
Parallel Block-Delayed
Sequences

Sam Westrick
Mike Rainey

Daniel Anderson

Guy Blelloch

PPoPP 2022

1

- sequences, sets, dictionaries, etc.

- map, reduce, filter, scan, etc.

- classic and popular

- before I was born: APL, SETL, Backus’s FP, CM-Lisp, C*, NESL, ...

- nowadays, ubiquitous: MapReduce, Spark, Java Streams, Repa (Haskell), Futhark,

NumPy (Python), MATLAB, Julia, LINQ (C#), ...

- naturally parallel

- in terms of performance (bulk operations) and semantics (no concurrency by default)

- functional style avoids race conditions

- succinct, easy-to-understand algorithms

- abstract over algorithm design (e.g. divide-and-conquer ==> reduce)

- higher-order functions

Programming with Collections

Efficiency?
- standard problem: 

excess writes for temporary 
(intermediate) results

- solution: fusion
- optimize across operations

- delay computation until 

results are needed

- for example: 
map(f,map(g,S))
map(f○g, S)

No Fusion

map: 
N reads 
N writes

scan: 
2N+2b reads 
N+2b writes

reduce: 
N+b reads

b writes

in total: 
6N + O(b) memory ops

map: 
0 reads 
0 writes

scan: 
N+b reads 
2b writes

reduce: 
N+2b reads

b writes

With Fusion 
(Our Approach)

in total: 
2N + O(b) memory ops

fuse

- Index fusion
- naturally parallel

- elements have to independent

- good for map/zip/reduce fusion

- e.g. Repa [1]

Fusion Breakdown

lookup: index ➞ element

first: element
next: element ➞ element

- Stream fusion
- naturally sequential

- e.g. lazy lists, Java streams, 

C++20 ranges/views, Rust
iterators, ...

[1] Regular, Shape-polymorphic, Parallel Arrays in Haskell. 
Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and Ben Lippmeier.  
ICFP 2010.

Fusion Breakdown (cont.)
- related work: stream-of-blocks [1,2]

- parallelism within a block

- stream fusion across blocks

- well-suited for fine-grained SIMD

- e.g. vectorized, GPU 
(can choose block size to match vectorization)

- does not perform well on multicore

- requires massive blocks to amortize synchronization

[1] Futhark: Purely Functional GPU Programming with Nested Parallelism and In-Place Array Updates. 
Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cosmin E. Oancea. PLDI 2017.

[2] Exploiting Vector Instructions with Generalized Stream Fusion. 
Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. CACM 2017.

Challenges
- portability

- does it require integration with compiler?

- does it rely on language-specific features?

- fusion across wide set of parallel operations
- in addition to normal map/zip/reduce fusion, can it do:

- scan (parallel prefix sums) ?

- filter ?

- flatten (seq<seq<T>> ➞ seq<T>) ?

- reasoning about performance
- where does fusion happen?

- how many memory writes?

- our approach: “blocks of streams”
- combine index- and stream-fusion

- index fusion across blocks

- stream fusion within blocks

- well-suited for multicore hardware

- fusion across scan, flatten, filter, etc.

- simple cost model

- work, span, memory writes (allocation)

requires no special compiler support 
or language features 
 
libraries implemented in two very

different languages:

• C++

• Parallel ML (functional programming)

Block-Delayed Sequences

Block-Delayed Sequences
Random Access Delay
RAD(i,n,f)
i: start index
n: length
f: index ➞ element

Blocked-Iterable Delay
BID(n,b)
n: length
b: block index
 ➞ stream<element>

n elements split into n/B blocks (block size B)

b(i): stream of elements for ith block[f(i), f(i+1), ..., f(i+n-1)]

BID to RAD: O(N) writes

RAD to BID: free

Block-Delayed Sequences: Scan

eager
convert input to BID

fuses with prior operations

eager

delayed
represent output as BID

fuses with later operations

Block-Delayed Sequences: Flatten

input
fuses with previous operations
(force outer elements to compute

offsets; inner remain delayed)

output
represented as BID

fuses with later operations

block stream:

1. binary search (on length offsets) to find start

2. to compute next, advance pointer in subsequence  

or move to next subsequence

(Filter is similar)

function nextFrontier(F):
 E = flatten(map(outEdges, F))
 F’ = filter(tryVisit, E)
 return F’

function outEdges(u):
 return map(fn(v) => (u,v), neighbors(u))

// visit v from edge (u,v); return v if success
function tryVisit(u,v):
 ...

Example (BFS) and Cost Analysis

Cost analysis (single round of BFS):
 linear work

 polylog span

 only O(|F| + |F’| + |E|/B) memory writes

Implementations

github.com/cmuparlay/parlaylib
github.com/cmuparlay/pbbsbench

ParlayLib+PBBS 
(C++)

github.com/mpllang/mpl
github.com/mpllang/delayed-seq

MaPLe Compiler 
(Parallel ML)

C++
- streams as stateful iterators

- templated to specialize for a particular type

- overloading used to dispatch on sequence 

representation (BID vs RAD)

- updated PBBS benchmarks

Parallel ML (MPL)
- streams as stateful functions of type  
unit ➞ unit ➞ ‘a. For example:
 S = makeStream()
 x0 = S(); x1 = S(); ...

- algebraic datatype for sequences, one variant 
per representation

- standard compiler optimizations inline and specialize

Experimental Evaluation

0 10 20 30 40 50 60 70
0
10
20
30
40
50
60
70 delay

array
rad

e.g.: C++ BFS Speedup
#Processors

Sp
ee

du
p

Three libraries compared:

- array: no fusion, arrays only

- rad: extends array with RAD fusion

- delay (full library): extends array with RAD+BID fusion

Six libraries in total 
(Everything implemented in both C++ and Parallel ML)

13 PBBS benchmarks

- 5 benefit from BID+RAD fusion

- 8 benefit from only RAD fusion

bestcut

bfs

bignum-add

primes

tokens

0 1 2 3

C++ MPL

10x

10x

6.1x

BID Fusion Improvement
Time (72 cores) Space (72 cores)

bestcut

bfs

bignum-add

primes

tokens

0 1 2 3

C++ MPL

delay (full RAD+BID fusion)

vs

rad (RAD-only fusion)

up to 2.7x time improvement

up to 10x space improvement

grep

integrate

linearrec

linefit

mcss

quickhull

sparse-mxv

wc

0 1 2 3 4 5 6

C++ MPL

93x

15x

RAD Fusion Improvement

delay (full RAD+BID fusion)

vs

array (no fusion)

up to 19x time improvement

up to 93x space improvement

grep

integrate

linearrec

linefit

mcss

quickhull

sparse-mxv

wc

0 1 2 3 4 5

C++ MPL

9.9x

19x

Time (72 cores) Space (72 cores)

Summary
parallel block-delayed sequences
- new “blocks of streams” representation (BID)

- supports fusion across all common operations 

(including scan, flatten, filter, etc.)

- simple to implement

- portable across multiple languages

- implementations in both C++ and Parallel ML

- significant improvements in both space and time

future work
- extend to many-core and distributed computing

github.com/cmuparlay/parlaylib
github.com/cmuparlay/pbbsbench

ParlayLib+PBBS 
(C++)

github.com/mpllang/mpl
github.com/mpllang/delayed-seq

MaPLe Compiler 
(Parallel ML)

