .14 B 73 K 1970 79

sparse-mxv-csr 15.5 4.32 3.59 .547 .088 6.22 78 M 48 K 1633 90

suffix-array 6.58 3.79 1.74 .318 .084 3.79 29 M 36 K 792 105

triangle-count 15.7 9.20 1.71 .714 .168 4.25 54 M 95 K 566 97

wc 7.80 1.84 4.24 .464 .032 14.50 54 M 19 K 2901 99

min 0.98 0.95

geomean 2.17 4.09

max 4.40 14.50

to optimize performance by switching between different algorithms. For example, a divide-and-

conquer implementation of reduce uses a par-grain to decide whether or not the two recursive calls

should be evaluated in parallel or sequentially. In contrast, as an example of an algorithmic grain,

consider mergesort, where it is beneficial to switch to a different sorting algorithm (e.g., insertion

sort) at small sizes due to improvements in constant factors.

We found that par-grains were often exposed as additional arguments to library functions, and

needed to be tuned per call-site; in contrast, algorithmic grains were often hard-coded into the

implementation and therefore did not need to be exposed to the client of the library. As discussed

in earlier sections, par-grains are typically at odds with high-level programming, especially the use

of higher-order functions and polymorphism.

We consider a program to be fully parallel if it uses no par-grains. In the fully parallel versions

of our benchmarks, we removed the par-grains, not the algorithmic grains.

6.2 Experimental Setup
We run all our experiments on a 64-core AWS r6i.32xlarge instance, which is a two-socket

machine equipped with two 2.9GHz Intel Xeon (32-core) Platinum 8375C CPUs. The ma-

chine has 1TB of memory, and runs Amazon Linux version 2 with Linux kernel version

5.10.135-122.509.amzn2.x86_64. In Section 6.5, we use MLton version 20210117, and in Sec-

tion 6.3, we use MPL version 0.3.
To measure timings for a benchmark, we first run the benchmark back-to-back for at least 5

seconds as a warmup. We then run the benchmark 20 times back-to-back. All of this occurs in the

same program instance. The time we report is the average of the 20 runs (after the warmup, which

is not included in the measurements).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:22 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

6.3 Result #1: MPLs Consistently Outperforms Eager par
In this section, we measure how effectivelyMPL

s
amortizes the cost of parallelism. We do so by

comparing againstMPL, which is identical to ourMPL
s
except for the implementation of par. In

particular, MPL features an “eager” implementation of par which immediately allocates a closure

for the spawned task and pushes this closure onto the scheduler queue. This cost, although small,

accumulates over may calls to par and degrades performance. In contrast, we show that our

implementation of par inMPL
s
is significantly more efficient and scalable.

The results of this comparison are presented in Table 1, which shows the performance of the fully

parallel benchmarks using both MPL and MPL
s
on 1 and 64 processors. The columns labeled

MPL

MPL
s

compute the improvement of MPL
s
relative to MPL. This number summarizes the performance

advantage of our approach (higher is better), which is due toMPL
s
’s guaranteed amortization of

the cost of par.
On a single processor, we observe that MPL

s
is as much as 4 times faster than MPL, with an

average improvement of 2x. On 64 processors, the gap is larger, with an improvement of as much

as 14x in comparison to MPL, and an average of 4x. This shows that not only does MPL
s
amortize

the work cost of par, but it also scales better. The improvement in scalability appears to be due

to a significant reduction in the number of unnecessary thread spawns, which increase memory

pressure in the memory management system, and contention in the scheduler.

To further investigate the advantage of our approach, we report additional statistics for each

benchmark in Table 1, including the number of calls to par, the number of promotions performed

by MPL
s
, and the average amount of work (in microseconds) performed per promotion.

We observe that almost all benchmarks call parmillions of times, with some as many as hundreds

of millions. In contrast, the number of promotions is typically three orders of magnitude smaller. The

column
#par

#promote
measures the specific ratio for each benchmark. Except for two outliers (delaunay

and map-heavy, discussed below), we observe that there are typically as many as 100-1000x more

calls to par as there are promotions.MPL pays a modest cost per call, which adds up to a significant

impact on performance. In contrast, our approach reduces the cost of par by multiple orders of

magnitude.

There are two cases whereMPL
s
is not faster thanMPL: delaunay and map-heavy, whereMPL

s

is approximately 5% slower thanMPL. Both of these benchmarks naturally amortize the cost of

par; this is evidenced by a low number of pars per promotion as reported in Table 1. We therefore

do not expect MPL
s
to be faster than MPL on these two benchmarks. Rather, our results show

that even when our approach is not needed, MPL
s
is still able to match existing techniques in

performance.

Finally, in the final column, we report the average work performed by MPL
s
per promotion

(computed as 𝑇1/#promote). Our parallelism management algorithm guarantees a lower bound on

this quantity on average, controllable by tuning the parameters 𝐶 and 𝑁 discussed in Section 4

(which are set once for the system and do not need to be tuned per benchmark). Based on the

parameters set forMPL
s
, we expect a lower bound of approximately 16𝜇s or higher (see Section 5.2),

and we observe that the measured values here are consistent with that predicted lower bound. We

also separately confirmed that by adjusting 𝐶 and 𝑁 , we control the average work performed per

promotion, increasing and decreasing it as desired.

6.4 Result #2: Token Accounting Outperforms Classic Heartbeat Scheduling
We evaluate the effectiveness of our token accounting algorithm (Section 4) in comparison to

the original heartbeat algorithm proposed by Acar et al. [2018]. Our token accounting algorithm

refines the heartbeat scheduling algorithm to extract more parallelism while retaining provable

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:23

Table 2. Single-core overheads and 64-core

speedups of MPL
s
in comparison to MLton on the

fully parallel benchmarks.

