
Efficient and Scalable Parallel
Functional Programming Through

Disentanglement

Sam Westrick
samwestrick.com
@shwestrick

March 2022

1

Apple A14:
12 cores

4x Intel Xeon E7:
72 coresAMD Epyc: 64 cores

Apple S4:
2 cores

AMD Ryzen
Threadripper:

16 cores

2

Parallel Hardware Today

nVidia
GeForce 3090:

10496 (CUDA) cores

Parallel Programming

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

immutability

automatic memory management

deterministic by default

slow?

fast

?can parallel functional
programming be
fast and scalable

3

deterministic by default

Parallel Programming

4

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

slow?

fast

?can parallel functional
programming be
fast and scalable

high rate of allocation
heavy reliance on GC

immutability
automatic memory management

5

mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel

memory

collector

6

mutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Sequential

Parallel

mutator collectormemory

Is there a better way?

7

In Existing Functional Languages...
- popular “two-level” design [Doligez-Leroy-Gonthier]

- used by multicore OCaml, GHC Haskell, Manticore, Caml Light, ...

- minor and major heaps

- parallel allocation+GC in minor heaps

. . .minor
heap

major heap- invariants:

- no cross-pointers between minor heaps

- restrictions between major and minor heaps

- promotions maintain invariants
- moving (copying) data from minor to major

- problem: shared data must live in major heap
- scheduler actions trigger promotions

- high overhead, no provable efficiency (e.g. unbounded space)

8

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Disentanglement
 

“concurrent tasks remain oblivious

to each other’s allocations”

Is there a better way?

MaPLe Compiler

• based on MLton, full Standard ML language, extended with

• parallel memory management based on disentanglement

• used by 500+ students at CMU each year

• outperforms existing implementations of functional languages

• competitive with state-of-the-art imperative/procedural  
(including Java, Go, C/C++)

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

[1] Efficient Tree-Traversals: Reconciling Parallelism and Dense Data
Representations. Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind
Kulkarni, and Ryan R. Newton. ICFP 2021

[2] Disentanglement in Nested-Parallel Programs. Sam Westrick, Rohan Yadav,
Matthew Fluet, and Umut A. Acar. POPL 2020

MPL vs multicore OCaml:
 ~2x average speedup [1]

MPL vs GHC Haskell:

 ~2x average speedup [1]

MPL vs Manticore:
 2-50x speedup [2]

9

Sorting Shootout

~24x speedup over
C++ std::sort

2nd fastest, behind Cilk

40% faster than Go

70% faster than Java

serial

(1 proc)

parallel

(72 procs)

10

11

betweenness centrality

breadth-first search

minimum spanning tree

low-diameter decomposition

triangle counting

delaunay triangulation

quickhull

nearest neighbors

skyline

2D range query

seam carving

raytracing

GIF encode+decode

reverb

WAV encode+decode

tokenization

grep, wc

palindrome

suffix array
integration

dense+sparse matrix mult

LU-decomposition

bignum add, mult

mandelbrot

n-body

sorting

histogram

line fit

remove duplicates

mcss

n-queens

graphs

geometry

images

audio

text

numeric

other

Parallel ML Benchmarks

- all disentangled

- many ported from highly-optimized C/C++

- PBBS, Ligra, and PAM benchmark suites

- excellent performance

- in general, within 2-3x of hand-optimized C/C++

- e.g. delaunay triangulation, factor 2
- in some cases, can match C/C++

- e.g. linefit: near optimal on our 72-core machine  
(max read bandwidth)

tinykaboom
range-query
palindrome
mergesort

dense matmul
suffix-array

raytracer
tokenization

grep
bfs

centrality
nearest nbrs

reverb
dedup

quickhull
seam-carve

low-d-decomp
primes

triangle-count

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

tinykaboom

range-query

palindrome

mergesort

dense matmul

suffix-array

raytracer

tokenization

grep

bfs

centrality

nearest nbrs

reverb

dedup

quickhull

seam-carve

low-d-decomp

primes

triangle-count

0 10 20 30 40 50 60 70

MPL (72 processors)
vs

MLton (sequential baseline)

10-63x speedup, often with
less space (!)

Speedup (higher is better) Space Blowup (lower is better)

13

betweenness centrality

breadth-first search

minimum spanning tree

low-diameter decomposition

triangle counting

delaunay triangulation

quickhull

nearest neighbors

skyline

2D range query

seam carving

raytracing

GIF encode+decode

reverb

WAV encode+decode

tokenization

grep, wc

palindrome

suffix array
integration

dense+sparse matrix mult

LU-decomposition

bignum add, mult

mandelbrot

n-body

sorting

graphs

geometry

images

audio

text

numeric

other

allocate

location X

use X use X

Disentanglement

- observed in efficient parallel code: 
concurrent tasks are oblivious to 
each other’s allocations

- arbitrary? no: 
guaranteed by race-freedom 
[Westrick et al. 2020]

- in computation graph: 
allocation precedes use

14

How to utilize disentanglement
for improved efficiency and scalability?

