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Is there a better way?

mutator collectormemory



function integrate(f, a, b, n) { 
  Δ = (b-a) / n 
  heights = tabulate(n, fn i => f(a + Δ/2 + i*Δ) ) 
  return Δ * reduce(heights, fn (a,b) => a+b ) 
}

a b

fΔ

O(n) work 
O(log n) span

Example: Numerical Integration



function msort(X) { 
  if length(X) <= 1 return X 
  L, R = split(X) 
  sL, sR = par(msort(L), msort(R)) 
  return merge(sL, sR) 
}

msort(X)

msort(L) msort(R)

merge(sL,sR)

O(n log n) work 
O(logk n) span

Example: Mergesort



fork (spawn) join (sync)

Task-Local Heaps



fork (spawn)

merge heaps 
into parent

fresh empty heaps

join (sync)

Task-Local Heaps



Disentanglement definition 
throughout execution, each task may only 
use data in local or ancestor heaps
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Disentanglement definition 
throughout execution, each task may only 
use data in local or ancestor heaps

Why do we care? 
Hint: parallel GC

(will get back to this soon…)
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Intuition

• if entangled, must have read down-pointer 
• down-pointer must have been created by 

concurrent write

• so, program has read/write race

x

y

theorem   [Westrick et al., POPL 20] 
all race-free programs are disentangled

y = malloc() 
*x = y  
...

... 

... 
z = *x

Proof Sketch

• single-step invariant: 

if location X accessible without a race, then 
neighbors(X) are in root-to-leaf path


• carry invariant through race-free execution



many benign races

all disentangled 

(and likely others too)

Disentanglement in the Wild
BFS

betweenness centrality

Bellman-Ford

k-Core

Page Rank

maximal independent set

eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest

suffix array

Barnes-Hut

nearest neighbors

ray casting

Ligra

PBBS
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Heap Scheduling
• goal: assign heaps to processors


• each processor manages its own 
memory
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assign to same proc


• steal: new heap on right, 
assign to new proc


• surrender: at join, 
give heaps to sibling
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Collection Policy
algorithm 
- each processor p has local counter Lp 

- when cumulative size of p’s heaps exceeds k·Lp: 

- processor p performs GC on its heaps 

- set Lp to amount of memory that survives

theorem   [Arora et al., POPL 21] 
a race-free program with work W and sequential 
space R* requires O(P·R*) space and O(W + P·R*) 
work, including costs of memory management

Key ideas:

• after surrender, heaps resemble sequential execution


• left-before-right, or right-before-left?

• “unordered reachable space” R* allows for both


• local counters Lp cannot exceed R*



Disentangled Garbage Collection
• every pointer points up or down


• disentanglement: no cross-pointers


• leaves are active tasks with GC roots 
(think of these as up-pointers)


• write-barrier remembers down-pointers


• snapshot-at-fork summarizes up-pointers from 
stolen children


• closure of right-side forked task is good enough  
(doesn’t violate local R* bound!)


• write-barrier preserves reachability

…

…

…



Disentangled Garbage Collection

internal

- has to be concurrent GC

- non-moving mark-sweep

local

- no concurrency

- compactifying (copying) GC



MaPLe
• based on MLton compiler for Standard ML


• full Standard ML language, extended with fork-join library


• used by 500+ students at Carnegie Mellon University each year

github.com/MPLLang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b



Sorting Shootout

~24x speedup over 
C++ std::sort 

2nd fastest, only behind 
C++/Cilk 

40% faster than Go 

70% faster than Java



Speedups
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Space Overheads
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Thanks!

github.com/MPLLang/mpl


