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Apple A14: 
12 cores

4x Intel Xeon E7: 
72 coresAMD Epyc: 64 cores

Apple S4: 
2 cores

AMD Ryzen 
Threadripper: 

16 cores
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Parallel Hardware Today

nVidia 
GeForce 3090: 

10496 (CUDA) cores



Parallel Programming

functional

imperative

mutability (in-place updates)

manual memory management

race conditions

immutability

automatic memory management

deterministic by default

slow?

fast

?can parallel functional 
programming be 
fast and scalable
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deterministic by default

Parallel Programming
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functional

imperative

mutability (in-place updates)

manual memory management

race conditions 

slow?

fast

?can parallel functional 
programming be 
fast and scalable

high rate of allocation 
heavy reliance on GC

immutability 
automatic memory management 
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mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel
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collector
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Sequential

Parallel

mutator collectormemory

Is there a better way?
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In Existing Functional Languages...
- popular “two-level” design [Doligez-Leroy-Gonthier]


- used by multicore OCaml, GHC Haskell, Manticore, Caml Light, ...

- minor and major heaps

- parallel allocation+GC in minor heaps

. . .minor 
heap

major heap- invariants:

- no cross-pointers between minor heaps

- restrictions between major and minor heaps

- promotions maintain invariants 
- moving (copying) data from minor to major

- problem: shared data must live in major heap 
- scheduler actions trigger promotions

- high overhead, no provable efficiency (e.g. unbounded space)
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memory

collectormutator
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Disentanglement 
 

“concurrent tasks remain oblivious

to each other’s allocations”

Is there a better way?



MaPLe Compiler

• based on MLton, full Standard ML language, extended with


• parallel memory management based on disentanglement 

• used by 500+ students at CMU each year


• outperforms existing implementations of functional languages


• competitive with state-of-the-art imperative/procedural  
(including Java, Go, C/C++)

github.com/mpllang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

[1] Efficient Tree-Traversals: Reconciling Parallelism and Dense Data 
Representations. Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind 
Kulkarni, and Ryan R. Newton. ICFP 2021

[2] Disentanglement in Nested-Parallel Programs. Sam Westrick, Rohan Yadav, 
Matthew Fluet, and Umut A. Acar. POPL 2020

MPL vs multicore OCaml: 
  ~2x average speedup [1]

MPL vs GHC Haskell:

  ~2x average speedup [1]

MPL vs Manticore: 
  2-50x speedup [2]

9



Sorting Shootout

~24x speedup over 
C++ std::sort 

2nd fastest, behind Cilk 

40% faster than Go 

70% faster than Java

serial

(1 proc)

parallel

(72 procs)
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betweenness centrality

breadth-first search

minimum spanning tree

low-diameter decomposition

triangle counting

delaunay triangulation

quickhull

nearest neighbors

skyline

2D range query

seam carving

raytracing

GIF encode+decode

reverb

WAV encode+decode

tokenization

grep, wc

palindrome

suffix array 
integration

dense+sparse matrix mult

LU-decomposition

bignum add, mult

mandelbrot

n-body

sorting

histogram

line fit

remove duplicates

mcss

n-queens

graphs


geometry


images


audio


text


numeric


other


Parallel ML Benchmarks

- all disentangled

- many ported from highly-optimized C/C++


- PBBS, Ligra, and PAM benchmark suites

- excellent performance

- in general, within 2-3x of hand-optimized C/C++ 

- e.g. delaunay triangulation, factor 2 
- in some cases, can match C/C++  

- e.g. linefit: near optimal on our 72-core machine  
(max read bandwidth)



tinykaboom
range-query
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mergesort
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MPL (72 processors) 
vs 

MLton (sequential baseline) 

10-63x speedup, often with 
less space (!)

Speedup (higher is better) Space Blowup (lower is better)
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allocate

location X

use X use X

Disentanglement

- observed in efficient parallel code: 
concurrent tasks are oblivious to 
each other’s allocations

- arbitrary? no: 
guaranteed by race-freedom 
[Westrick et al. 2020]

- in computation graph: 
allocation precedes use
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How to utilize disentanglement 
for improved efficiency and scalability?