Baseline Overhead Speedup

Benchmark MLton
𝑇1 (MPL

s )
MLton

MLton

𝑇64 (MPL
s )

bfs 2.79 1.55 24

bignum-add .802 1.85 29

delaunay 5.16 1.47 18

grep 1.76 2.20 23

linefit 1.67 1.54 25

mandelbrot 2.03 1.41 41

map-heavy 2.92 1.26 49

map-light 1.46 2.69 19

msort 3.46 1.44 37

nearest-nbrs .913 1.37 35

nqueens 1.28 2.40 24

primes 2.42 2.38 20

sparse-mxv-csr 1.75 2.47 20

suffix-array 2.31 1.64 28

triangle-count 5.10 1.80 30

wc .937 1.96 29

min 1.26 18

geomean 1.79 27

max 2.69 49

1 10 20 30 40 50 60
Processors

1

10

20

30

40

50

60

Sp
ee

du
p

bfs
bignum-add
delaunay
grep
linefit
mandelbrot

map-heavy
map-light
msort
nearest-nbrs
nqueens

primes
sparse-mxv-csr
suffix-array
triangle-count
wc

Fig. 10. Speedups of MPL
s
over MLton on fully parallel

benchmarks.

amortization. Roughly speaking, the difference is that our algorithm saves unused tokens, whereas

the original heartbeat algorithm immediately throws away all unused tokens. We do not compare

directly with either of the prior implementations of heartbeat scheduling [Acar et al. 2018; Rainey

et al. 2021], because the underlying systems are too different. Instead, we implemented heartbeat

scheduling in our system for this comparison, which was straightforward, as the promotions

required naturally align with our pcall semantics.

The results of this comparison are shown in Table 3. The columns report the improvement

(expressed as a ratio) in running time of our algorithm, in comparison to the original heartbeat

algorithm. Because our algorithm extracts more parallelism but has the same work-efficiency

guarantee, we do not expect to see a difference on a single processor; indeed, we observe on average

no change in performance in this case. On 64 processors, however, the improvement is significant,

with an average of 24% improvement and a max of 3x improvement in one case (delaunay). In the

case of delaunay, the improvement appears to be due to heartbeat delays accumulating along the

critical path; in contrast, our algorithm is able to eagerly spend excess tokens as soon as each par
occurs, with no delay.

6.5 Result #3: Good Scalability and Low Single-Core Overheads
We compare againstMLton, on whichMPL

s
is based. In this comparison, we compile the sequential

elision of each fully parallel benchmark with MLton, and use this binary as the baseline. In the

sequential elision, each par(𝑓 , 𝑔) is replaced with the sequential tuple (𝑓 (), 𝑔()). This produces an
equivalent sequential program which is otherwise identical to the original benchmark, allowing

us to determine the overhead of scalability ofMPL
s
as a “whole package” (i.e., including parallel

memory management overheads, etc.)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:24 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

Table 3. Improvement factors

due to token accounting, in

comparison to heartbeat sched-

uling on the fully parallel bench-

marks.

𝑃 = 1 𝑃 = 64

bfs 0.94 1.51

bignum-add 1.00 1.25

delaunay 1.01 3.23

grep 1.00 1.14

linefit 0.98 1.05

mandelbrot 0.99 1.02

map-heavy 1.00 1.03

map-light 0.97 1.03

msort 1.06 1.17

nearest-nbrs 1.00 1.77

nqueens 1.02 1.08

primes 0.97 1.12

sparse-mxv-csr 1.41 1.10

suffix-array 0.97 1.44

triangle-count 0.98 1.00

wc 0.96 1.03

min 0.94 1.00

geomean 1.01 1.24

max 1.41 3.23

Table 4. Times (in seconds) of manually-tuned benchmarks, and the perfor-

mance overhead of fully-parallel programming relative to manually tuned,

for each of MPL and MPL
s
. Smaller overheads are preferable. (See Table 1

for the reported fully-parallel timings.)

𝑇1(manual)
𝑇1 (fully-par)
𝑇1 (manual) 𝑇64(manual)

𝑇64 (fully-par)
𝑇64 (manual)

MPL

MPL
s

(Ours)

MPL

MPL
s

(Ours)

MPL

MPL
s

(Ours)

MPL

MPL
s

(Ours)

bfs 3.03 3.15 2.47 1.37 .079 .083 3.56 1.39

bignum-add 3.31 3.20 1.33 0.46 .054 .054 4.04 0.52

delaunay 7.07 7.33 1.04 1.03 .238 .261 1.16 1.11

grep 2.00 2.02 4.78 1.92 .035 .036 11.60 2.11

linefit .352 .455 30.40 5.67 .020 .020 25.90 3.30

mandelbrot 1.62 1.63 2.79 1.76 .026 .026 6.27 1.88

map-heavy 3.62 3.66 1.00 1.01 .057 .059 1.02 1.02

map-light .920 .996 18.80 3.95 .031 .032 24.94 2.44

msort 3.84 4.26 1.86 1.17 .068 .074 3.26 1.26

nearest-nbrs 1.15 1.17 1.21 1.07 .023 .024 1.35 1.08

nqueens 1.40 1.38 5.88 2.22 .024 .024 17.96 2.21

primes 1.82 1.86 11.59 3.09 .052 .052 18.12 2.38

sparse-mxv-csr 1.71 1.85 9.06 2.34 .040 .042 13.68 2.10

suffix-array 4.55 4.65 1.45 0.82 .093 .097 3.42 0.87

triangle-count 3.90 3.96 4.03 2.32 .072 .076 9.92 2.21

wc .608 .620 12.83 2.97 .010 .010 46.40 3.20

min 1.00 0.46 1.02 0.52

geomean 3.89 1.72 6.87 1.63

max 30.40 5.67 46.40 3.30

The results of this comparison are shown in Table 2 and Figure 10. In Table 2, we report the

time of MLton on each benchmark and compare against the times of MPL
s
on 1 and 64 processors.

