Automatic Parallelism Management

joint work with:

Sam Westrick
Carnegie Mellon University

POPL 2024

London, UK Matthew Fluet Umut Acar
Rochester Carnegie Carnegie
Institute of Mellon Mellon

Technology University University

Fine-Grained Task Parallelism

- par: (unit —> 'a) x (unit —> 'b) —> 'a x 'b

- scheduler guarantees efficient execution
on any number of processors

. parfor(o,3,..)

(x do body(i) for each i: 1o <= i < hi x)
fun parfor(lo, hi, body) = .
if lo >= hi then () else parfor(0,1,..) s
if lo+1 = hi then body(lo) else
let val mid = 1o + (hi-lo) div 2
in par(fn () => parfor(lo, mid, body),
fn () => parfor(mid, hi, body));
()

end

Parallelism Isn’t Free

(* do body(i) for each i: 1o <= i < hi x)
fun parfor(lo, hi, body) =

if lo >= hi then () else

if lo+1 = hi then body(lo) else

let val mid = 1o + (hi-lo) div 2

in par(fn () => parfor(lo, mid, body),

fn () => parfor(mid, hi, body));
()

end up to 50x
performance
gap In practice

fun parfor(lo, hi, body) =

1f hi-lo <= GRAIN SIZE then
sequential _for_loop(lo, hi, body)

let val mid = 1o + (hi-lo0) div 2
in par ...
end

The Granularity Control Problem

- how much parallelism should | expose?

(how “fine-grained” should my tasks be?) what grdin size

should you pick?

parfor(0, 1000, expensive_func)

(x do body(1i) for each i: lo <= 1 < hi x*)
fun parfor(lo, hi, body) =

if hi-lo <= GRAIN SIZE then parfor(@, 100000000, cheap_func)
sequential_for_loop(lo, hi, body)

let val mid = lo + (hi-lo) div 2 parfor(@, N, fn i =>
in par(fn () => parfor(lo, mid, body), let M = foo(i)
fn () => parfor(mid, hi, body)); parfor(@, M, fn j => ...)

())

end

The Granularity Control Problem

- how much parallelism should | expose?
(how “fine-grained” should my tasks be?)

- can this be automated?

- lots of existing work
(lazy scheduling, lazy binary splitting / lazy
tree splitting, heartbeat scheduling,
oracle-quided control, static cut-offs, cost
annotations, profiling techniques...)

- we want...
- fully general solution
- provably efficient

- Implementable and effective in practice

Heartbeat Scheduling:
Provable Efficiency for Nested Parallelism

Umut A. Acar Arthur Charguéraud Adrien Guatto
Carnegie Mellon University and Inria Inria and Univ. of Strasbourg, ICube Inria
USA France France
umut@cs.cmu.edu arthur.chargueraud@inria.fr adrien@guatto.org
Mike Rainey Filip Sieczkowski
Inria and Center for Research in Inria
Extreme Scale Technologies (CREST) France

USA
me@mike-rainey.site

Abstract

A classic problem in parallel computing is to take a high-
level parallel program written, for example, in nested-parallel
style with fork-join constructs and run it efficiently on a
real machine. The problem could be considered solved in
theory, but not in practice, because the overheads of creating
and managing parallel threads can overwhelm their benefits.
Developing efficient parallel codes therefore usually requires
extensive tuning and optimizations to reduce parallelism just
to a point where the overheads become acceptable.

In this paper, we present a scheduling technique that de-
livers provably efficient results for arbitrary nested-parallel
programs, without the tuning needed for controlling par-
allelism overheads. The basic idea behind our technique is
to create threads only at a beat (which we refer to as the
“heartbeat”) and make sure to do useful work in between. We
specify our heartbeat scheduler using an abstract-machine
semantics and provide mechanized proofs that the scheduler
guarantees low overheads for all nested parallel programs.
We present a prototype C++ implementation and an evalua-
tion that shows that Heartbeat competes well with manually
optimized Cilk Plus codes, without requiring manual tuning.

CCS Concepts - Software and its engineering — Par-
allel programming languages;

Keywords parallel programming languages, granularity
control

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

filip.sieczkowski@inria.fr

ACM Reference Format:

Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey,
and Filip Sieczkowski. 2018. Heartbeat Scheduling: Provable Effi-
ciency for Nested Parallelism. In Proceedings of 39th ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (PLDI'18). ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3192366.3192391

1 Introduction

A longstanding goal of parallel computing is to build sys-
tems that enable programmers to write a high-level codes
using just simple parallelism annotations, such as fork-join,
parallel for-loops, etc, and to then derive from the code an
executable that can perform well on small numbers of cores
as well as large. Over the past decade, there has been signifi-
cant progress on developing programming language support
for high level parallelism. Many programming languages
and systems have been developed specifically for this pur-
pose. Examples include OpenMP [46], Cilk [26], Fork/Join
Java [38], Habanero Java [35], TPL [41], TBB [36], X10 [16],
parallel ML [24, 25, 30, 48, 51], and parallel Haskell [43].

These systems have the desirable feature that the user
expresses parallelism at an abstract level, without directly
specifying how to map lightweight threads (just threads,
from hereon) onto processors. A scheduler is then respon-
sible for the placement of threads. The scheduler does not
require that the thread structure is known ahead of time,
and therefore operates online as part of the runtime system.
Many scheduling algorithms have been developed, taking
into account a variety of asymptotic cost factors including
execution time, space consumption, and locality [1-3, 5, 9-
13, 15, 18, 29, 31, 45].