Disentanglement

idea: organize memory to reflect structure of parallelism



Nested Fork/Join Parallelism 

classic and popular technique

• Cilk, ParlayLib, Intel TBB, Microsoft TPL, OpenMP, Legion, 

Rayon, Fork/Join Java, Habanero Java, X10, multiLisp, Id, 
NESL, parallel Haskell, Manticore, Futhark, SML#, etc.

fork (spawn) join (sync)
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Task-Local Heaps

fork (spawn) join (sync)



fork (spawn)

merge heaps 
into parent

fresh empty heaps

join (sync)

Task-Local Heaps
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Disentangled Memory Management
• disentanglement: no cross pointers
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naturally 
parallel

reorganize, 
compact, etc. 
inside subtree

• disentanglement: no cross pointers 

• subtree collection

Disentangled Memory Management
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• disentanglement: no cross pointers 

• subtree collection

• internal collections and provable efficiency  

[Arora et al. POPL 21]

naturally 
parallel

reorganize, 
compact, etc. 
inside subtree

Disentangled Memory Management
Implementation Notes: 
• carefully integrated with scheduler


• new heaps only on steals

• write barrier for down-pointers

• no read barrier 
• no promotions necessary



P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12

Heap Scheduling
• goal: assign heaps to processors


• each processor manages its own 
memory
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Heap Scheduling
• goal: assign heaps to processors


• each processor manages its own 
memory


• integrate closely with thread 
scheduling (work-stealing)

P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12
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Collection Policy
algorithm 
- each processor p has local counter Lp 

- when cumulative size of p’s heaps exceeds k·Lp: 

- processor p performs GC on its heaps 

- set Lp to amount of memory that survives

theorem   [Arora et al., POPL 21] 
a race-free program with work W and sequential 
space R requires O(P·R) space and O(W + P·R) 
work, including costs of memory management

Key idea:

• spines resemble sequential execution

• local counters Lp cannot exceed R

23



fully general

disentangled

race-free

mutation-free
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Intuition

• if entangled, must be a read/write race 
• write: creates down-pointer 
• read: discovers data across

x

y

theorem   [Westrick et al. POPL 20] 
all race-free programs are disentangled

y = malloc() 
*x = y  
...

... 

... 
z = *x

Proof Sketch

• single-step invariant: 

if location X accessible without a race, then 
neighbors(X) are in root-to-leaf path


• carry invariant through race-free execution
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation 
w/ “local” effects

only 10% more time+memory than hand-optimized

Writing Disentangled Programs

no need to know 
about disentanglement!

fun mergesort(X) = 
  if length(X) <= granularity then 
    quicksort(X) 
  else 
    let 
      val (L,R) = split(X) 
      val (sL,sR) = par(fn _ => mergesort(L), 
                        fn _ => mergesort(R)) 
    in 
      merge(sL,sR) 
    end



Writing Disentangled Programs
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

fast implementation 
w/ “local” effects

...

parentheses matching

max contiguous subsequence

prime sieve

sorting

order statistics

range query

graph search

connected components

shortest paths

minimum spanning forest

dynamic programming

hashing

...

15-210 (Undergrad Course) 
Parallel and Sequential


Data Structures and Algorithms

no need to know 
about disentanglement!
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purely functional, parallel, disentangled algorithms
tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation 
w/ “local” effects

mostly

Writing Disentangled Programs

fun forwardBFS(G,s) = 
  let 
    fun outEdges(u) = map(fn v => (u,v), neighbors(G,u)) 
    val parents = tabulate(numVertices(G), fn v => -1) 
    fun tryVisit(u,v) = 
      if compareAndSwap(parents,v,-1,u) then SOME(v) else NONE 
    fun search(F) = 
      if length(F) = 0 then () 
      else search(filterOp(tryVisit, flatten(map(outEdges, F)))) 
  in 
    tryVisit(s,s); 
    search(singleton(s)); 
    parents 
  end



29

tabulate

map

reduce

scan

filter

flatten

merge

...

pure library interface

...

fast implementation 
w/ “local” effects

Writing Disentangled Programs

Parallel Block-Delayed Sequences

Sam Westrick, Mike Rainey, Daniel Anderson, and Guy Blelloch

PPoPP’22


fusion across library calls

• e.g. only O(#processors) allocation for map -> scan -> reduce



30

Summary
disentanglement 
- “concurrent tasks remain oblivious to each other’s allocations”

- common property, guaranteed by race-freedom, functional programming

- enables provably efficient parallel memory management and GC


MaPLe implementation

- efficient and scalable

- competitive with low-level imperative code


Future / Ongoing work

- static enforcement of disentanglement (e.g. type system)

- dynamic enforcement (“entanglement management”)

- distributed computing?

github.com/mpllang/mpl


