
Automatic Parallelism Management

Sam Westrick
Carnegie Mellon University

POPL 2024

London, UK

1

Matthew Fluet
Rochester

Institute of

Technology

joint work with:

Umut Acar
Carnegie

Mellon

University

Mike Rainey

Carnegie

Mellon

University

2

Fine-Grained Task Parallelism
- par: (unit -> 'a) * (unit -> 'b) -> 'a * 'b

- scheduler guarantees efficient execution  

on any number of processors

(* do body(i) for each i: lo <= i < hi *)
fun parfor(lo, hi, body) =
 if lo >= hi then () else
 if lo+1 = hi then body(lo) else
 let val mid = lo + (hi-lo) div 2
 in par(fn () => parfor(lo, mid, body),
 fn () => parfor(mid, hi, body));
 ()
 end

parfor(1,3,…)
parfor(0,1,…)

parfor(0,3,…)

3

Parallelism Isn’t Free
(* do body(i) for each i: lo <= i < hi *)
fun parfor(lo, hi, body) =
 if lo >= hi then () else
 if lo+1 = hi then body(lo) else
 let val mid = lo + (hi-lo) div 2
 in par(fn () => parfor(lo, mid, body),
 fn () => parfor(mid, hi, body));
 ()
 end

fun parfor(lo, hi, body) =

 let val mid = lo + (hi-lo) div 2
 in par ...
 end

if hi-lo <= GRAIN_SIZE then
 sequential_for_loop(lo, hi, body)

up to 50x
performance 
gap in practice

4

The Granularity Control Problem

(* do body(i) for each i: lo <= i < hi *)
fun parfor(lo, hi, body) =

 let val mid = lo + (hi-lo) div 2
 in par(fn () => parfor(lo, mid, body),
 fn () => parfor(mid, hi, body));
 ()
 end

if hi-lo <= GRAIN_SIZE then
 sequential_for_loop(lo, hi, body)

- how much parallelism should I expose?  
(how “fine-grained” should my tasks be?)

parfor(0, 1000, expensive_func)

parfor(0, 100000000, cheap_func)

parfor(0, N, fn i =>
 let M = foo(i)
 parfor(0, M, fn j => ...)
)

what grain size
should you pick?

5

The Granularity Control Problem

- lots of existing work 
(lazy scheduling, lazy binary splitting / lazy
tree splitting, heartbeat scheduling,
oracle-guided control, static cut-offs, cost
annotations, profiling techniques...)

- we want...
- fully general solution

- provably efficient

- implementable and effective in practice

- how much parallelism should I expose?  
(how “fine-grained” should my tasks be?)

- can this be automated?

dynamicstatic

6

Automatic Parallelism Management
Our Approach
 
programmer uses par liberally to express 
opportunities for parallelism
- PCall: new compilation technique for
par with nearly zero cost

- PCall behaves sequentially by default  
(avoids task creation by default)

- each PCall can be dynamically
promoted into an actual parallel task

 
provably efficient scheduling of promotions

- each promotion releases parallelism 

but also incurs a cost

- our algorithm guarantees...

- work-efficiency 
(cost of all promotions is amortized)

- span-efficiency 
(theoretical parallelism is preserved)

full implementation in MaPLe

github.com/MPLLang/mpl

7

parallel source
language

(higher-order,
polymorphic)

SSA IR
(first-order,

monomorphic)
machine code

w/ pcallmonomorphize,
defunctionalize,
optimize, etc.

allocate registers,
lay out memory,
optimize, etc.

optimize

implement
parallelism with pcall:

potentially parallel
function calls

runtime scheduler

linked
with

executable

pcall
promotion
(dynamic)

Compilation

args
...

local vars
...

...
local vars

...

ret_spwn
ret_sync
ret_seq

8

PCall Calling Convention
PCall(func, args, ret_seq, ret_sync, ret_spwn)

args
...

local vars
...

(caller)

func

...
local vars

...

ret

Call(func, args, ret)

IF NEVER PROMOTED...
- behaves the same as normal Call
- caller resumes at ret_seq
- ret_sync and ret_spwn are discarded

...
local vars

...

ret_spwn
ret_sync
ret_seq

9

PCall Promotion

promote

...
local vars

...

ret_sync

...
local vars

...

ret_spwn

new task

(caller) (caller)

10

Scheduling Promotions
- each promotion exposes parallelism but incurs a cost

- idea: amortize cost of promotion against “true” work

- algorithm

- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the

outermost (oldest) outstanding PCall 
(in the thread’s own call-stack)

theorems: 
work-efficiency and span-efficiency

11

Parallelism Overhead (lower is better)

overhead

46x

vanilla MaPLe (Ours) MaPLe + 
automatic parallelism management

64-core performance

two versions of each bench

- NoGran: 

no granularity control

- Manual: 

manual granularity control

overhead = 
Time(NoGran) / Time(Manual)

12

- nearly zero cost compilation technique for par (PCall + promotions)

- provable and practical efficiency, even without granularity control

Automatic Parallelism Management
Summary

see the paper for...
- SSA formalism, PCall semantics

- theorems: work- and span-efficiency

- description of changes to 

MLton/MaPLe compiler and run-time system

- in-depth empirical evaluation

github.com/MPLLang/mpl