Most scheduling alegorithms that come with a formal anal-

Automatic Parallelism Management

Our Approach
static dynamic
programmer uses par liberally to express provably efficient scheduling of promotions

opportunities for parallelism - each promotion releases parallelism

- PCall: new compilation technique for but also incurs a cost

par with nearly zero cost - our algorithm guarantees...

- PCall behaves sequentially by default - work-efficiency

(avoids task creation by default) (cost of all promotions is amortized)
- each PCall can be dynamically - span-efficiency

promoted into an actual parallel task (theoretical parallelism is preserved)

full implementation in MaPLe O
github.com/MPLLang/mpl

6

Compilation

parallel source
language

(higher-order,

polymorphic)

—_—

monomorphize,
defunctionalize,
optimize, etc.

implement

parallelism with pcall:
potentially parallel

Ofunction calls

SSA IR
(first-order,
monomorphic)

()

optimize

runtime scheduler
~

linked
with

y 4

machine code

—————————————————————

allocate reqisters,
lay out memory,
optimize, etc.

w/ pcall

N
\ Ppcall

) promotion
s (dynamic)

executable

PCall Calling Convention

Call(func, args, ret) PCall(func, args, ret _seq, ret_sync, ret_spwn)
loca.ll .va rs locall. .va 'S IF NEVER PROMOTED...
(caller) e e - behaves the same as normal Call
ret_spwn - caller resumes at ret_seq
ret_sync - ret_sync and ret_spwn are discarded
ret ret_seq
args args
func loca.ll .va r's loca.l. .va r's

PCall Promotion

(caller)

local vars

ret_spwn
ret_sync
ret_seq

promote '

(caller)

local vars

ret_sync

local vars

ret_spwn

Scheduling Promotions —

- each promotion exposes parallelism but incurs a cost v j»

- Idea: amortize cost of promotion against “true” work «

|
-

- algorithm

- every N microseconds, each thread receives C tokens

- any thread may spend one token to promote the
outermost (oldest) outstanding PCa Ll
(in the thread’s own call-stack)

theorems:
work-efficiency and span-efficiency

10

Parallelism Overhead (lower is better)

bfs
bignum-add
delaunay
grep

linefit
mandelbrot
map-heavy
map-light
msort
nearest-nbrs
nqueens
primes
sparse-mxv-csr
suffix-array
triangle-count
WC

M vanilla MaPLe

10

15
overhead

11

B (Ours) MaPLe +
automatic parallelism management

20

25

64-core performance
two versions of each bench

- NoGran:
no granularity control

- Manual.
manual granularity control

overhead =

Time(NoGran) / Time(Manual)

46X
30

Automatic Parallelism Management

Summary

- nearly zero cost compilation technique for par (PCall + promotions)

- provable and practical efficiency, even without granularity control

see the paper for...
- SSA formalism, PCall semantics
- theorems: work- and span-efficiency

- description of changes to
MLton/MaPLe compiler and run-time system

- In-depth empirical evaluation

github.com/MPLLang/mpl O

12

Automatic Parallelism Management

SAM WESTRICK, Carnegie Mellon University, USA
MATTHEW FLUET, Rochester Institute of Technology, USA
MIKE RAINEY, Carnegie Mellon University, USA

UMUT A. ACAR, Carnegie Mellon University, USA

On any modern computer architecture today, parallelism comes with a modest cost, born from the creation
and management of threads or tasks. Today, programmers battle this cost by manually optimizing/tuning their
codes to minimize the cost of parallelism without harming its benefit, performance. This is a difficult battle:
programmers must reason about architectural constant factors hidden behind layers of software abstractions,
including thread schedulers and memory managers, and their impact on performance, also at scale. In languages
that support higher-order functions, the battle hardens: higher order functions can make it difficult, if not
impossible, to reason about the cost and benefits of parallelism.

Motivated by these challenges and the numerous advantages of high-level languages, we believe that it has
become essential to manage parallelism automatically so as to minimize its cost and maximize its benefit. This
is a challenging problem, even when considered on a case-by-case, application-specific basis. But if a solution
were possible, then it could combine the many correctness benefits of high-level languages with performance
by managing parallelism without the programmer effort needed to ensure performance. This paper proposes
techniques for such automatic management of parallelism by combining static (compilation) and run-time
techniques. Specifically, we consider the Parallel ML language with task parallelism, and describe a compiler
pipeline that embeds “potential parallelism” directly into the call-stack and avoids the cost of task creation by
default. We then pair this compilation pipeline with a run-time system that dynamically converts potential
parallelism into actual parallel tasks. Together, the compiler and run-time system guarantee that the cost of
parallelism remains low without losing its benefit. We prove that our techniques have no asymptotic impact
on the work and span of parallel programs and thus preserve their asymptotic properties. We implement
the proposed techniques by extending the MPL compiler for Parallel ML and show that it can eliminate the
burden of manual optimization while delivering good practical performance.

CCS Concepts: « Software and its engineering — Parallel programming languages; Functional languages;
Procedures, functions and subroutines; Compilers.

Additional Key Words and Phrases: parallel programming languages, granularity control, compilers