The column labeled “Overhead” is the ratio MPL
s
single-core time to MLton’s time; this ratio

summarizes the overhead of parallelism, including the amortization of par as well as parallel
memory management overheads. The column labeled “Speedup” is the ratio of MLton’s time to

MPL
s
’s time on 64 cores; this ratio is the speedup of MPL

s
on 64 cores in comparison to MLton. In

Figure 10, we also plot these speedups across different numbers of processors.

In Table 2, we observe thatMPL
s
achieves low overheads on a single processor in comparison

toMLton. Overheads are reasonable, ranging from 1.3x to 2.7x, with an average of 1.8x. In other

words, users ofMPL
s
should typically need only 2-3 processors to see a performance improvement

over the sequential elision, even when writing “fully parallel” programs.

On 64 processors, we observe thatMPL
s
achieves speedups between 18x and 49x in comparison to

MLton, with an average of 27x. Furthermore, we observe in Figure 10 that the speedup overMLton

increases approximately linearly as the number of processors increases. These results confirm that

MPL
s
preserves the scalability of these benchmarks. We conclude that MPL

s
is able to provide

predictable speedups and good scalability across a range of machine sizes.

6.6 Result #4: Low Overhead Relative to Manual Tuning
We investigate the performance impact of manual tuning for bothMPL andMPL

s
by comparing

the fully parallel benchmarks against their manually tuned counterparts. The manually tuned

benchmarks were originally written and tuned for best performance withMPL, and use a variety of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:25

manual granularity control strategies, especially constant thresholds hardcoded into the program

source, as described in Section 6.1. We did not attempt to re-tune these benchmarks for MPL
s
.

Table 4 reports the performance of the manually tuned benchmarks, and overheads of the

fully-parallel benchmarks relative to their manually-tuned counterparts. Overheads are computed

individually per system; for example, in the first bolded column, we useMPL to run two versions of

the same benchmark (one fully parallel, and the other manually tuned), and report the performance

gap. The second bolded column does the same, but for MPL
s
. In other words, these columns report

the performance gains a programmer could expect to achieve if they went through the effort of

carefully optimizing their code by pruning parallelism. Lower ratios are preferable, as these indicate

less reliance on manual granularity control for performance.

We immediately observe that MPL relies heavily on manual tuning for performance, with an

average gap of 7x on 64 cores, and a maximum of 46x in one case. That is, with MPL, if the

programmer does not manually control granularity, they risk a slowdown of as much as an order-

of-magnitude (or more). In contrast, MPL
s
offers a gap of less than 2x on average. On a single core,

the max is 5.7x; on 64 cores, the max is only 3.3x. We conclude that MPL
s
greatly reduces the need

for programmers to manually tune the amount of parallelism in their programs. In future work, we

believe that our approach in MPL
s
could be refined to further close the gap between fully-parallel

and manually tuned performance.

7 DISCUSSION
Our approach in this paper was to extend the compiler with special support for automatic parallelism

management. It is worth considering whether or not we could achieve a similar result without

modifying the compiler. We attempted to do so (as we describe below), and found that the overheads

were too high. The challenge is that any cost incurred per call to par, regardless of how small, will

accumulate and significantly degrade performance. This is due to the sheer number of calls to par:
in practice, we can expect on the order of 10-100 million pars per second (Section 6).

We previously attempted to implement par at the source level (in a library) by maintaining, per

thread, a stack of promotable (or promoted) tasks. For the purposes of discussion here, we will refer

to these as promotion stacks. The idea was for par to push and pop tasks from the promotion stack,

and promotions would modify elements of the promotion stacks (i.e., mark tasks as promoted,

allowing par to then check for this appropriately). The problem is that every call to par pays for
pushing and popping tasks from the promotion stack, and also pays to check if a promotion has

occurred. The cost of these operations, although small, becomes significant due to the high rate of

calls to par. Optimizing these costs at the source level is difficult due to the high-level nature of

Standard ML, where we do not have control over the exact memory representation and layout of

the tasks and stack elements. As a result, operations on the promotion stack incur unnecessary

memory costs (especially allocations for the tasks) and branching instructions.

We were able to avoid these costs by integrating with the compiler. In particular, we emphasize

that our pcall primitive requires no branching instructions in the unpromoted case. Futhermore,

the memory cost in the unpromoted case is exactly two additional call-stack slots (as described in

Section 5.1.6 and shown in Figure 9).

8 RELATEDWORK
Language support for task parallelism. This line of work dates back to the 1980s, as exemplified by

multiLisp [Halstead 1984], to the 1990s with NESL [Blelloch 1996] and Cilk [Frigo et al. 1998], and

from the 2000s to the present in several extensions of Java [Bocchino et al. 2009; Imam and Sarkar

2014; Lea 2000], parallel Haskell [Li et al. 2007; Marlow and Peyton Jones 2011; Peyton Jones et al.

2008], several forms of parallel ML [Arora et al. 2021, 2023; Fluet et al. 2011, 2007; Guatto et al. 2018;

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:26 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

Raghunathan et al. 2016; Sivaramakrishnan et al. 2014; Spoonhower 2009; Westrick et al. 2020],

and X10 [Charles et al. 2005]. To express parallelism, these languages use several different kinds of

primitives, such as fork-join, futures, or async-finish, which are closely related but also differ in

their expressiveness [Acar et al. 2016]. We focus in this paper on the fork-join paradigm, specifically

the par primitive, which is well-suited for expressing balanced divide-and-conquer style parallel

algorithms. In future work, we hope to extend our approach for other forms of parallelism.

