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Recent research on parallel functional programming has culminated in a provably efficient (in work and space)
paralle]l memory manager, which has been incorporated into the MPL (MaPLe) compiler for Parallel ML and
shown to deliver practical efficiency and scalability. The memory manager exploits a property of parallel
programs called disentanglement, which restricts computations from accessing concurrently allocated objects.
Disentanglement is closely related to race-freedom, but subtly differs from it. Unlike race-freedom, however,
no known techniques exists for ensuring disentanglement, leaving the task entirely to the programmer. This
is a challenging task, because it requires reasoning about low-level memory operations (e.g., allocations and
accesses), which is especially difficult in functional languages.

In this paper, we present techniques for detecting entanglement dynamically, while the program is running.
We first present a dynamic semantics for a functional language with references that checks for entanglement
by consulting parallel and sequential dependency relations in the program. Notably, the semantics requires
checks for mutable objects only. We prove the soundness of the dynamic semantics and present several
techniques for realizing it efficiently, in particular by pruning away a large number of entanglement checks.
We also provide bounds on the work and space of our techniques.

We show that the entanglement detection techniques are practical by implementing them in the MPL
compiler for Parallel ML. Considering a variety of benchmarks, we present an evaluation and measure time and
space overheads of less than 5% on average with up to 72 cores. These results show that entanglement detection
has negligible cost and can therefore remain deployed with little or no impact on efficiency, scalability, and

space.
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1 INTRODUCTION

With the mainstream availability of multicore computers, parallel programming today is important
and relevant but remains to be challenging. A key concern is race conditions, which typically raise
serious correctness issues. Because pure functional programs are free of data races, functional
programming languages can make parallel programming simpler and safer. As a result, many
parallel functional programming languages have been developed going back to the 1980’s, including
multiLisp [Halstead 1984], Id [Arvind et al. 1989], NESL [Blelloch 1996; Blelloch et al. 1994], several
forms of parallel Haskell [Hammond 2011; Li et al. 2007; Marlow and Jones 2011; Peyton Jones
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et al. 2008], and several forms of parallel ML [Fluet et al. 2011; Guatto et al. 2018; Ohori et al.
2018; Raghunathan et al. 2016; Sivaramakrishnan et al. 2014; Spoonhower 2009; Spoonhower
et al. 2009; Westrick et al. 2020; Ziarek et al. 2011]. Some of these languages only support pure
or mutation-free functional programs, but others such as Parallel ML [Arora et al. 2021; Guatto
et al. 2018; Westrick et al. 2020] also allow for side effects. Despite the decades of work, functional
programming languages have not delivered on efficiency and scalability. The primary reason for
this is their hunger for memory: functional programs have a high rate of allocation, and this rate
increases with parallelism, because multiple cores can allocate memory simultaneously [Appel
1989; Appel and Shao 1996; Auhagen et al. 2011; Doligez and Gonthier 1994; Doligez and Leroy
1993; Gongalves 1995; Gongalves and Appel 1995; Marlow and Jones 2011]. This problem has proved
challenging [Auhagen et al. 2011; Doligez and Gonthier 1994; Doligez and Leroy 1993; Marlow and
Jones 2011; Sivaramakrishnan et al. 2020]: provably work- and space-efficient parallel memory
managers remained elusive until recently.

Recent work by Arora, Westrick, and Acar [Arora et al. 2021] presented a provably work- and
space-efficient parallel memory manager for parallel functional programs. In addition to presenting
theoretical results, they also implement their techniques in the MPL compiler for Parallel ML, which
extends the Standard ML language with fork-join parallelism. Experiments show good performance
and scalability in practice for a range of parallel benchmarks, including both purely functional
ones and those that use effects. This work has taken an important step in bridging the gap between
functional programming and performance (efficiency and scalability) by relying upon a memory
property called disentanglement [Guatto et al. 2018; Raghunathan et al. 2016; Westrick et al. 2022a,
2020].

The main goal of disentanglement is to achieve efficiency and scalability by enabling parallel
tasks to GC independently in parallel. At a high level, disentanglement requires concurrently
executing computations to remain oblivious to each other’s memory allocations. More specifically,
disentanglement restricts access to memory objects that are allocated in the “past”, as determined by
sequential dependencies. This restriction prevents entanglement—i.e., cross-references—between
objects allocated by concurrent tasks during execution. This, in turn, allows each task to manage
its own heap (memory), without needing to synchronize with other tasks.

The memory manager of Arora, Westrick, and Acar [Arora et al. 2021] assumes disentanglement,
but they do not enforce or check for it. As a result, if an entangled program is executed, the garbage
collector will not behave correctly, which could cause the program to crash, or (worse) return an
incorrect result. Specifically, in the presence of entanglement, the garbage collector (which assumes
disentanglement) might reclaim an object incorrectly by missing a cross-reference. To avoid this
unsafe behavior, disentanglement needs to be enforced.

As a starting point, we note that in purely functional programs, there is no need to explicitly
enforce or check for disentanglement because entanglement is impossible. That is, in a strict
call-by-value language (e.g. Parallel ML), if mutable data is outlawed (e.g. no refs or arrays), then
disentanglement is guaranteed by construction [Raghunathan et al. 2016; Westrick et al. 2020].
However, there is a problem: purely functional programming forbids in-place updates. We wish
to allow for in-place updates to improve efficiency. An interesting motivating example (discussed
in Section 2.3) is a parallel graph search which interleaves atomic in-place updates. The resulting
algorithm is non-deterministic, and this non-determinism is desirable for improving performance.
One advantage of disentanglement is that it allows for in-place updates to be utilized in this
manner [Westrick et al. 2020].

Therefore, moving beyond purely functional programming, we seek a solution that allows for in-
place updates, as long as the program remains disentangled. To this end, one natural approach could
be to use a type system to statically prevent entanglement. However, no such type system is known.
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Designing a suitable static test for entanglement is challenging: entanglement is an undecidable
property, and it emerges due to subtle interaction between non-determinism and aliasing. It seems
possible to devise a conservative type system that ensures disentanglement, but this could outlaw
perfectly good, disentangled programs. For example, a type system for race-freedom can ensure
disentanglement by implication [Westrick et al. 2020], but such a type system would also outlaw
the non-deterministic programs that we wish to allow.

In this paper, we enforce disentanglement with a dynamic approach, which avoids ruling out dis-
entangled programs. In our approach, individual memory accesses are monitored during execution,
and if entanglement is detected, then the program is (safely) terminated. This allows for all disentan-
gled programs to run to completion, including those that are effectful and/or non-deterministic. We
make these guarantees precise by formulating soundness and completeness properties (Theorems
3.1 and 3.2). Roughly speaking, soundness (a.k.a. “no missed alarms”) says that if entanglement is
not detected, then the execution is disentangled; similarly, completeness (a.k.a. “no false alarms”)
says that if execution is disentangled, then entanglement is not detected.

It is important to note that, as a dynamic approach, entanglement detection is execution-
dependent. If an execution of a program exhibits entanglement, then we detect the entanglement
and terminate. But on the exact same program—even on the same input—it is possible that a different
execution might not exhibit entanglement, in which case we allow the execution to complete. This
is possible because the outcome of a race condition might determine whether or not entanglement
occurs during execution. Therefore, although our approach handles entanglement safely, a short-
coming is that we cannot prevent the possibility of entanglement. An important problem for future
work is to give good diagnostics when entanglement is detected, to facilitate debugging.

Because entanglement detection occurs dynamically and affects runtime performance, it is
essential that it can be made efficient and scalable. Our approach takes inspiration from a long line
of work on dynamic race detection for parallel programs [Bender et al. 2004; Cheng et al. 1998; Feng
and Leiserson 1997; Fineman 2005; Mellor-Crummey 1991; Raman et al. 2010, 2012; Utterback et al.
2016; Xu et al. 2020]. While race detection remains expensive in practice (with overheads exceeding
an order of magnitude for sequential runs, e.g., [Utterback et al. 2016; Xu et al. 2020]), we show
that entanglement can be detected dynamically on-the-fly with close to zero overhead in practice.
This is due to a number of differences between data races and entanglement; for example, unlike
typical race detectors, our entanglement detector does not need to maintain an “access history” for
each individual memory location. We defer a more detailed discussion of differences between the
two techniques to Section 7.2.

Overview. We begin by considering a language with (nested) fork-join parallelism and mutable
references, and present a dynamic semantics that checks for entanglement by monitoring accesses
to references (mutable objects) only. The dynamic semantics constructs a computation graph of the
execution that represents the parallel tasks and their dependencies in terms of fork and join edges.
To detect entanglement, the semantics checks that each object accessed is allocated by a task that
precedes the current task in the computation graph.

We prove soundness and completeness for the semantics (Theorems 3.1 and 3.2), thereby estab-
lishing that to detect entanglement, it suffices to track operations on mutable objects. Notably, the
semantics incurs no “overhead” for immutable data, even when such data is reachable through a
mutable object. Because the only operations monitored by the semantics are dereferences, we are
able to prove that the work overhead of entanglement detection is proportional to the number of
dereference operations.

For entanglement checks, the semantics associates each allocated object with a vertex in the
computation graph. Naively, this would require O(N) additional space for N heap objects, to store
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one vertex identifier per object. To reduce this space cost, we show how to group allocations by
sharing a single vertex identifier amongst many objects allocated by the same task. This reduces
the additional space cost from O(N) down to approximately O(min(N, M/B)), where M is the total
size of memory and B is a chunking factor. The quantity M/B therefore represents the number of
“heap chunks” used to store objects, which is typically much smaller than N in practice.

Our semantics paves the way for an implementation, albeit an inefficient one. The idea is to
represent the computation graph using a well-known “series-parallel order maintenance” data
structure for checking the precedence relation needed for entanglement checks. Series-parallel
order maintenance, or SP-order maintenance for short, is well-studied in the race detection literature
and many solutions can achieve efficiency and scalability [Bender et al. 2004; Cheng et al. 1998;
Feng and Leiserson 1997; Fineman 2005; Mellor-Crummey 1991; Raman et al. 2010, 2012; Utterback
et al. 2016; Xu et al. 2020]. In practice, however, the constant factors for precedence queries are
significant: we completed such a direct implementation and measured that it can incur as much as
2x overhead, primarily due to the cost of precedence queries.

As a final step, we optimize away many of the SP-order maintanence operations by observing
that typically, only a small number of mutable objects can lead to entanglement at any moment.
We refer to such objects as entanglement candidates. Throughout execution, we explicitly track the
set of candidates and only perform graph queries on these objects; all queries on others are pruned
away. We prove that this optimization does not lead to an asymptotic impact on our bounds in
the worst case, and show empirically that it can dramatically improve efficiency and scalability by
eliminating many SP-order maintenance operations.