Disentanglement

idea: organize memory to reflect structure of parallelism

Nested Fork/Join Parallelism

classic and popular technique

• Cilk, ParlayLib, Intel TBB, Microsoft TPL, OpenMP, Legion,

Rayon, Fork/Join Java, Habanero Java, X10, multiLisp, Id,
NESL, parallel Haskell, Manticore, Futhark, SML#, etc.

fork (spawn) join (sync)

15

16

Task-Local Heaps

fork (spawn) join (sync)

fork (spawn)

merge heaps
into parent

fresh empty heaps

join (sync)

Task-Local Heaps

17

18

Disentangled Memory Management
• disentanglement: no cross pointers

19

naturally
parallel

reorganize,
compact, etc.
inside subtree

• disentanglement: no cross pointers

• subtree collection

Disentangled Memory Management

20

• disentanglement: no cross pointers

• subtree collection

• internal collections and provable efficiency  

[Arora et al. POPL 21]

naturally
parallel

reorganize,
compact, etc.
inside subtree

Disentangled Memory Management
Implementation Notes:
• carefully integrated with scheduler

• new heaps only on steals

• write barrier for down-pointers

• no read barrier
• no promotions necessary

P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12

Heap Scheduling
• goal: assign heaps to processors

• each processor manages its own
memory

21

Heap Scheduling
• goal: assign heaps to processors

• each processor manages its own
memory

• integrate closely with thread
scheduling (work-stealing)

P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12

22

Collection Policy
algorithm
- each processor p has local counter Lp

- when cumulative size of p’s heaps exceeds k·Lp:

- processor p performs GC on its heaps

- set Lp to amount of memory that survives

theorem [Arora et al., POPL 21]
a race-free program with work W and sequential
space R requires O(P·R) space and O(W + P·R)
work, including costs of memory management

Key idea:

• spines resemble sequential execution

• local counters Lp cannot exceed R

23

fully general

disentangled

race-free

mutation-free

24

Intuition

• if entangled, must be a read/write race
• write: creates down-pointer
• read: discovers data across

x

y

theorem [Westrick et al. POPL 20]
all race-free programs are disentangled

y = malloc()
*x = y
...

...

...
z = *x

Proof Sketch

• single-step invariant: 

if location X accessible without a race, then
neighbors(X) are in root-to-leaf path

• carry invariant through race-free execution

25

26

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation
w/ “local” effects

only 10% more time+memory than hand-optimized

Writing Disentangled Programs

no need to know
about disentanglement!

fun mergesort(X) =
 if length(X) <= granularity then
 quicksort(X)
 else
 let
 val (L,R) = split(X)
 val (sL,sR) = par(fn _ => mergesort(L),
 fn _ => mergesort(R))
 in
 merge(sL,sR)
 end

Writing Disentangled Programs

27

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

fast implementation
w/ “local” effects

...

parentheses matching

max contiguous subsequence

prime sieve

sorting

order statistics

range query

graph search

connected components

shortest paths

minimum spanning forest

dynamic programming

hashing

...

15-210 (Undergrad Course)
Parallel and Sequential

Data Structures and Algorithms

no need to know
about disentanglement!

28

purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation
w/ “local” effects

mostly

Writing Disentangled Programs

fun forwardBFS(G,s) =
 let
 fun outEdges(u) = map(fn v => (u,v), neighbors(G,u))
 val parents = tabulate(numVertices(G), fn v => -1)
 fun tryVisit(u,v) =
 if compareAndSwap(parents,v,-1,u) then SOME(v) else NONE
 fun search(F) =
 if length(F) = 0 then ()
 else search(filterOp(tryVisit, flatten(map(outEdges, F))))
 in
 tryVisit(s,s);
 search(singleton(s));
 parents
 end

29

tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation
w/ “local” effects

Writing Disentangled Programs

Parallel Block-Delayed Sequences

Sam Westrick, Mike Rainey, Daniel Anderson, and Guy Blelloch

PPoPP’22

fusion across library calls

• e.g. only O(#processors) allocation for map -> scan -> reduce

30

Summary
disentanglement
- “concurrent tasks remain oblivious to each other’s allocations”

- common property, guaranteed by race-freedom, functional programming

- enables provably efficient parallel memory management and GC

MaPLe implementation

- efficient and scalable

- competitive with low-level imperative code

Future / Ongoing work

- static enforcement of disentanglement (e.g. type system)

- dynamic enforcement (“entanglement management”)

- distributed computing?

github.com/mpllang/mpl