A common foundation for task-parallel languages is the greedy-scheduling idea developed by

Brent’s seminal work [Brent 1974]. This work was the first to establish a bound for scheduling a

task-parallel program: for any program with work𝑊 and span 𝑆 , using 𝑃 processors and any a

level-by-level scheduler, the running time is upper bounded by
𝑊
𝑃
+ 𝑆 . Later work generalized the

bound so that it holds for any greedy scheduler [Arora et al. 2001; Eager et al. 1989]. From these

early results came the randomized work-stealing scheduler of Blumofe and Leiserson [Blumofe and

Leiserson 1999] and its generalization by Arora et al. [2001], which can generate greedy schedules

for fork-join parallel programs, while also including certain scheduling costs, e.g., steals. Other

considerations of task scheduling have been analyzed, such as data locality [Acar et al. 2015, 2002;

Blelloch and Gibbons 2004; Chowdhury and Ramachandran 2008; Lee et al. 2015; Spoonhower et al.

2009], and responsiveness [Muller et al. 2020; Muller and Acar 2016; Muller et al. 2017, 2018, 2023,

2019]. All of this work assumes that the spawning of a thread has unit or asymptotically constant

cost.

Lazy scheduling and clone optimization. Lazy scheduling was introduced as a way of mitigating

task-related overheads in the early work of Mohr et al. [1991]. The idea was adapted for the work

stealing scheduler of Cilk-5 [Frigo et al. 1998], thereby introducing a general technique known as

of clone optimization. Clone optimization avoids the cost of spawning tasks when both branches

of a parallel fork point are scheduled on the same processor. When such a case is detected, the

optimization reuses the current stack and avoids a synchronization operation before executing the

join continuation. This optimization is used many systems, including ours. However, we found

that the clone optimization by itself is insufficient for efficiency, and that finding prompted our

work on automatic parallelism management.

Backtracking-Based Load Balancing is a variant of lazy scheduling that minimizes task-related

overheads of C++ programs [Hiraishi et al. 2009]. When it enters a fork point, the scheduler leaves

behind bookkeeping data for potentially spawning a new task, like in our approach. The potential

is realized, in contrast, by polling a core-local cell, and spawning a task if there is an outstanding

request from a remote core.

Lazy Binary Splitting (LBS) [Tzannes 2012; Tzannes et al. 2010, 2014] and Lazy Tree Splitting

(LTS) [Bergstrom et al. 2012] are variants of lazy scheduling that optimize parallel do-all loops

and tree traversals, respectively. LTS in particular focuses on traversals of tree data structures,

which worked well for benchmarks in Manticore [Bergstrom et al. 2012; Fluet et al. 2011, 2007].

However, our setting is more general, supporting a wide variety of data structures (especially

those based on mutable arrays). Both LBS and LTS follow the policy of promoting innermost

parallelism, a policy with known limitations with respect to scalability [Tzannes et al. 2014]. For

this reason, recent efforts have focused on variants that promote outermost parallelism. Although

implementing outermost parallelism faces challenges, such as those we described in this paper, the

outermost-promotion policy is, to the best of our knowledge, the only one backed by end-to-end

time bounds. Given such bounds, one can guarantee work efficiency and preservation of scalability

for all fork-join programs.

Heartbeat Scheduling. Our algorithm is inspired by heartbeat scheduling [Acar et al. 2018],

with some key differences. The idea of heartbeat scheduling is to rely on a periodic pulse—i.e.,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:27

a heartbeat—to trigger promotions. Specifically, at every heartbeat, every active thread tries to

perform one promotion. By tuning the heartbeat interval, it is possible to guarantee that, for any

fork-join program, the total work of promotion is bounded throughout execution. For example, if

promotion takes 1 unit of time, then heartbeat scheduling can guarantee 1% overhead for promotions

by triggering a heartbeat once every 100 units of time. Perhaps surprisingly, this policy prunes away

parallelism by at most a constant factor, and therefore also guarantees span-efficiency (preservation

of asymptotic parallelism).

The original heartbeat work demonstrated a prototype interpreter, written in C++, that operated

over an explicit, hand-rolled AST structure of a client program. Its implementation drives the

heartbeat pulse by software polling [Basu et al. 2021; Feeley 1993; Ghosh et al. 2020], which is

similar to how our implementation implements beats. Subsequent work showed how to eliminate

the interpretive overhead and gain finer control over work efficiency by using a Task-Parallel

Assembly Language (TPAL) [Rainey et al. 2021], and used an alternative driver for the heartbeat,

based on hardware interrupts.

We tried a version of heartbeat scheduling that, as described in Section 5, uses a hybrid of

software polling and hardware interrupts, but found that the performance in some cases was poor

(Section 6.4). The reason was that heartbeats need to occur at a very high rate to ensure good

performance, which we were not able to achieve with our system. Specifically, on modern machines,

an ideal heartbeat interval is in the range of 10-100 microseconds [Rainey et al. 2021]. Achieving

this rate is difficult, even in a low-level setting [Basu et al. 2021; Ghosh et al. 2020; Hale and Dinda

2018; Rainey et al. 2021]. In our setting, the challenge is exacerbated: our language is high-level,

with automatic memory management, which introduces unexpected delays during execution for

additional work such as garbage collection.