We present an implementation of the proposed approach for entanglement detection by extending
the MPL (MaPLe) compiler for the Parallel ML language. To ensure both efficiency and safe execution,
our implementation is integrated closely with the memory management system, including read and
write barriers, as well as the garbage collector itself. We evaluate our techniques by considering a
suite of 23 parallel benchmarks, many of them ported from state-of-the-art C/C++ benchmark suites.
All of these benchmarks are naturally disentangled, which our detector confirms. Our evaluation
shows low time overheads in practice, typically around 5% or less on both 1 and 72 processors. In
comparison to a sequential baseline (with no parallelism or entanglement detection), execution
with entanglement detection achieves between 10 and 63x speedup on 72 processors. Furthermore,
the space overhead of entanglement detection is negligible in almost all cases. These experiments
collectively demonstrate that entanglement detection has nearly zero cost in terms of time, space,
and scalability.

In summary, the contributions of this paper include the following.

e The formal semantics of an entanglement detector that requires entanglement checks only at
(mutable) dereference operations and its proof of correctness (Section 3).

e Asymptotic analysis establishing work and space bounds on our entanglement detection
algorithm (Section 3.5).

e A technique for pruning a significant number of computation graph queries needed to
support entanglement detection, resulting in dramatic performance improvements in practice
(Section 4)

e An implementation in Parallel ML that extends the scheduler and memory management
system of the MPL (MaPLe) compiler (Section 5).

e A performance evaluation, demonstrating low overhead and good scalability (Section 6).
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2 DISENTANGLEMENT

Fork-join programs often exhibit a memory property called disentanglement which, roughly
speaking, is the property that concurrent tasks remain oblivious to each other’s allocations.
In a disentangled program, tasks are not permitted to become entangled: no task is allowed to
obtain a pointer to an object that was allocated by a concurrent task.

Disentanglement occurs naturally when communication between concurrent tasks is restricted. In
particular, all strict (call-by-value) purely functional programs are disentangled [Raghunathan et al.
2016]. More generally, as long as a program has no determinacy races, it is disentangled [Westrick
et al. 2020]. We use the term determinacy race to refer to any interleaving' of atomic accesses
to shared-memory which may result in non-determinism. In particular, if two concurrent tasks
access the same (mutable) memory location, and at least one task modifies the location, then this
constitutes a determinacy race.

Entanglement is always caused by a determinacy race [Westrick et al. 2020]. However, as we
discuss in Sections 2.2 and 2.3, some determinacy races are compatible with disentanglement. In
particular, when all communication utilizes only pre-allocated memory (i.e. memory allocated by
common ancestors in the fork-join task tree), then disentanglement is still guaranteed. This allows
determinacy races to be utilized for efficiency in a disentangled manner, which can be useful for
efficiency in practice (Section 2.3).

2.1 Memory Management and GC

The lack of entanglement facilitates efficient parallel memory management strategies based on task-
local heaps, where parallel tasks can locally garbage-collect their own data independently [Arora
et al. 2021; Guatto et al. 2018; Raghunathan et al. 2016; Westrick et al. 2020]. The idea is to organize
memory into a dynamic tree structure called the heap hierarchy which mirrors the dynamic tree
of tasks.

In the heap hierarchy, each task is given its own local heap in which to allocate data. Initially,
there is a single root heap assigned to the root task of the program. When a task forks, two fresh
heaps are created for its children, and the task waits for the two child tasks to complete. When
two siblings complete, their heaps are merged with their parent task, and the parent then resumes
with a larger heap (consisting of all memory allocated by the parent before it forked, as well as all
memory allocated by its completed children). In this way, all computation occurs at leaf tasks,
which have no children. Tasks that have at least one child are suspended, and must wait to become
a leaf before resuming (by waiting for their children to complete).

In the heap hierarchy, each heap stores objects allocated by the program that may contain
pointers to other objects. Any pointer between two objects can be classified as either up, down,
internal, or cross, depending on the relative positions of the heaps that contain the two objects
in question [Westrick et al. 2020]. For example, if object x points to object y and heap(x) is an
ancestor of heap(y), then the pointer from x to y is a down pointer. Disentanglement allows for
pointers to point up, down, or internal (within a single heap), and disallows cross-pointers.

Disentangled GC. By disallowing cross-pointers, the liveness (reachability) of objects within each
heap is only dependent upon its ancestors and descendants. This makes it possible for each heap
in the hierarchy to be collected independently through a combination of two forms of collection,
which proceed concurrently and in parallel with the various active leaf tasks. Suspended heaps
(i-e. those associated with suspended tasks) may be collected without pausing their descendant
tasks, using a concurrent non-moving mark-and-sweep algorithm. Leaf heaps—which are local

1For simplicity, we assume sequential consistency.
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let m = [(i+j)/2] in
(init(A,i,m) || init(A,m,j)); O

1 | // initialize strings Ali..j] (exclusive at j) 7 |let A = Array.allocate 3 in

2 |fun init(A: string array, i: int, j: int) =| 8 |let _ = init(A,0,3) in

3 if j—i=0 then () else 9 |let (x,y) = (A[0]*A[2] || A[1]*A[2]) in
4 if j—i=1 then A[i] := Int.toString i else |10 |print (x * y)

5

6

Fig. 1. Example disentangled program.

to a processor—may be collected with a compacting Cheney-style collection, without needing to
synchronize with other processors. Only a single task is paused to perform a leaf collection (namely,
the task of the leaf being collected).

In the MPL implementation, GCs are supported by lightweight snapshots, remembered sets, and
a write barrier [Arora et al. 2021; Westrick et al. 2020]. Like any GC implementation, the details are
intricate; for the purposes of this paper, the important detail is that both correctness and efficiency
of GC rely heavily on the lack of cross-pointers.

Entanglement can make the GC go wrong. Entanglement can cause incorrect and unpredictable
behavior in a memory management system which assumes disentanglement. The problem is that the
garbage collector might create a dangling pointer during execution by missing a cross-pointer. For
example, if the collector reclaims an object that was reachable by some other task via a cross-pointer,
then the cross-pointer will be left dangling. Alternatively, the collector might relocate an object
(by making a copy and reclaiming the old version) to compact space and combat fragmentation.
In doing so, the collector will update all pointers to point to the new location, but a cross-pointer
might be left pointing to the old version. Either way, all bets are off: if the program attempts to
read a dangling pointer, it could crash, or (worse) return an incorrect result.

2.2 Disentanglement Example

Figure 1 presents an example of a disentangled program, which we discuss in detail below. Our
goal here is to illustrate the nuances of disentanglement, including its interaction with determinacy
races, which can be tricky to reason about. Although determinacy races can cause entanglement,
not all determinacy races are problematic. In Section 2.3, we present an example where races are
utilized for efficiency in parallel programs in a manner that is compatible with disentanglement.

The code in Figure 1 operates on an array of strings, where each string is heap-allocated and
immutable. We write (e; || e2) to execute e; and e; in parallel, wait for both to complete, and return
their results as a tuple. The operation * denotes string concatenation.

The example defines a function init (lines 2-6) which in parallel initializes an array A between
two indices i and j by storing a freshly allocated string at each index. On line 8, the example calls
init on an array of size 3, which results in contents ["0","1","2"]. It then in parallel concatenates
a few elements of the array, resulting in x ="02" and y ="12" (line 9). Finally, it concatenates x and
y and prints out "0212" (line 10). As written, the code is free of determinacy races.

Example: disentangled. As presented in Figure 1, this code is disentangled. There are multiple
ways we could go about showing this. One way is to observe that the code is determinacy-race-free,
which ensures disentanglement [Westrick et al. 2020]. Another approach is to consider all of the
allocations that occur in the computation, and where each allocated objects is used. The allocations
of this computation include: the array A, the three strings stored in the array (at each A[i]), and
the two strings allocated in parallel on line 9. The array A is allocated before everything else in the
computation, so it is always safe to use. The strings stored in the array are allocated by the calls
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type graph
type vertex = int // vertices labeled 0 to N-1
val neighbors: graph X vertex — vertex seq = ... //get the out-neighbors of a vertex

// do f(u,v) in parallel for every out-edge (u,v) whereu € S; return all verts v where f(u,v) is true
fun edgeMap(G: graph, S: vertex seq, f: vertex X vertex — bool): vertex seq =
flatten (map (fn u = filter (fn v = f(u,0)) (neighbors(G,u))) S)

0N U WN =

9 |val P: vertex array = ... //"parents" array, length N, all initially -1 (no parent)

11 | // try to visit v by atomically changing P[v] from —1 to u. Returns true if success, false if already visited
12 | fun tryVisit(u,ov): bool = Array.compareAndSwap(P,o, —1,u)

14 | fun bfsRound(G: graph, F: vertex seq): vertex seq = edgeMap(G,F,tryVisit)

Fig. 2. BFS in Parallel ML. The code has intentional determinacy races, yet is disentangled.

init(0,1), init(1,2), and init(2, 3) which are respectively performed by three parallel tasks. These
tasks perform no reads on the array and only update disjoint indices, so none of them acquires
a cross-reference. Next, on line 9, the three strings within A are used, but this is safe, because all
tasks from within the call to init on the previous line are guaranteed to complete before line 9.
Similarly, line 10 is permitted to use the two strings allocated on line 9 for the same reason.

Example: racy and disentangled. It is possible to change Figure 1 so that the program has a
determinacy race but is still disentangled. In particular, consider replacing line 9 with the following.

let ((x,y),-) = ((A[o] ~ A[2] || A[1] ~ Af2]) || A[2]:=A[0])

This code has a race which causes the reads at A[2] to return either "0" or "2". Nevertheless, it is
disentangled, because both of these strings were allocated by preceding tasks (namely, from within
the call to init, which completes before line 9 begins).

Example: racy and entangled. It is also possible to change Figure 1 so that the program is entangled
due to a determinacy race. Consider replacing line 9 with the following (where the intent is that
the string "!" is allocated dynamically).

let ((x,y).-) = ((A[0] ~ A[2] || A[1] ~ Af2]) || A[2]="1")

This introduces a third task which allocates a string "!" and writes it at A[2], causing a determinacy
race: in some executions x will be "02" but in others it will be "0!" (and similarly for y). This change
makes the program entangled, because the tasks which read the contents of A[2] might obtain a
pointer to the string "!", which is allocated by a concurrent task.

2.3 BFS Example: Disentanglement and Non-determinism

Parallel programmers sometimes intentionally employ determinacy races on data in shared memory.
That is, a parallel program might interleave atomic accesses and updates in a non-deterministic
manner, with different interleavings in different executions (due to differences in scheduling).
Nevertheless, these determinacy races can be desirable from the programmer’s perspective for
improving performance.

Here, we show how disentanglement can allow for determinacy races to be utilized for improved
efficiency. We consider a parallel breadth-first-search (BFS) graph traversal which uses atomic
compare-and-swap operations. A simplified presentation of this algorithm is shown in Figure 2,
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Variables x, f
Numbers n e N
Memory Locations ¢
Types T u= nat|tXrt|Tt—oT]|Tref
Storable Values s s= n|funfxise| () |reft
Expressions e = f]s|x|eel|(ee)|fste|snde|refe|le|e:=e]| (el e)
Memory p €  Locations — Storable Values
Allocation Map « €  Locations — Vertices
Task Tree T u:= Leaf(v) | Par(v, T,T)
Vertices u,v,w
Computation Graphs G
Program State S x= (p;a;G;Tse) | ERROR(p; ;G5 T se)

Fig. 3. Syntax

written in Parallel ML.2 The BFES consists of a series of rounds, where each round visits some of
the vertices of the graph. Vertices are visited by setting their “parent” in the array P. In particular,
when an edge (u, v) is traversed, we set P[v] to u. Initially, the parent of every vertex is set to —1
(meaning: not yet visited).

The function bfsRound implements one round of BES. It takes as input a graph G and a “frontier” F
which contains all vertices visited on the previous round. It then calls edgeMap, which is implemented
in terms of standard parallel functions on sequences: map, filter, and flatten. The call to edgeMap
performs many calls to tryVisit(u,v) in parallel, one for each edge (u,v) where u € F. The function
tryVisit(u,0) attempts to visit v by atomically changing the value of P[v] from —1 to u. If this
succeeds, tryVisit returns true; if it fails (because v has already been visited), it returns false. The
output of the edgeMap is the collection of vertices v such that tryVisit(u,v) succeeded. In this way,
the edgeMap simultaneously accomplishes two things: (1) it visits vertices in parallel by setting their
parents, and (2) it returns the set of vertices visited on this round (i.e., the next frontier).

This code has a determinacy race: on a single round, there might be two edges (u1,v) and
(u,v) that both have the same target vertex v. The two corresponding calls tryVisit(us,v) and
tryVisit(up,0) will race to visit v, and only one will succeed, resulting in a non-deterministic
choice between u; and u;, as the parent of . This non-determinism is desirable from a performance
perspective, because it enables the algorithm to quickly “deduplicate” edges without having to first
write all these edges out to an intermediate data structure.

Despite the determinacy race in this code, it is nevertheless disentangled. Parallel ML ensures that
the contents (in this case, of type int) of the array P are “unboxed”, i.e., not heap-allocated. Therefore,
reading from P does not return a pointer to heap-allocated data, and thus the determinacy races
(between contending compareAndSwap operations within tryVisit) are safe for disentanglement.

3 ENTANGLEMENT DETECTION SEMANTICS

At ahigh level, the idea for entanglement detection is to only check dereferences of mutable data (i.e.,
ref cells). We present the detection algorithm by embedding it in the operational semantics of a small
ML-like language with (nested) fork-join parallelism, mutable references, and a shared memory.
The language maintains a dynamic task tree to manage parallelism, and explicitly constructs a
computation graph which is used to check for entanglement.

The syntax of the language is shown in Figure 3, and selected rules of the dynamics are given
in Figure 4 (additional details are available in the Appendix). Many aspects are standard (natural

2This code is inspired by the Ligra graph framework [Shun and Blelloch 2013].
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Execution with Entanglement Detection |S+— S’

¢ ¢ dom(p) A
(p;a;G;Leaf(v) 55) > (p[t—s]; a[t—uv];G; Leaf(v) ; )

LLOC

u(e) = (t, t2) .
(p;a;G; Leaf(v) ; (fst £)) — (p; a; G Leaf(v) ; £1) *

u(t) = ref ¢/ alt’) <g v
(1;a;G;Leaf(v); (1€)) — (1; a; G; Leaf(v) ; £7)

BanG-Pass

u() = ref ¢/ a(t’) £g v
(u;a;G;Leaf(v) ; (1 €)) — ERROR(u; a; G ; Leaf(v) ; ')

BANG-DETECT

(a[tr > (ref )] ;00:G 3 Leaf(0) ; (B = £)) — (a[t1 (ref &)] s 03 G ; Leaf(0) 1 62) "

v, w ¢ vertices(G) G’ = fork(G, u, 0, w)
F
(p;a;G;Leaf(u); (eq || e2)) — (u;a; G5 Par(u, Leaf(v), Leaf(w)) ; (e1 || e2)) o

w ¢ vertices(G) G’ = join(G,u, v, w)
(130G Par(_, Leaf(u), Leaf(0)) ; (@1 | f2)) — (i3 03 G 3 Leaf(w) s (e ) "0

(p;0;G;Tiser) — (p'sa" G5 T s e) AL
'AR!
(sa;G;5Par(v, T, T2) 5 (er || e2)) = (¢ 50" ;G5 Par(o, T{, T2) ; {ef || e2))

(p;0;G;Toser) — (p' 50" ;G 5T s e) >
(s0;G;Par(v, T, T2) 5 (er || e2)) = (¢’ 50" ;G5 Par(o, T1, T) 5 {ex || €5))

ARR

Fig. 4. Execution with entanglement detection (selected rules). The entanglement check is highlighted.

numbers, tuples and projections, recursive functions, mutable references). To discuss allocations,
the language distinguishes between memory locations £ and storable values s. Storable values can
be either immutable (numbers, functions, tuples) or mutable (references).

The operational semantics is a small-step semantics of the form S —— S’ where a single program
state consists of five components: a memory y, an allocation map «, a computation graph G, a task
tree T, and an expression e. There is also an explicit error state, written ERROR(pu; ;G ;T ;e),
which indicates when entanglement has been detected (see Section 3.2). Computation graphs and
task trees are discussed in Section 3.1. The allocation map « is used for detection, and is discussed in
Section 3.2. The memory i is used to map memory locations to their contents. An explicit allocation
step (rule Arroc) extends the memory p, producing p[£ < s] where ¢ is a fresh location and s is
the contents of that location. In this way, storable values always “take one more step”. Memory
locations are the only irreducible term of the language.
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vertex @

task

Alzli=2t check \»

AL0]:=“0"

v w w

Jork(G, u, v, w) Jjoin(G, u, v, w) Alo]~A[2]

Fig. 5. Functions fork and join on com-

putation graphs. Fig. 6. Example dag and entanglement checks for the disentangled

program in Figure 1.

3.1 Parallelism, Task Trees, and Computation Graphs (Dags)

The language supports nested fork-join parallelism based on tasks organized in a dynamic task
tree. Initially, there is a single “root” task. At any moment, any leaf (a task with no children) may
fork, which creates two child tasks to run in parallel. While the children are executing, the parent
task is suspended. As soon as both children have completed, they join with the parent, which
deletes the children from the tree and resumes execution of the parent task as a leaf. Note therefore
that all computation is performed at leaf tasks. We say that two tasks are concurrent if neither is
an ancestor of the other. That is, in the task tree, concurrent tasks could be siblings, cousins, etc.

In the semantics, fork-join parallelism is expressed via the parallel tuple {e; || ez), which runs e;
and e; in parallel, waits for both to complete, and finally evaluates to a tuple of their results. To
identify which parallel pairs are currently being evaluated, the semantics maintains a task tree T,
which can either be a leaf of the form Leaf(v), or an internal “par” node denoted Par(v, Ty, T). The
elements v stored in the task tree are vertices for the computation graph, described below.

In rule Fork, a parallel tuple begins execution by transitioning from a leaf in the task tree to
a par-node, with two leaves as children. Then, steps may occur either on the left or the right
non-deterministically via rules PARL and PARR. Eventually, when both child tasks have completed,
rule JoIN transitions back to a leaf in the task tree (resuming the execution of the parent task) and
converts the parallel tuple to a standard tuple.

Computation Graphs (Dags). Throughout execution, the semantics maintains a graph which
summarizes the execution and is used to check for entanglement. A computation graph or dag G
is a directed, acyclic graph where vertices represent sequential pieces of computation and edges
are ordering constraints.

Dags are extended at each fork and join using a “current vertex” stored in the task tree. In
rule FORK where a leaf task currently has vertex u, the function fork(G, u, v, w) extends graph G
with two new vertices v and w for the child tasks, and two edges (u,v) and (u, w), indicating that
the children began executing after vertex u. Symmetrically, in rule Join where two leaf siblings
have currently have vertices u and v, the function join(G, u, v, w) extends graph G with one new
vertex w and edges (u, w) and (v, w), indicating that the continuation (at w) began executing after
the children completed. This maintenance of graphs is illustrated in Figure 5.

In a dag G, we say that vertex u precedes vertex v, denoted u <¢ v, if there exists a path in the
dag from u to v. Note that < is a partial order.
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3.2 Entanglement Detection

Entanglement occurs when a task acquires a memory location that was allocated by a concurrent
task. To detect entanglement, the semantics tags each memory location ¢ with a vertex a(?),
indicating where in the computation the location was allocated. This occurs in rule Arroc, where
both the memory p and the map « are extended with the new location (guaranteeing dom(y) =
dom(«)). When dereferencing a mutable reference, we check for entanglement by inspecting the
result of the read. Specifically, when a read at location £ returns some other location ¢’, we compare
a(t’) against the current vertex v. If @(£’) <¢ v, then this access is safe for disentanglement and
the execution may proceed with rule BANG-Pass. However, if a(£’) ¢ v, then we have detected
entanglement (rule BANG-DETECT).

In short, entanglement is detected whenever rule BANG-DETECT is used during execution, which
results in a stuck program state: any state of the form ERROR(p; a ;G ; T ; e) cannot step. In this
way, the semantics terminates an execution as soon as entanglement is detected. All other steps
allow the computation to proceed as normal.

Note that immutable reads are never checked. For example, in rule FsT, we could have included
a(t;) <g v as one of the premises, but it is intentionally left out. This is because, as we will discuss
more carefully in Section 3.4, reads of immutable data are always safe for disentanglement.