Our work addresses this issue by reducing the pressure to have such a regular, high-frequency

beat. In particular, our token accounting approach is capable of “simulating” frequent, regular

heartbeats by decoupling promotions from heartbeats. Essentially, we use heartbeats only to

track the amount of work performed, and then separately trigger promotions between heartbeats.

Moreover, our algorithm retains performance guarantees (work- and span-efficiency). We expect

that, with a reasonable implementation effort, we can improve performance by using a custom

signal-delivery mechanism [Rainey et al. 2021].

Granularity control. Another approach to taming task-creation costs is given by granularity

control, a family of algorithms in which the program ensures that each task holds onto a sizeable

amount of useful work. Granularity control amortizes task-related costs by switching between

parallel to serial modes of execution, and makes switching decisions based on predictions of future
amounts of work, whereas alternatives, such as heartbeat scheduling and ours, switch based on

known amounts of past work. At its most basic, granularity control may be performed manually by

the application programmer [Intel 2011]. In manual granularity control, the programmer inserts

into every parallel region a condition for switching between parallel and serial versions, and uses a

hand tuning process to find suitable switching conditions. This approach faces severe limitations,

as shown by Tzannes et al. [2010], owing largely to the difficulty of predicting execution time in an

accurate and portable manner.

Starting from the late 1980s, there have been a number of approaches proposed to address the

limitations of manual granularity control [Duran et al. 2008; Huelsbergen et al. 1994; Loidl and

Hammond 1995; Pehoushek and Weening 1990; Shen et al. 1999; Weening 1989]. These techniques

depend on certain assumptions, e.g., linear work complexity of all functions [Huelsbergen et al.

1994], or on sources of dynamically collected data, such as recursion-tree depth and various dynamic

load conditions. Such data is typically limited and, as such, granularity decisions based on them

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



38:28 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

risk decreasing parallelism adversely. Some alternative approaches base switching decisions on

predictions of running times that are typically expressed in terms of some abstract quantity of

computational steps, such as dynamically generated predictions based on user annotations in the

source code [Lopez et al. 1996] or on statically generated predictions based on compiler-based

analysis [Iwasaki and Taura 2016]. Such predictions are, however, vulnerable to the hardness of

timing prediction on modern chip architectures.

Subsequent work on Oracle Guided Granularity Control addresses this issue by combining static

and dynamic profiling data [Acar et al. 2019, 2011]. In the approach, each parallel region in the

program is annotated with an abstract cost function, which provides a coarse estimation of the

number of operations to be performed by the parallel region. This abstracted prediction is refined by

an online prediction algorithm, which uses a profiler. The profiler takes samples from regions of the

program as it runs and uses them, along with the results of the cost functions, to predict a number

of cycles per unit of abstract work. This approach has the advantage that it has guaranteed time

bounds for a well-defined subset of fork-join programs can be implemented entirely as a library.

However, the approach requires specifying cost functions, which are not always easy or even

possible to express properly, and its performance bounds only a certain somewhat well-behaved

subset of fork-join program, whereas ours applies to all.

Another approach to granularity control, as developed recently by Rainey [2023], is to manually

integrate heartbeat scheduling into a parallel kernel after a series of source-to-source refactoring

steps (including transformations such as CPS-conversion and defunctionalization). This requires

no changes to the compiler, but does essentially require the programmer to “manually compile”

their program, which in general is infeasible, especially for large programs.

Embedding task parallelism in compiler IRs. Tapir [Schardl et al. 2017] is a recent proposal for
embedding task parallelism in the middle end of LLVM. The purpose of the embedding is to enable

LLVM’s middle end to apply optimizations that previously were only applicable to purely serial

regions of code. To this end, Tapir extends the LLVM IR with a few intrinsics for expressing

potentials for parallel execution. In this regard, our IR extensions bear resemblance to Tapir, and

although we do not analyze it, in principle, our IR extensions can unlock optimizations that were

only possible in serial regions of code. The main contributions of Tapir differ from ours, however,

in that our aim is for automatic management of parallelism.

9 CONCLUSION
In the current state of the art, parallel programmers are expected to manually hand-optimize code to

control the cost of parallelism and ensure efficiency and scalability. Such optimizations are complex,

require deep expertise, and result in code that is difficult to reason about and deploy, especially on

different architectures.

Motivated by this challange and the effectiveness of language-level abstractions such as (au-

tomatic) memory management, we ask: can we manage parallelism in the run-time system auto-

matically, so that its costs are controlled without harming performance? We answer this question

in the affirmative by combining static and dynamic techniques for creating and managing paral-

lelism. Specifically, we propose a potentially parallel call primitive and support this primitive in

the run-time system by amortizing the cost of parallelism against actual (sequential) work. Our

implementation, which extends the MPL language for Parallel ML, shows that the approach is

practical and effective: (1) its implementation is not particularly onerous, (2) it significantly reduces

the performance overhead of programming without manual granularity control, and (3) it performs

well, delivering small overheads and good scalability (speedups).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.



Automatic Parallelism Management 38:29

DATA AVAILABILITY STATEMENT
The implementation and experiments for this paper are open-source and publicly available on

GitHub at https://github.com/MPLLang/mpl and https://github.com/MPLLang/parallel-ml-bench.

ACKNOWLEDGMENTS
This research was supported by the following NSF grants (CCF-1901381, CCF-2115104, CCF-2119352,

CCF-2107241) and by a gift from Intel.