3.3 Example Revisited

The dag in Figure 6 summarizes the execution of the example program from Figure 1. Each black
circle is a vertex, and the solid black edges (implicitly pointing down) are execution dependencies
between vertices. The tasks of the computation are illustrated as shaded gray boxes, such that at
any moment throughout execution, the nesting of the shaded gray boxes represents the task tree.
We draw red, curved arrows to summarize where entanglement checks occur. A red curved arrow
from u to v indicates that a mutable dereference was performed at v, returning some object allocated
at u. The intent here is that arrays operate analogously to mutable references: indexing into an
array checks the resulting object for entanglement in the same manner as rules BANG-PAss and
BaNG-DETECT of the semantics. For example, reading A[0] and A[2] (Figure 1, line 9) discovers the
strings "@" and "2" which are checked to ensure both were allocated previously in the computation
(i.e. not by a concurrent task). The example program is disentangled, and indeed in Figure 6 we see
that entanglement is never detected, because for every red curved edge from u to v, there is a path
u < v in the dag.

3.4 Soundness and Completeness

In our approach, entanglement is considered to have been detected whenever rule BANG-DETECT
is used in an execution. In this setting, soundness can be stated as a preservation property for
disentanglement, i.e., that steps taken without detecting entanglement preserve disentanglement.
Similarly, completeness is the property that, if disentanglement is preserved by a step, then entan-
glement is not detected. In other words, soundness is “no missed alarms”, and completeness is “no
false alarms”.

The disentanglement invariant, written S de, is defined in Figure 7. It consists of two components:
root disentanglement and memory disentanglement.

The root disentanglement judgement, written « ; G ; T ; e rootsde, establishes that each task
only currently uses locations allocated at or before its associated vertex. We state this formally in
terms of locs(e), the set of locations mentioned directly by an expression, defined in the natural way:
for example, locs(e; e;) = locs(e;) U locs(ez) and locs(£) = {¢}. The judgement « ; G ; T ; e rootsde
is then established inductively on both the structure of e and the task tree T, where the task tree is
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Disentanglement

/s a; G memde a;G;T;erootsde 4 a; G memde a;G;T;erootsde
(p;a;G;Tse)de ERROR(p; ;G Tse) de

Memory Disentanglement

Ve € imm(p). Ve’ € locs(u(f)). a(t’) <G a(t)

/s a; G memde

imm(p) = {£ € dom(p) | u(f) # ref _}

Root Disentanglement ’ a;G;T;erootsde ‘

Ve € locs(e). a(f) <g v a;G; Ty ;e rootsde a;G; Ty ; es rootsde
a ; G ; Leaf(v) ; e rootsde a;G;Par(v,T1,T2) ; (e1 || e2) rootsde

a;G;Par(v,Th, T2) ; e rootsde
a;G;Par(v, T, T2) ; (fst e) rootsde

} ...similarly for (snd e), (ref e), and (! e)

=(ez loc)
a;G;Par(v,T1,Ty) ; e1 rootsde V¢t € locs(ez). a(f) <g v

a;G;Par(v,T1,T2) ; (e1 e2) rootsde

...similarly for (e1, e2) and (e1 :=e3)
a(ty)) <gv  a;G;Par(v,T1,T2) ; ez rootsde
a;G;Par(v,T1,T2) ; (1 e2) rootsde

Fig. 7. Single-step disentanglement invariant, consisting of memory property for all immutable locations,
and disentanglement property for all program “roots”.

used to delimit each task. Observe for example that at each leaf task, we have V¢ € locs(e). a(f) <¢ v,
i.e. that every location £ which is mentioned by the expression was allocated before the current
vertex v in the computation.

The memory disentanglement judgement, written p ; « ; G memde, establishes that each im-
mutable location of the memory only points “backwards” in the computation. For example, if £
stores the tuple (£1, £;) then a(#;) <¢ a(f) and similarly for 4. Thus, if it is safe to access ¢ then it
is similarly safe to access the contents of ¢. This formalizes our intuition that immutable data is
always safe for disentanglement. In contrast, if £ stores a mutable reference ref £/, then ¢’ might
have been written there by a concurrent task, hence why rule BANG-PAss and rule BANG-DETECT
need to check this explicitly.

Note that S de is defined for both regular program states as well as ERROR states. This makes it
possible to identify any state as disentangled, regardless of whether or not the dynamic semantics
claims to have detected entanglement, which is key to the statement of the completeness theorem,
below.

To state soundness and completeness, we identify “no-error” program states, which are those in
which the dynamic semantics has not detected entanglement.

(;a;G;T;e) noerror

The soundness and completeness theorems (Theorems 3.1 and 3.2) are then given in terms of
single steps. Roughly speaking, soundness says that if entanglement is not detected, then the step
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is disentangled; similarly, completeness says that if the step is disentangled, then entanglement is
not detected. Proofs of both theorems are available in the Appendix.

THEOREM 3.1 (SOUNDNESS). If S de and S +—— S’ and S’ noerror, then S’ de.
THEOREM 3.2 (COMPLETENESS). If S de and S +—— S’ and S’ de, then S’ noerror.

The proof of the completeness result (Theorem 3.2) is straightforward; the interesting case is
rule BANG-DETECT, where the theorem follows directly from a contradiction between disentangle-
ment and the premise a(¢£’) ¢ v. The proof of the soundness result (Theorem 3.1) is more involved,
as it amounts to showing that all uses of immutable data are always safe for disentanglement.

An interesting case in the soundness result is rule Arroc, which establishes the connection
between the memory disentanglement and root disentanglement properties discussed above. When
allocating a new (immutable) memory location, in order to satisfy the memory disentanglement
property, we have to establish that the contents of the new location only point backwards, to other
previously allocated locations. Because each of these other locations is a “root” of the current
expression, we obtain this property from the root disentanglement invariant. Another interesting
case in the proof is an immutable read. For example, in rule Fst, we have to re-establish the root
disentanglement property for the result of the read. By appealing to memory disentanglement, which
ensures that the contents of the immutable location only point “backwards” in the computation,
we are able to do so.

3.5 Cost Analysis

We bound the work and space of our entanglement detection algorithm. Theorems 3.3 and 3.4
follow directly from the observation that entanglement detection only introduces three sources
of overhead: maintaining the computation graph, mapping locations to vertices in the graph, and
performing graph queries at dereference operations. The work of maintaining the computation
graph can be charged to the overall work of the computation, as each step makes at most a constant
number of additions to the computation graph. Mapping locations to vertices in the graph can be
performed by storing vertex identifiers in memory along with the contents of each location. The
remaining costs are isolated to details of how the computation graph is maintained and queried,
so for the sake of brevity here, we leave these costs abstract. At a high level, the idea is to use SP-
order maintenance, a well-studied problem with many solutions available “off-the-shelf” with low
overhead in practice. More details about graph maintenance and queries are provided in Section 5.

THEOREM 3.3 (WORK). For a program with work (total number of steps) W, execution with en-
tanglement detection requires O(W + D - W,) work in total, where D is the number of dereference
operations, and W is the work required for a graph query.

THEOREM 3.4 (SPACE). At any point during execution, entanglement detection requires O(N + Sy)
additional space, where N is the current number of heap objects, and S, is the current space required
to maintain the computation graph. A similar bound holds for live (reachable) memory.

Heap Chunks. A common implementation strategy is to represent heaps as lists of “chunks”,
where each chunk is a fairly large region of contiguous memory (e.g. one or more pages). When
heap chunks are task-local, we can significantly reduce the number of vertex labels stored for
entanglement detection. In particular, our implementation (Section 5) guarantees that all objects
within a chunk were allocated by the same task (or one of that task’s completed subtasks). We
can therefore assign one vertex identifier per chunk. For N heap objects using a total of M space,
this reduces the amount of additional space needed from N (one vertex identifier per heap object)
down to approximately min(N, M/B) (one vertex identifier per chunk). Because typical memory
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objects are small, and therefore N ~ M, this is a significant improvement. The following theorem
formalizes the bound.

THEOREM 3.5 (CHUNKED SPACE). Using task-local heap chunks, at any point during execution,
entanglement detection requires O(min(N, M/B) + T + S;) additional space, where M is the current
total heap size, N is the number of heap objects, B is the minimum size of a heap chunk, T is the
current number of active tasks, and Sy is the current space required to maintain the computation graph.

Proor. It suffices to bound the number of heap chunks. Consider a task t and let M; be the size
of t’s local heap, split across k; heap chunks, with N; heap objects in those chunks. We assume
bump-allocation within each chunk, which ensures that the amount of memory allocated in any
two consecutive heap chunks is at least B. Hence, we have k; < 1+ 2M,/B. Also, because large
objects are given their own chunks, we have k; < N;. Putting these two upper bounds together
and summing over all active tasks yields a bound of O(min(N, M/B) + T) heap chunks. O

4 ENTANGLEMENT CANDIDATES

The entanglement detection semantics in Section 3.2 describes how to check whether an execution
is entangled: for every dereference of a ref cell, perform a query on the computation graph (Figure 4,
rules BANG-Pass and BANG-DETECT). Here we show that a significant number of these queries can
be pruned away dynamically, resulting in significant performance improvement in practice.

The high-level idea is to annotate each ref cell with a bit that indicates whether or not the ref
requires a graph query when it is dereferenced, to check for entanglement. Any ref that is marked
is called an entanglement candidate (or simply candidate for short). Throughout execution, ref
cells are dynamically marked and unmarked; that is, a ref might at various points throughout
execution be marked as a candidate and later unmarked when it returns to a safe state. On each
dereference !x, we first check if x is marked as a candidate. If so, then we do a graph query to check
for entanglement, consistent with the semantics. But if x is not marked, then we skip the graph
query.

Below, we describe how candidates are marked and unmarked throughout execution (Section 4.1)
and analyze the cost of this algorithm (Section 4.2). We first focus on ref objects, and then generalize
our techniques to handle arrays (Section 4.3). In Section 4.5, we connect the idea of candidates with
the semantics of Section 3 and argue that this technique is a valid optimization (i.e., it does not
affect correctness of detection).

4.1 Marking and Unmarking Candidates

Objects are born safe. When a task first allocates a ref, at that moment, the ref can only contain
data that the task already had access to. Therefore, each ref begins its life unmarked, indicating
that the ref is safe (i.e., not a candidate). As long as a ref is never updated, it remains safe, similar
to immutable data.

Marking candidates at updates. Intuitively, when a ref is updated, it might become a candidate
and need to be marked. Here we leverage an observation about entanglement. Consider a reference
x which currently contains a pointer to an object y, and suppose that a task becomes entangled by
performing the dereference !x and acquiring a pointer to y. At this moment, the pointer from x
to y in memory must be a down-pointer, i.e., heap(x) must be an ancestor of heap(y) in the heap
hierarchy (see Section 2.1). In other words, in order to acquire a cross-pointer, a task must
read a down-pointer. Therefore, any ref which contains a down-pointer must be marked as a
candidate. We specifically mark candidates at updates: when a task performs an update x := y,
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if this creates a down-pointer from x to y, then the task marks x as a candidate. Note that if the
pointer from x to y is not a down-pointer, then the ref is not marked as a candidate.

Unmarking candidates in leaf heaps. Any ref which does not contain a down-pointer is no longer
a candidate and should be unmarked. To unmark a candidate x, we wait until heap(x) is a leaf heap
(which occurs naturally due to tasks joining with their parents). At this point, because the heap has
no descendants, we know that any pointer from x is no longer a down-pointer, and thus x is safe.
Therefore, we unmark all candidates within a heap whenever a heap becomes a leaf. Specifically,
whenever two completed tasks join, we unmark all candidates in their parent heap.

Candidate sets. To facilitate unmarking candidates in bulk when a heap becomes a leaf, we give
each heap a candidate set which is the set of objects within that heap that are currently marked as a
candidate. When a candidate is marked, it is added to the corresponding set. To unmark candidates
of a heap, we iterate through the candidate set and unmark each object individually. The candidate
set is then cleared.

4.2 Cost Analysis of Tracking Candidates

Tracking candidates does not impact the asymptotic costs of execution and has low overhead. The
space overhead of candidate sets is O(1) per candidate, because each candidate is only stored in
one candidate set. The algorithm takes constant work on each update, to mark a candidate and add
it to a candidate set. At joins, it traverses the candidate set of a single heap to clear candidates. This
incurs constant work per candidate, and can be charged to the cost of the update that marked the
candidate. When an object is dereferenced, we incur constant overhead to first check if the object
is a candidate.

Our algorithm for tracking candidates is conservative because the program may also delete a
down-pointer (causing an object which is marked as a candidate to no longer have any down-
pointers), but the algorithm does not attempt to track this. It would be prohibitively expensive to
attempt to track individual down-pointer deletions, especially with candidate arrays (Section 4.3),
which may have a large number of down-pointers at any moment. Our algorithm avoids this cost
by unmarking candidates “lazily” at joins.

4.3 Candidate Arrays

Generalizing the above algorithm for mutable array objects is straightforward. Similar to ref cells,
we give each array a single bit. If an update a[i] := x creates a down-pointer from a to x, then we
mark a as a candidate. Later, when heap(a) becomes a leaf, we unmark a.

In this way, we (conservatively) only track whether or not the whole array is a candidate, rather
than attempting to precisely track every index of the array separately, which would be costly in
practice. For example, consider an array of pointers and suppose several tasks are adding and
deleting down-pointers to it, in parallel. Determining when a particular delete removes the last
down pointer from the array would be prohibitively expensive (it would require counting the
number of down-pointers and updating this every time the array is mutated). Instead, our algorithm
unmarks the array (as a candidate) after all descendant tasks complete. In this way, the algorithm
only incurs constant overhead for the entire array.

4.4 Asymptotically Fewer Graph Queries

By tracking candidates, we asymptotically reduce the number of graph queries for many parallel
algorithms and primitives. In particular, parallel operations on mutable arrays such as mabp, filter,
and scan (a.k.a., prefix sums) typically reduce from O(n) queries down to O(1).
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Fig. 8. A partial dag on the left and its corresponding task tree on the right. Each node of the tree corresponds
to contracted sub-dags, shown delimited by boxes. In the tree, disentangled pointers may point up, down, or
internally to a node. An example entangled pointer is shown in dotted blue.

4.5 Candidates in the Detection Semantics

We now describe how the notion of candidate can be defined in terms of the semantics of Section 3,
allowing us to argue that tracking objects with down-pointers suffices for entanglement detection.
We formally define a location ¢ as a candidate as follows. The definition says that location ¢ is a
candidate if there exists a leaf task that is allowed to access £ but who would become entangled if
it would dereference ¢. This is precisely the condition in which entanglement is detected by the
semantics.

Definition 1. In a program state (u; @ ; G; T ;e), consider a location £ where p(¢) = ref £’. We
say that ¢ is an entanglement candidate if there exists some Leaf(v) in the task tree T such that
a(t) <gvand a(f’) 4c v.

For example, consider the array A in the example of Figure 6, whose code was shown in Figure 1.
Even though the array is mutable, the reads during AL@]1*A[2] (and during A[1]*A[2]) cannot cause
entanglement because the contents of the array (AL0], A[1], and A[2]) were all allocated before (<¢)
all leaf tasks. That is, while it is being read from (Figure 1, line 9), the array A is not a candidate and
we can elide the graph queries. Note that A was a candidate earlier in the computation—specifically,
while it was being initialized during the call to init (Figure 1, line 8). It just so happens that the
array was never read while it was a candidate. As soon as the tasks within the call to init join, the
array A is no longer a candidate.

Relating task trees and computation graphs. According to Definition 1, whether or not an object
is a candidate depends on the current state of the computation graph G and how it relates to the
current task tree, T. We can relate them as follows. Given a partial computation dag G, we can
derive the task tree by contracting the dag: label each vertex of the dag so that (i) a fork and its
corresponding join get the same label, and (ii) all vertices between them also get that label. If we
contract all the vertices with the same label, we get a tree that is isomorphic to the task tree (upto
labels); the labels map vertices of the dag to nodes in the task tree.

We use # to refer to the label of vertex u, and define a partial order < on the nodes of the task
tree: & < 0 if & is an ancestor of 9. The direction of pointers between objects (up, down, internal,
and cross, as described in Section 2.1) can then be expressed in terms of the labels assigned to
vertices. In particular, for a location ¢, let a(¢) be its allocation vertex in the dag and let a(¢) be
its label in the task tree. Based on their positions in the tree, we can classify a pointer from ¢ to
¢’ as follows: (i) up pointer if @(£) > a(¢’), (ii) internal pointer if a(£) = a(£’), (iii) down pointer if
a(t) < a(t’), and (iv) cross pointer otherwise: when &(¢) £ a(¢’) and a(¢’) £ a(?).

For example, consider the dag and its tree in Figure 8. The dag has two fork-join pairs that
correspond to subcomputations that have finished, as shown by the boxes; so every vertex within a
box gets the same label. All other vertices are not between a fork-join pair, so they get different
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labels. After contracting the boxes, we get the tree on the right (with gray nodes). The figure also
shows an up-pointer, an internal pointer, and a down-pointer, shown with solid green arrows. An
example cross pointer is illustrated as a dotted blue arrow.

Candidates have down-pointers. The following statement formalizes the intuition that candidate
objects have down-pointers, thereby establishing that marking candidates when down-pointers are
created is sufficient for detecting entanglement (Section 4.1). We give proof details in the Appendix.

¢ is an entanglement candidate & 3¢’ : ¢’ € locs(u(€)) A a(€) < a(¢’)

5 IMPLEMENTATION

We implemented our entanglement detection algorithm by extending the MPL (MaPLe) compiler
for Parallel ML [Arora et al. 2021; Westrick et al. 2020]. We call our implementation MPL® (“maple-
delta”). Our changes have been incorporated into the main MPL repository (https://github.com/
MPLLang/mpl) under version v@. 3. In this section, we present an overview of several important
aspects of the implementation, including integration of entanglement detection with the scheduler
and memory management system.

5.1 Scheduling and SP-order Maintenance

MPL uses a standard work-stealing scheduler [Acar et al. 2013; Arora et al. 2001; Blumofe and
Leiserson 1998] which (at a high level) maps user-level threads onto OS threads. We modified
MPL’s user-threads to additionally store their current vertex identifier. At forks and joins, the
scheduler reassigns the current vertex identifier of the current thread to match that specified by
our algorithm. To implement vertex identifiers and graph queries, we use DePa [Westrick et al.
2022d], an “off-the-shelf” SP-order maintenance algorithm.

5.2 Read and Write Barriers for Detection

Marking entanglement candidates. We modified MPL’s existing GC write barrier to additionally
mark the mutated object as an entanglement candidate if the write creates a down-pointer. Because
MPL already has special handling for down-pointers [Westrick et al. 2020], this modification was
straightfoward: in addition to MPL’s existing down-pointer management, we simply mark a bit in
the object’s GC header to indicate that it is an entanglement candidate.

Inserting read barriers. As MPL does not already have a read barrier for GC, we modified the
compiler to insert read barriers for reads (dereferences) of mutable objects. In Parallel ML, ref-cells
and arrays are the only mutable objects, meaning that the only operations needing a read barrier
are the operations which retrieve elements from refs and arrays, including standard dereferences
as well as atomic compare-and-swaps:

val !: a ref —» « val refCompareAndSwap: a ref X a X a — «a
val sub: a array X int — a val arrayCompareAndSwap: « array X int X a X a — «

In the compiler front-end, we begin by conservatively marking all of these operations as needing
aread barrier. However, not all actually result in a read barrier in the generated code. In the compiler
backend, MPL eventually chooses concrete, bit-level representations for all data. In this step, we
only add read barriers if MPL chooses to represent the contents of the ref (or array) with a pointer.

For example, consider an object x of type int ref and corresponding dereference !x. MPL never
chooses to indirect the integer through a pointer, so no read barrier is inserted. But with types such
as (int x int) ref, MPL may choose to either (a) inline the integers into the ref, or (b) allocate the
tuple separately and represent the contents of the cell with a pointer. A read barrier is inserted
only in the latter case, where MPL chooses to allocate the contents separately.
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Read barrier fast and slow path. The read barrier has two behaviors: a fast path for objects that are
not entanglement candidates, and a slow path otherwise. The fast path is implemented by codegen
in the compiler. For each dereference !x, we generate code which first optimistically performs
the read, and then checks the header of x to determine if x is a candidate. If x is not a candidate,
then the fast path is satisfied, and execution continues as normal (i.e., the graph query is elided).
However, if x is marked as a candidate, then we fall back on the slow path to perform a graph query
and check for entanglement. The slow path is implemented as a function call into the run-time
system (written in C and linked with the generated code).

5.3 Memory Management

Vertex identifiers in heap chunks. MPL represents each heap as a linked list of heap chunks,
where each chunk is one or more contiguous pages of virtual memory. Two heaps can therefore be
merged in constant time by linking two chunk-lists together. To allocate memory, a task bumps an
“allocation pointer” within its current chunk, or allocates a new chunk whenever the current chunk
becomes full. Large objects—specifically those more than half a page in size—are given their own
dedicated chunk.