REFERENCES
Umut A. Acar, Vitaly Aksenov, Arthur Charguéraud, and Mike Rainey. 2019. Provably and Practically Efficient Granularity

Control. In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming (Washington, District of

Columbia) (PPoPP ’19). Association for Computing Machinery, New York, NY, USA, 214–228. https://doi.org/10.1145/

3293883.3295725

Umut A. Acar, Jatin Arora, Matthew Fluet, Ram Raghunathan, Sam Westrick, and Rohan Yadav. 2020. MPL: A High-

Performance Compiler for Parallel ML. https://github.com/MPLLang/mpl.

Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan. 2015. Coupling Memory and

Computation for Locality Management. In Summit on Advances in Programming Languages (SNAPL).
Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2002. The Data Locality of Work Stealing. Theory of Computing

Systems 35, 3 (2002), 321–347.
Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip Sieczkowski. 2018. Heartbeat Scheduling:

Provable Efficiency for Nested Parallelism. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). 769–782.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. 2011. Oracle Scheduling: Controlling Granularity in Implicitly

Parallel Languages. In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 499–518.

Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. 2016. Dag-calculus: A Calculus for Parallel

Computation. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (ICFP 2016).
18–32.

Jatin Arora, SamWestrick, and Umut A. Acar. 2021. Provably Space Efficient Parallel Functional Programming. In Proceedings
of the 48th Annual ACM Symposium on Principles of Programming Languages (POPL)".

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Programming with Effects. Proc. ACM
Program. Lang. 7, PLDI (2023), 1558–1583. https://doi.org/10.1145/3591284

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread Scheduling for Multiprogrammed Multiprocessors.

Theory of Computing Systems 34, 2 (2001), 115–144.
Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-structures: Data Structures for Parallel Computing. ACM Trans.

Program. Lang. Syst. 11, 4 (Oct. 1989), 598–632.
Nilanjana Basu, Claudio Montanari, and Jakob Eriksson. 2021. Frequent Background Polling on a Shared Thread, Using

Light-Weight Compiler Interrupts. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, 1249–1263. https://doi.org/10.1145/3453483.3454107

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. 2004. On-the-Fly Maintenance of Series-

Parallel Relationships in Fork-Join Multithreaded Programs. In 16th Annual ACM Symposium on Parallel Algorithms and
Architectures. 133–144.

Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2012. Lazy Tree Splitting. J. Funct. Program. 22,
4-5 (Aug. 2012), 382–438.

Guy E. Blelloch. 1996. Programming Parallel Algorithms. Commun. ACM 39, 3 (1996), 85–97.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri. 2011. Scheduling irregular parallel

computations on hierarchical caches. In Proc. ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
355–366.

Guy E. Blelloch and Phillip B. Gibbons. 2004. Effectively sharing a cache among threads. In SPAA (Barcelona, Spain).

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing. J. ACM 46

(Sept. 1999), 720–748. Issue 5.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey,

Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. 2009. A type and effect system for deterministic parallel Java. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.

https://github.com/MPLLang/mpl
https://github.com/MPLLang/parallel-ml-bench
https://doi.org/10.1145/3293883.3295725
https://doi.org/10.1145/3293883.3295725
https://github.com/MPLLang/mpl
https://doi.org/10.1145/3591284
https://doi.org/10.1145/3453483.3454107


38:30 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

(Orlando, Florida, USA) (OOPSLA ’09). 97–116.
Richard P. Brent. 1974. The parallel evaluation of general arithmetic expressions. J. ACM 21, 2 (1974), 201–206.

Henry Cejtin, Suresh Jagannathan, and Stephen T. Weeks. 2000. Flow-directed Closure Conversion for Typed Languages. In

European Symposium on Programming. 56–71.
Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von

Praun, and Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster computing. In Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications (San Diego,

CA, USA) (OOPSLA ’05). ACM, 519–538.

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F. Stark. 1998. Detecting data races

in Cilk programs that use locks. In Proceedings of the 10th ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’98).

Rezaul Alam Chowdhury and Vijaya Ramachandran. 2008. Cache-efficient dynamic programming algorithms for multicores.

In Proc. 20th ACM Symposium on Parallelism in Algorithms and Architectures (Munich, Germany). ACM, New York, NY,

USA, 207–216.

A. Duran, J. Corbalan, and E. Ayguade. 2008. An adaptive cut-off for task parallelism. In 2008 SC - International Conference
for High Performance Computing, Networking, Storage and Analysis. 1–11.

Derek L. Eager, John Zahorjan, and Edward D. Lazowska. 1989. Speedup versus efficiency in parallel systems. IEEE
Transactions on Computing 38, 3 (1989), 408–423.

Martin Elsman. 1999. Static Interpretation of Modules. In International Conference on Functional Programming. 208–219.
Marc Feeley. 1993. Polling efficiently on stock hardware. In Proceedings of the conference on Functional programming

languages and computer architecture (Copenhagen, Denmark) (FPCA ’93). 179–187.
Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of Determinacy Races in Cilk Programs. In Proceedings

of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). 1–11.
Jeremy T. Fineman. 2005. Provably Good Race Detection That Runs in Parallel. Master’s thesis. Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise dynamic race detection. SIGPLAN Not. 44, 6
(June 2009), 121–133. https://doi.org/10.1145/1543135.1542490

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2011. Implicitly threaded parallelism in Manticore. Journal of
Functional Programming 20, 5-6 (2011), 1–40.

Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. 2007. Manticore: A Heterogeneous Parallel Language.

In Proceedings of the 2007 Workshop on Declarative Aspects of Multicore Programming (Nice, France) (DAMP ’07). 37–44.
Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multithreaded Language.