At the front of each chunk is a chunk descriptor containing various GC metadata. We modified
the chunk descriptor to additionally store a vertex identifier, which is shared across all objects
within the chunk. When a new chunk is allocated, it is assigned the vertex identifier of the task
that allocated the chunk. Chunk boundaries are aligned, allowing fast access to chunk descriptors
by zeroing-out the low-order bits of an object’s address. This makes it possible (in constant time)
to look up the vertex of the task which allocated an object. The read barrier therefore can check for
entanglement by inspecting the vertex stored in the chunk descriptor of the object in question.

Reassignment of vertices during GC. In MPL, the GC design incorporates a local copying collector
which compacts the live objects of each task into a new set of heap chunks. These new chunks
must be assigned an appropriate vertex identifier. Here, we take advantage of the fact that after two
tasks join, their corresponding graph vertices are indistinguishable with respect to entanglement
detection. That is, using the definitions of Section 4, for any two vertices u and v such that . = ¢
and any leaf vertex w, we have u <g w if and only if v <g w. When picking a vertex identifier for
a new chunk during GC, it is therefore safe to use any vertex identifier of any chunk in the heap
being compacted.

5.4 Chunk Pinning: Handling the Possibility of Entanglement

We now describe how to ensure that execution remains memory-safe, even at the moment when
entanglement occurs. This requires care, because there is a race between garbage collection (which
compacts task-local memory by copying objects) and entanglement (which allows a task to reach
into another task’s local memory).

To illustrate the problem, consider two concurrent tasks A and B as shown in Figure 9. Task A
begins executing a dereference !x, where x is shared between the two tasks. By reading from x,
task A acquires a pointer to an object y which was allocated by B. Next, suppose task B performs
a garbage collection which copies y to a new location y', forwards the down-pointer (from x) to
point to y', and finally reclaims y. When A proceeds with the entanglement check on y, it will then
read from reclaimed memory, and possibly crash (or worse).

Pinning. To make the entanglement check memory-safe, we have to ensure that it is safe for a
concurrent task to access the chunk descriptor of any object which is potentially entangled. Here
we take advantage of a key property (discussed in Section 4): entanglement can only occur due to
a read of a down-pointer. When MPL creates a down-pointer, it executes a write barrier (which
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Fig. 9. Example of race between lo-
cal GC and the entanglement check.
Task A first acquires a pointer to
y. Meanwhile, B forwards y to y’
and reclaims the old memory. Task
A then proceeds with the entangle-
ment check on a dangling pointer.

unpinned

before merge {C, D} into B after merge

Fig. 10. Example, before and after heaps C and D merge into B. Af-
terwards, the down-pointer from B into D has become an internal
pointer, and therefore the indicated chunk may be unpinned.

adds the down-pointer to a remembered set for GC). We modified the write barrier to mark the
target object of each down-pointer as pinned, and modified the GC to not move these objects (i.e.
the address of a pinned object must not change during a collection). Any chunk that contains
a pinned object is called a pinned chunk. By preserving the addresses of pinned objects, the GC
implicitly ensures that pinned chunks are not reclaimed. Therefore, it is safe at any moment for
a task to access the descriptor of a pinned chunk, to inspect the vertex identifier stored there to
detect entanglement.

In the example of Figure 9, the pinning technique fixes the race by ensuring that object y is
pinned. The GC performed by task B therefore is required to preserve y (and the chunk containing
y), allowing the entanglement check performed by A to proceed safely.

Unpinning. A pinned object may be later unpinned as soon as there are no more down-pointers
which point at the object. As heaps merge upwards due to task joins, down-pointers naturally
become internal, which enables unpinning. We could unpin objects at heap merges: whenever a
heap is merged into its parent, if this causes all down-pointers incident upon a pinned object to
become internal, then the object may be safely unpinned. However, unpinning objects at every heap
merge would be inefficient, because merges are frequent. We therefore instead perform unpinning
in bulk during GC.

The modifications to GC for unpinning were straightforward, because the MPL GC already has
a phase which filters down-pointers that have become internal due to prior joins. In particular,
down-pointers are stored in a remembered set for each heap, and at local GC, the remembered
set is scanned to find down-pointers which have since become internal. During this process, we
identify the set of objects which must remain pinned (due to the existence of a down-pointer).

Example. Figure 10 shows an example where pinned chunks become unpinned due to a heap
merge. In the figure, there are four heaps shown on the left, labeled A through D. Each heap
consists of a list of chunks, and within each chunk are various objects of different sizes allocated by
the program, with pointers to other objects. Pinned chunks are shaded in light red: these chunks
contain pinned objects, i.e., objects which are pointed-to by a down-pointer from an ancestor heap.
On the left in the figure, there are two pinned chunks: one in heap B, and one in heap D. The
right-side of the figure illustrates the heap structure after C and D are merged into their parent. As
a result of the merge, a down-pointer (from B into D) becomes an internal pointer within B. The
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corresponding object therefore may be unpinned, as may its containing chunk (which no longer
contains any pinned objects).

Cost of chunk pinning. Chunk pinning was the only major change required to safely handle
the possibility of entanglement. We measured the difference due to pinning alone and found that
overall it offers a slight improvement in time and space, with approximately —3% and —7% difference
(respectively) in time and space on average across the benchmarks in our evaluation (Section 6).
This slight improvement may seem surprising, given that one disadvantage of pinning is that it
introduces additional fragmentation into the system (by preventing the GC from relocating pinned
objects to compact memory). However, note that this fragmentation is short-lived: as the program
“joins back up”, objects naturally become unpinned, as illustrated in Figure 10.

The space loss due to fragmentation appears to be outweighed by other advantages of pinning.
For example, the pinning strategy allows for a more space-efficient implementation of remembered
sets for down-pointers. In particular, MPL previously used remembered-set entries of the form
(x,1,y), indicating that x[i] is a down-pointer to y; this representation allows for the GC to update
x[i] to point to the new version of y when y is relocated by collection. Under the pinning strategy,
because the addresses of pinned objects are kept fixed (and thus down-pointers do not need to be
updated by GC), we do not need to store this additional information in the remembered set. In our
MPL?, we instead use remembered-set entries of the form (d(x), y), where d(x) is the depth of the
object x which contains a down-pointer to y. The depth is used to determine when it is safe to
unpin y. We therefore save space by shrinking the size of each individual remembered-set entry.
Furthermore, if there are multiple down-pointers incident upon an object, we only need to keep
one entry (the one with minimum depth). These differences can result in significant space savings
in the remembered set, especially in programs with a large number of down-pointers.

6 EVALUATION

We present an experimental evaluation of our implementation on a suite of parallel benchmarks.
We call our implementation MPL? (“maple-delta”), as it extends the MPL compiler [Arora et al.
2021; Westrick et al. 2020] for Parallel ML with entanglement detection. Our implementation is
publicly available in the main MPL repository® under version v@. 3. Code used in our evaluation is
available on Zenodo [Westrick et al. 2022b] and GitHub®.

At a high level, our evaluation consists of three parts, with the following results.

(1) In Section 6.2, we compare our MPL” against vanilla MPL (which has no entanglement detec-
tion) to measure the overhead of our techniques. We observe close to zero overhead (in terms
of both time and space) across the board. For time specifically, we measure approximately 1%
overhead on average, and a max of 7%. A majority of benchmarks (18 out of 23) incur less
than 2% time overhead.

(2) In Section 6.3, we compare against the MLton [MLton nd] compiler for Sequential (Standard)
ML to determine the end-to-end overheads and scalability of our MPL”. We observe sequential
overheads typically within a factor of 2, and speedups between 10 and 63 at scale, using 72
processors. This confirms that our techniques are fully parallel and highly scalable.

(3) In Section 6.4, we consider the performance improvement of our entanglement candidates
algorithm, which eliminates unnecessary graph queries. We observe that the entanglement
candidates algorithm provides improvements up to a factor of 2x, bringing the number of
graph queries down to 0 in multiple cases.

Shttps://github.com/MPLLang/mpl
4https://github.com/MPLLang/entanglement-detect/tree/icfp22-artifact

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.


https://github.com/MPLLang/mpl
https://github.com/MPLLang/entanglement-detect/tree/icfp22-artifact

Entanglement Detection with Near-Zero Cost 115:21

Table 1. Times (seconds), max residencies (GB), and percent differences of MPL2 relative to MPL in parenthesis.
The percentage is the overhead of entanglement detection (relative to MPL).

I I7, R R72
MPLA MPLA MPLA MPLA
MPL (Ours) MPL (Ours) MPL (Ours) MPL (Ours)

bfs-tree  19.9 20.5(+3%) 433 .442(+2%) 7.8 7.8 (+0%) 68 68 (+0%)
centrality 162 160 (-1%) 432 426 (-1%) 69 6.9 (+0%) 59 5.9 (+0%
dedup-strings 535 552 (+3%) .114 .122 (+7%) 2.6 2.6 (+0%) 6.4 6.7 (+5%
delaunay 872 9.18 (+5%) .323 .335(+4%) .59  58(-2%) 13 13 (+0%
dense-matmul  2.78  2.79 (+0%) .048 .048 (+0%) .064  .063 (-2%) .31 .31 (+0%
game-of-life 1.81 173 (-4%) .067 .067 (+0%) .061  .061(+0%) .35 .35 (+0%
grep 209 205(-2%) .038 .038(+0%) 1.1 1(+0%) 14 1.4 (+0%
low-d-decomp 8.16 837 (+3%) .406 .392(-3%) 6.9 9(+0%) 14 13 (-7%)
msort-strings  2.70  2.77 (+3%) .060 .058 (-3%) .62 .62 (+0%) 1.7 1.7 (+0%)
nearest-nbrs  1.54 1.54 (+0%) .046 .047 (+2%) .26 6 (+0%) 1.6 1.6 (+0%)
nqueens 1.60 1.61(+1%) .028 .029 (+4%) .045  .045(+0%) .32 .32 (+0%)
palindrome 1.62 1.69 (+4%) .031 .032(+3%) .061  .063 (+3%) .36 .36 (+0%)
primes 7.42 7.56 (+2%) .123 .120 (-2%) .27 .27 (+0%) .56 .56 (+0%)
quickhull  3.22  3.40 (+6%) .103 .110 (+7%) 24  24(+0%) 59 6.1 (+3%)
range-query 144 154 (+7%) .250 .248 (-1%) 4.5 4.5 (+0%) 45 4.6 (+2%)
(
(

)
)
)
)
)
)

-

raytracer 3.50 3.30(-6%) .058 .058 (+0%) .11 11 (+0%) 54 .55 (+2%)
reverb 134 1.31(-2%) 042 .041(-2%) 15  15(0%) 21  2.1(+0%)
seam-carve 16.2 16.2 (+0%) .808 .827 (+2%) .091  .091 (+0%) .71 .71 (+0%)
skyline 731 7.57(+4%) .250 .251(+0%) .88 .88 (+0%) 25  25(+0%)
suffix-array 554 574 (+4%) 113 .115(+2%) 12  12(+0%) 17  1.6(-6%)
tinykaboom 2.47 248 (+0%) .042 .042 (+0%) .0093 .011 (+18%) .31 .31 (+0%)
tokens 1.96 1.86(-5%) .043 .042(-2%) 1.1 1.1 (+0%) 14 1.4 (+0%)

( (

triangle-count 4.74 4.57 (-4%) .192 .191(-1%) 25 2.5 (+0%) 14 14 (+0%)

Experimental setup. We run all of our experiments on a 72-core Dell PowerEdge R930 consisting
of 4 X 2.4GHz Intel (18-core) E7-8867 v4 Xeon processors and 1TB of memory. To measure run times,
we run each benchmark 20 times back-to-back and report the average, excluding initialization (e.g.,
loading the input), warmup, and teardown. To measure space usage, we measure the average of the
maximum resident set size (as reported by Linux) of 20 back-to-back runs of the benchmark. We
write Tp for time on P processors, and similarly Rp for the max residency on P processors. For the
sequential baseline runs, we write T. All run times are in seconds, and all space numbers are in GB.

6.1 Benchmarks

We consider numerous benchmarks from different problem domains, including graphs, text process-
ing, digital audio processing, image analysis and manipulation, numerical algorithms, computational
geometry, and others. Many of these are ported to Parallel ML from existing state-of-the-art parallel
C/C++ benchmark suites and libraries including PBBS [Anderson et al. 2022; Blelloch et al. 2012;
Shun et al. 2012], ParlayLib [Blelloch et al. 2020; Westrick et al. 2022c], Ligra [Shun and Blelloch
2013], and PAM [Sun et al. 2018]. Even though these benchmarks were originally written in C/C++,
all of these benchmarks happened to be naturally disentangled. An overview of the benchmarks is
available in the Appendix.
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Table 2. Comparison (overheads OV and speedups

—@— bfs-tree —&— msort-strings -#- reverb

—¥— centrality —— nearest-nbrs -4-- seam-carve SU) with sequential baseline. Times are in seconds.

—A— dedup-strings —%— nqueens -4@- skyline

< delaunay ®-- palindrome *-- suffix-array P=1 P=72

—— dense-matmul -¥-- primes --+-- tinykaboom

—m- game-of-life --A-- quickhull -%-- tokens Base ov SU

grep range-query triangle-count

~9— low-d-decomp -»-- raytracer (ideal) T T T/ Ts Tr2 Ts/Tr2

70 bfs-tree  9.71  20.5 2.11 442 22

centrality 11.5 160 139  .426 27
dedup-strings  2.50 552 221 @ .122 20
delaunay  9.50 9.18 097  .335 28
dense-matmul  1.99 279 140  .048 41
game-of-life 1.57 173 110 .067 23
grep 1.28  2.05 1.60 .038 34
low-d-decomp 5.85 837 143  .392 15
msort-strings  1.33  2.77  2.08  .058 23
nearest-nbrs 111  1.54 1.39  .047 24
nqueens 130 1.61 124 .029 45
palindrome 1.61 1.69 105 .032 50
primes 175 7.56 4.32 120 15
quickhull  2.00 3.40 1.70 110 18
range-query 133 154 1.16  .248 54
raytracer 2.38  3.30 1.39  .058 41
reverb 955 131 1.37 .041 23

1 10 20 30 40 50 60 70 seam-carve 12.1 162 134  .827 15
Processors skyline 251  7.57 3.02 251 10

. A . . suffix-array  4.51 574 1.27  .115 39
Fig. 11. Speedups of MPL® in comparison to sequential tinykaboom  2.63 248 094 042 63
baseline (which has no parallelism or entanglement tokens 153 1.86 122 042 36
detection). triangle-count  2.82 4.57  1.62  .191 15

6.2 Comparison with MPL

We compare with MPL to confirm our theoretical results, showing little overhead and excellent
scalability as the number of cores increase.

Entanglement detection overheads are small. Table 1 shows results on 1 and 72 processors. Columns
T, and Ty, show the run-time for MPL and MPL2, which the additional cost of MPL? relative to
MPL shown as percentage for each quantity. Observe that the MPL” times are usually within +5%
of MPL. 18 out of 23 benchmarks have less than 2% time overhead, and we observe a max time
overhead of 7% in only two cases on 72 processors. On average across all benchmarks, the time
overhead is approximately 1% on both 1 and 72 processors.

Entanglement detection scales well. On both 1 and 72 processors, we observe similar time overheads
across all benchmarks. Entanglement detection therefore has no noticeable impact on scalability.

Space overheads are small. Columns R; and Ry, show the space usage for MPL and MPL”, with
the additional cost of MPL” relative to MPL shown as percentage for each quantity. For both 1-core
and 72-core runs, there is almost no noticable space overhead. Only one benchmark (tinykaboom)
registers above 10% space overhead, but only for sequential runs, where the overall footprint
is small: while MPL uses approximately 9 MB, our MPL” uses 11 MB. Entanglement detection
therefore appears to have a small constant space overhead. At scale, with memory on the order of
gigabytes, this overhead is negligible.
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Difference due to pinning. One of the ways MPL” differs from the original MPL is that it handles
down-pointers via the chunk-pinning technique, described in Section 5. We measured the difference
due to pinning alone and found that overall it has little impact, with only about —3% and -7%
improvement (respectively) in time and space on average across the benchmarks. The results in
Table 1 therefore are with respect to MPL with pinning enabled, to isolate the impact of entanglement
detection.

6.3 End-to-End Scalability

Our prior experiments have established that the space and time overheads of entanglement detection
are low, both on a single processor and at scale. Here we evaluate the end-to-end scalability of the
executables generated by our MPL? compiler by comparing them against executables generated
by the optimizing MLton compiler for Standard ML. As baseline we use the sequential versions of
our benchmarks, which are derived from parallel benchmarks by replacing parallel tuples with
sequential ones. This approach enables us to measure the cost of entanglement detection by keeping
the underlying algorithms the same for both parallel and sequential versions.

Figure 11 shows the speedup of our benchmarks on up to 72 processors with entanglement
detection. All benchmarks exhibit scalability, some very well, some less, depending on their specific
characteristics. Table 2 shows more concrete measurements for sequential (baseline), uniprocessor
runs (P = 1) and parallel runs with 72 processors (P = 72). The overhead—measured by the ratio of
uniprocessor to sequential time—is relatively small, ranging between a factor of 0.94 (6% faster) to
4.32 (332% slower) in comparison to the sequential baseline. These overheads include all overheads
of parallelism as well as entanglement detection, which are usually small as shown in Table 1. The
largest overhead in comparison to MLton is on the primes benchmark (approximately 4x), which
has been similarly observed with previous versions of MPL, and appears to be due to differences in
compilation rather than overheads in the runtime system [Arora et al. 2021; Westrick et al. 2020].

The speedup—measured by the ratio of the sequential running time to the 72-core running
time—shows the benefits of parallelism over the sequential. The results show that the speedups
are significant and that they are usually inversely correlated with the overheads, showing that the
scalability is overall quite good.

6.4 Improvement due to Entanglement Candidates

We now demonstrate that by eliminating unnecessary graph queries for entanglement detection,
we significantly improve performance. Our technique for eliminating unnecessary graph queries
is our candidate tracking algorithm (Section 4). To measure the performance improvement due
to tracking candidates, we additionally run a version of our compiler that has candidate tracking
disabled. We focus here only on the benchmarks which have a large number of graph queries (i.e., a
large number of dereferences of mutable pointers to heap-allocated objects). The performance of the
omitted benchmarks is not significantly affected by the candidate tracking algorithm (specifically, on
average, the performance change is +1%). That is, by tracking candidates, we improve performance
only in the cases where it is needed, and do not harm performance otherwise.

The results of this comparison are presented in Table 3. In the table, the “Improvement Ratio”
columns are calculated as Tyg/ Ton, where Ty is the time with candidate tracking disabled, and T,y
is the time with it enabled. Improvement ratios larger than 1 indicate a performance improvement
due to the candidate tracking algorithm. We provide improvement ratios for both uniprocessor
runs (P = 1) as well as parallel runs (P = 72). We also collect additional data, including the number
of graph queries performed (both with and without candidate tracking), and the number of times a
candidate was marked (which is an upper bound on the number of candidate objects).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 115. Publication date: August 2022.



115:24 Sam Westrick, Jatin Arora, and Umut A. Acar

Table 3. Performance improvement ratio due to tracking candidates, including number of graph queries
performed both with and without candidate tracking.

Improvement Ratio # Graph Queries

P=1 P=72 Naive w/ Candidates # Candidate Marks

bfs-tree  0.99x 0.99x 16M 16M 64
dedup-strings  1.17x 1.12x 122M 0 0
delaunay  1.44x 1.25x 237M 0 0
low-d-decomp  0.99x 1.02x 1M 0 62
msort-strings  1.87x 1.95x 247M 0 0
nearest-nbrs  1.60x 1.23x 73M 0 0
quickhull  1.62x 1.20x 184M 0 0

skyline 1.16x 1.07x 174M 1M 1K
triangle-count  1.02x 0.95x 3M 0 2

We first observe that by tracking candidates, we are able to improve performance in almost all
cases, often by a significant margin. The benchmark with the biggest change is msort-strings,
with approximately 2x improvement. Other improvements range from 2% up to a factor of 1.6x.
Inspecting the number of graph queries performed, we see that our approach successfully elides a
significant number of unnecessary graph queries, and in all but 2 benchmarks, the number of graph
queries goes down to 0. For example, under the naive strategy (tracking disabled), the msort-strings
benchmark performs approximately 250M graph queries, but after tracking candidates, none are
performed.

This elimination of unnecessary graph queries is key to the near-zero overhead of
entanglement detection. Note that although the graph queries are elided, there is still overhead for
the “fast path” of the read barrier on mutable objects, which inspects the header of the dereferenced
object to determine whether or not it is a candidate. However, this overhead is not significant
enough to be a concern: as evidenced by the results in comparison with vanilla MPL (in Table 1),
the cost of the fast path is nearly zero.