In PLDI. 212–223.
Souradip Ghosh, Michael Cuevas, Simone Campanoni, and Peter Dinda. 2020. Compiler-Based Timing For Extremely

Fine-Grain Preemptive Parallelism. In SC20: International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15. https://doi.org/10.1109/SC41405.2020.00057

Adrien Guatto, SamWestrick, Ram Raghunathan, Umut A. Acar, andMatthew Fluet. 2018. Hierarchical memory management

for mutable state. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2018, Vienna, Austria, February 24-28, 2018. 81–93.

Kyle C. Hale and Peter A. Dinda. 2018. An Evaluation of Asynchronous Software Events on Modern Hardware. In 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). 355–368. https://doi.org/10.1109/MASCOTS.2018.00041

Robert H. Halstead, Jr. 1984. Implementation of Multilisp: Lisp on a Multiprocessor. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming (Austin, Texas, United States) (LFP ’84). ACM, 9–17.

Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa. 2009. Backtracking-based load balancing. Proceedings of
the 2009 ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming 44, 4 (February 2009), 55–64.

Lorenz Huelsbergen, James R. Larus, and Alexander Aiken. 1994. Using the Run-time Sizes of Data Structures to Guide

Parallel-thread Creation. In Proceedings of the 1994 ACM Conference on LISP and Functional Programming (Orlando,

Florida, USA) (LFP ’94). 79–90.
Shams Mahmood Imam and Vivek Sarkar. 2014. Habanero-Java library: a Java 8 framework for multicore programming. In

2014 International Conference on Principles and Practices of Programming on the Java Platform Virtual Machines, Languages
and Tools, PPPJ ’14. 75–86.

Intel. 2011. Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/.

Shintaro Iwasaki and Kenjiro Taura. 2016. A static cut-off for task parallel programs. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation. ACM, 139–150.

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic race prediction in linear time. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.

https://doi.org/10.1145/1543135.1542490
https://doi.org/10.1109/SC41405.2020.00057
https://doi.org/10.1109/MASCOTS.2018.00041
https://www.threadingbuildingblocks.org/


Automatic Parallelism Management 38:31

18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 157–170.

Doug Lea. 2000. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java Grande (San Francisco,

California, USA) (JAVA ’00). 36–43.
I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline

Parallelism. TOPC 2, 3 (2015), 17:1–17:42.

Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach. 2007. Lightweight concurrency primitives for GHC.

In Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007. 107–118.
Hans-Wolfgang Loidl and Kevin Hammond. 1995. On the granularity of divide-and-conquer parallelism. In Proceedings of

the 1995 Glasgow Workshop on Functional Programming. 1–10.
P. Lopez, M. Hermenegildo, and S. Debray. 1996. A methodology for granularity-based control of parallelism in logic

programs. Journal of Symbolic Computation 21 (June 1996), 715–734. Issue 4-6.

Simon Marlow and Simon L. Peyton Jones. 2011. Multicore garbage collection with local heaps. In Proceedings of the 10th
International Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011, Hans-Juergen Boehm

and David F. Bacon (Eds.). ACM, 21–32.

John Mellor-Crummey. 1991. On-the-fly Detection of Data Races for Programs with Nested Fork-Join Parallelism. In

Proceedings of Supercomputing’91. 24–33.
MLton n.d.. MLton web site. http://www.mlton.org.

E. Mohr, D. A. Kranz, and R. H. Halstead. 1991. Lazy task creation: a technique for increasing the granularity of parallel

programs. IEEE Transactions on Parallel and Distributed Systems 2, 3 (1991), 264–280.
Stefan Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting Angelina Lee. 2020. Responsive Paral-

lelism with Futures and State. In Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI).

Stefan K. Muller and Umut A. Acar. 2016. Latency-Hiding Work Stealing: Scheduling Interacting Parallel Computations

with Work Stealing. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,
Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. 71–82.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2017. Responsive Parallel Computation: Bridging Competitive and

Cooperative Threading. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 677–692.

Stefan K. Muller, Umut A. Acar, and Robert Harper. 2018. Types and Cost Models for Responsive Parallelism. In Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP ’18).

Stefan K. Muller, Kyle Singer, Devyn Terra Keeney, Andrew Neth, Kunal Agrawal, I-Ting Angelina Lee, and Umut A. Acar.

2023. Responsive Parallelism with Synchronization. Proc. ACM Program. Lang. 7, PLDI (2023), 712–735.
Stefan K. Muller, Sam Westrick, and Umut A. Acar. 2019. Fairness in Responsive Parallelism. In Proceedings of the 24th ACM

SIGPLAN International Conference on Functional Programming (ICFP 2019).
Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid dynamic data race detection. In Proceedings of the ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP 2003, June 11-13, 2003, San Diego, CA, USA, Rudolf
Eigenmann and Martin C. Rinard (Eds.). ACM, 167–178.

Joseph Pehoushek and Joseph Weening. 1990. Low-cost process creation and dynamic partitioning in Qlisp. In Parallel Lisp:
Languages and Systems, Takayasu Ito and Robert Halstead (Eds.). Lecture Notes in Computer Science, Vol. 441. Springer

Berlin / Heidelberg, 182–199.

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T. Chakravarty. 2008. Harnessing the Multicores:

Nested Data Parallelism in Haskell. In FSTTCS. 383–414.
Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. 2016. Hierarchical Memory Management for Parallel

Programs. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan)

(ICFP 2016). ACM, New York, NY, USA, 392–406.

Mike Rainey. 2023. The best multicore-parallelization refactoring you’ve never heard of. arXiv:2307.10556 [cs.DC]

Mike Rainey, Kyle Hale, Ryan R. Newton, Nikos Hardavellas, Simone Campanoni, Peter Dinda, and Umut A. Acar. 2021.