There are three interesting benchmarks here which do not see significant improvement: bfs-tree,
low-d-decomp, and triangle-count. In the case of low-d-decomp and triangle-count, although track-
ing candidates successfully eliminates all graph queries, the number of queries needed in the first
place is low relative to the work performed by the benchmark, so the opportunity for improvement
is small (e.g. the input for low-d-decomp has approximately 200M edges but performs only 1M
queries when the candidate tracker is disabled). In contrast, the bfs-tree benchmark achieves no
performance improvement because no graph queries are eliminated. This is the only benchmark
does not see a significant number of queries eliminated due to the candidates algorithm. The reason
in this case is that the algorithm uses a shared array to associate state with each element of the
input, and negotiates access to this state via a lock-free algorithm. As soon as one piece of this state
is updated, the shared array becomes a candidate, and all further accesses to it require full checks.

Finally, it’s worth emphasizing that the number of candidate marks (i.e., the number of times any
object is marked as a candidate) is small across the board. This is an upper bound on the number of
candidate objects, and therefore bounds the space overhead of tracking candidates (i.e., it bounds
the size of the candidate set during execution). These results confirm our hypothesis that only a
small number of objects typically pose a risk for entanglement.

6.5 Entangled Tests

As mentioned, all benchmarks used in our performance evaluation above are naturally disentan-
gled. To validate our detector, we also developed a set of entanglement test cases, including both
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synthetic tests as well as variations of some of our benchmarks. Our detector successfully found
entanglement in all instances. One interesting case of entanglement we developed was a variation
of the dedup-strings benchmark. In this benchmark, we were able to introduce entanglement by
replacing many task-local hash tables with a single hash table shared across all tasks; this forces
tasks to compete non-deterministically for access to the shared hash table, leading to entanglement.

7 RELATED WORK
7.1 Memory Management with Disentanglement

Entanglement detection is motivated by recent results on efficient task parallelism in functional
programming languages using disentanglement [Arora et al. 2021; Guatto et al. 2018; Raghunathan
et al. 2016; Westrick et al. 2020]. Disentanglement research in turn is motivated by the important
role that memory management plays in parallel functional programs and the challenges of ensuring
its efficiency and scalability. Although provably space and time efficient memory management is
standard for the outdated uniprocessor systems [Jones et al. 2011], it is rare for parallel systems.
Other than the recent result of Arora, Westrick, and Acar that relies on disentanglement [Arora et al.
2021], the only other work that comes with guaranteed bounds is by Blelloch and Cheng [Blelloch
and Cheng 1999; Cheng and Blelloch 2001] (and its subsequent refinements), which is specialized
for real-time garbage collection. Within the world of parallel functional programming, there has
been much work on parallel memory managers [Anderson 2010; Auhagen et al. 2011; Doligez and
Gonthier 1994; Doligez and Leroy 1993; Domani et al. 2002; Le and Fluet 2015; Marlow and Jones
2011; Sivaramakrishnan et al. 2020]. These approaches typically use processor-local or thread-local
heaps combined with a shared global heap that must be collected cooperatively. None of these
approaches, however, can guarantee space and work/time bounds.

7.2 Race Detection

Because data races often cause incorrect behavior [Adve 2010; Boehm 2011], there has been much
work on detecting races in parallel and concurrent programs. Entanglement detection is similar
to race detection in the sense that it concerns a property of memory accesses. Prior research on
race detection can broadly be divided into two lines of work: (i) those that target task-parallel
programs, and (ii) those that target general concurrency. The first line of work assumes, as we do
here, task parallelism, where a program may create many (e.g., millions of) fine-grained threads,
which synchronize in a structured fashion. The second line of work assumes a general concurrency
setting, where programs contain a small number of coarse-grained threads that may synchronize
by using locks, synchronization variables, etc. Techniques from this second line of work do not
scale to task-parallel programs because of their coarse-grained threads assumption (e.g,. [Raman
et al. 2012]), and are less directly relevant to this paper. We therefore limit our discussion to race
detection techniques for task parallelism, and refer the interested reader to prior work ([Flanagan
and Freund 2009; Kini et al. 2017; O’Callahan and Choi 2003; Savage et al. 1997; Smaragdakis et al.
2012; Yu et al. 2005]).

Race detection for task-parallel programs. Many algorithms for race detection in task-parallel
programs, such as fork-join programs, have been proposed [Bender et al. 2004; Cheng et al. 1998;
Feng and Leiserson 1997; Fineman 2005; Mellor-Crummey 1991; Raman et al. 2010, 2012; Utterback
etal. 2016; Xu et al. 2020]. These algorithms all revolve around an ordering data structure, sometimes
called a series-parallel order or SP-order data structure, which keeps track of whether two instructions
are sequentially dependent or can be executed in parallel. Experiments with state-of-the-art race
detection show over an order of magnitude overhead in sequential runs, and parallel runs with race
detection typically run slower than the sequential baseline even with over a dozen cores [Utterback
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et al. 2016]. All of the above work considers nested parallelism with fork-join and async-finish
constructs, which result in similar dependency structures. More recent work considers race detection
for futures and establishes worst-case bounds, though the overheads are no longer constant [Xu
et al. 2020].

Our entanglement detection techniques share the same basic structure as these race detectors, in
the sense that for entanglement detection we similarly record the structure of the computation
as a graph and query the graph with the help of an order maintenance data structure. However,
entanglement detection is more efficient than race detection. This is due to a few differences
between the two techniques.

One of the most significant overheads of race detection is incurred by the maintenance of “access
histories”, which track the history of reads and writes on each individual memory location [Mellor-
Crummey 1991; Raman et al. 2012; Utterback et al. 2016]. For example, an array of size N requires
N access histories for race detection (one for each index). In contrast, entanglement detection
requires only a single annotation (one vertex identifier) for the whole array. Furthermore, as we
show in Section 3.5, the space overhead of the annotations for entanglement detection can be
further reduced by grouping together the allocations of individual threads, resulting in essentially
negligible space overhead. Maintenance of access histories for race detection also incurs a time
penalty, particularly on reads, where the thread identifier of the reader is logged at each access.

Finally, we note that entanglement detection benefits from compiler optimizations which perform
data inlining (also called “flattening” or “unboxing”). For example, when operating on an array of
unboxed integers, entanglement detection requires neither a read barrier nor a write barrier, and
therefore incurs no overhead. In contrast, race detection still needs to monitor these operations.

7.3 Parallel Programming Languages

In this paper, we propose a technique for entanglement detection and implemented it as part of
the MPL compiler for Parallel ML, which is a functional languages that extends Standard ML with
parallelism. As with the Standard ML language, Parallel ML supports references and destructive
updates, and allows writing both purely functional and impure (imperative) programs.

Parallel ML builds on a rich history of research or parallel programming languages, including
both procedural and functional ones. Programming languages such as Cilk/Cilk++ [Blumofe et al.
1995; Frigo et al. 2009; Intel Corporation 2009a], Cilk-F/L [Singer et al. 2020a, 2019], I-Cilk [Muller
et al. 2020], and Intel TBB [Intel Corporation 2009b] extend C/C++ with task parallelism but they
all require manual memory management, which is especially challenging for parallel programs.
The Rust language offers a type-safe option for systems-level programming [Rust Team 2019] and
can ensure memory safety under certain assumptions.

Extensions of the Java language to support parallelism include Fork-Join Java [Lea 2000], and
Habanero Java [Imam and Sarkar 2014], all of which support automatic memory management. The
X10 [Charles et al. 2005] language is designed with concurrency and parallelism from the beginning
and supports both imperative an object-oriented features. Even though these languages simplify
writing parallel programs by managing memory automatically, avoiding concurrency bugs can still
be challenging, because of the lax control over side effects that these languages offer. Motivated
partly by this concern, research on Deterministic Parallel Java [Bocchino, Jr. et al. 2009] develops
type systems to guarantee determinism.

Modern type-safe functional programming languages offer substantial control over side ef-
fects [Gifford and Lucassen 1986; Kuper and Newton 2013; Kuper et al. 2014; Launchbury and
Peyton Jones 1994; Lucassen and Gifford 1988; Park et al. 2008; Peyton Jones and Wadler 1993;
Reynolds 1978; Steele 1994; Terauchi and Aiken 2008], which help programmers avoid race con-
ditions, which can harm correctness. Recent projects include Manticore [Fluet et al. 2008, 2011],
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MultiMLton [Sivaramakrishnan et al. 2014; Ziarek et al. 2011], SML# [Ohori et al. 2018], multicore
OCaml [Sivaramakrishnan et al. 2020], and prior work on disentanglement and MPL [Acar et al.
2015; Arora et al. 2021; Guatto et al. 2018; Raghunathan et al. 2016; Westrick et al. 2020]. There
has also been significant progress on parallel and concurrent Haskell [Chakravarty et al. 2007;
Keller et al. 2010], including work on memory management techniques [Marlow and Jones 2011].
Our work differs from prior work in its emphasis on theoretical guarantees on efficiency and
implementations that can match the bounds in practice.

The work presented in this paper and most of the work on parallel programming languages
consider compute-intensive jobs, where the main performance metric is throughput. There has
recently been interest in “responsive parallelism” which include a broader class of jobs that mix
compute-intensive and interactive tasks. The goal in responsive parallelism is to maximize through-
put while also minimizing latency for the interactive tasks [Muller et al. 2020, 2017, 2018, 2019].
Responsive parallelism requires new scheduling algorithms that mix competitive and cooperative
scheduling [Muller and Acar 2016; Singer et al. 2020b].

We note that even though disentanglement and entanglement have so far been applied to
functional programming languages, they are fundamentally a language-agnostic property, and thus
could be applied to procedural languages.

8 CONCLUSION

Recent work opened a new angle of attack on the problem of efficiency and scalability for parallel
functional programs by utilizing a memory property called disentanglement. There exists, however,
no known automated techniques for checking disentanglement, which leaves the burden of this
task entirely to the programmer. In this paper, we present techniques for detecting entanglement
(i.e., violations of disentanglement) dynamically, with low overhead, both in theory and practice.
We formalize the approach by presenting a semantics, proving its soundness and completeness, and
by presenting techniques for realizing it efficiently. We validate the practicality of the approach
by extending the MPL compiler for Parallel ML and confirming empirically that the techniques
perform and scale well. In contrast to the related problem of race detection for fine-grained parallel
programs, we show that entanglement detection can be performed with nearly zero overhead (both
space and time).

Our experience with developing a parallel benchmark suite shows that many parallel programs
are naturally disentangled. Perhaps surprisingly, we have found that this holds even for programs
that were originally written in low level languages such as C/C++. But, as we consider a broader
set of parallel programs and include concurrent programs, which use communication between
concurrently executing tasks (or threads), entanglement will arise naturally. In future work, we plan
to use entanglement detection to bring the benefits of disentanglement-based memory management
to entangled programs by detecting entanglement at run-time and managing it automatically. The
result should be a fully general parallel functional programming language that supports effects and
thus communication.
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