Task Parallel Assembly Language for Uncompromising Parallelism. In Proceedings of the 42nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’21). ACM, New York, NY, USA. http://mike-rainey.site/

papers/tpal-long.pdf

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. 2010. Efficient Data Race Detection for

Async-Finish Parallelism. In Runtime Verification, Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund,

Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.). Lecture Notes in Computer Science,

Vol. 6418. Springer Berlin / Heidelberg, 368–383.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. 2012. Scalable and Precise Dynamic Datarace

Detection for Structured Parallelism. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). 531–542.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.

http://www.mlton.org
https://arxiv.org/abs/2307.10556
http://mike-rainey.site/papers/tpal-long.pdf
http://mike-rainey.site/papers/tpal-long.pdf


38:32 Sam Westrick, Matthew Fluet, Mike Rainey, and Umut A. Acar

John C. Reynolds. 1972. Definitional Interpreters for Higher-order Programming Languages. In Proceedings of the 25𝑡ℎ ACM
National Conference. 717–740.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A Dynamic Race

Detector for Multi-Threaded Programs. In Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles
(SOSP).

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir: Embedding Fork-Join Parallelism into LLVM’s

Intermediate Representation. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Austin, Texas, USA) (PPoPP ’17). Association for Computing Machinery, New York, NY, USA, 249–265.

https://doi.org/10.1145/3018743.3018758

Kish Shen, Vitor Santos Costa, and Andy King. 1999. Distance: A new metric for controlling granularity for parallel

execution. Journal of Functional and Logic Programming 1999 (1999), 1–23.

K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. 2014. MultiMLton: A multicore-aware runtime for standard

ML. Journal of Functional Programming FirstView (6 2014), 1–62.

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan. 2012. Sound predictive race detection

in polynomial time. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 387–400.

Daniel Spoonhower. 2009. Scheduling Deterministic Parallel Programs. Ph.D. Dissertation. Carnegie Mellon University.

https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf

Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. 2009. Beyond Nested Parallelism: Tight Bounds

on Work-stealing Overheads for Parallel Futures. In Proceedings of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures (Calgary, AB, Canada) (SPAA ’09). ACM, New York, NY, USA, 91–100.

Andrew P. Tolmach and Dino Oliva. 1998. FromML to Ada: Strongly-Typed Language Interoperability via Source Translation.

Journal of Functional Programming 8, 4 (1998), 367–412. citeseer.nj.nec.com/tolmach93from.html

Alexandros Tzannes. 2012. Enhancing Productivity and Performance Portability of General-Purpose Parallel Programming.
Ph.D. Dissertation. University of Maryland.

Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi Vishkin. 2010. Lazy binary-splitting: a run-time adaptive

work-stealing scheduler. In PPoPP ’10. 179–190.
Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. 2014. Lazy Scheduling: A Runtime Adaptive

Scheduler for Declarative Parallelism. TOPLAS 36, 3, Article 10 (Sept. 2014), 51 pages.
Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. 2016. Provably Good and Practically Efficient

Parallel Race Detection for Fork-Join Programs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016. 83–94.

Stephen Weeks. 2006. Whole-program compilation in MLton. In ML ’06: Proceedings of the 2006 workshop on ML (Portland,

Oregon, USA). ACM, 1–1.

Joseph S. Weening. 1989. Parallel Execution of Lisp Programs. Ph.D. Dissertation. Stanford University. Computer Science

Technical Report STAN-CS-89-1265.

Sam Westrick. 2022. Efficient and Scalable Parallel Functional Programming Through Disentanglement. Ph.D. Dissertation.
Carnegie Mellon University. https://www.cs.cmu.edu/~swestric/22/thesis.pdf

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection With Near-Zero Cost. In Proceedings of the
24th ACM SIGPLAN International Conference on Functional Programming (ICFP 2022).

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in Nested-Parallel Programs. In

Proceedings of the 47th Annual ACM Symposium on Principles of Programming Languages (POPL)".
Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. 2020. Parallel determinacy race detection for futures. In PPoPP ’20: 25th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, California, USA, February 22-26,
2020, Rajiv Gupta and Xipeng Shen (Eds.). ACM, 217–231. https://doi.org/10.1145/3332466.3374536

Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: efficient detection of data race conditions via adaptive tracking.

In Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton, UK, October 23-26,
2005, Andrew Herbert and Kenneth P. Birman (Eds.). ACM, 221–234.

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 38. Publication date: January 2024.

https://doi.org/10.1145/3018743.3018758
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
citeseer.nj.nec.com/tolmach93from.html
https://www.cs.cmu.edu/~swestric/22/thesis.pdf
https://doi.org/10.1145/3332466.3374536

	Abstract
	1 Introduction
	2 Overview and Key Ideas
	2.1 Our Approach

	3 PCall: Potentially Parallel Calls
	3.1 Syntax
	3.2 Lowering High-Level Parallelism into SSA with PCall
	3.3 Operational Semantics

	4 Parallelism Management Algorithm
	4.1 Token Accounting Algorithm
	4.2 Work- and Span-efficiency
	4.3 Tunable Parameters: Set and Forget

	5 Implementation
	5.1 Implementing the PCall SSA IR in MLton/MPLs
	5.2 Parallelism Management
	5.3 Integration with Work-Stealing Scheduler
	5.4 Integration with MPL Memory Management

	6 Evaluation
	6.1 Benchmarks
	6.2 Experimental Setup
	6.3 Result #1: MPLs Consistently Outperforms Eager normalnormalpar
	6.4 Result #2: Token Accounting Outperforms Classic Heartbeat Scheduling
	6.5 Result #3: Good Scalability and Low Single-Core Overheads
	6.6 Result #4: Low Overhead Relative to Manual Tuning

	7 Discussion
	8 Related Work
	9 Conclusion
	References

