
Disentanglement:
Provably Efficient Parallel
Functional Programming

Sam
Westrick

Jatin
Arora

Rohan
Yadav

Umut
Acar

Matthew
Fluet

Parallel Programming

functional

imperative

mutability

manual memory management

race conditions

immutability

automatic memory management

deterministic by default

slow?

fast

?can parallel functional
programming be
fast and scalable

deterministic by default

Parallel Programming

3

functional

imperative

mutability

manual memory management

race conditions

slow?

fast

?can parallel functional
programming be
fast and scalable

high rate of allocation
heavy reliance on GC

immutability
automatic memory management

4

mutator collectormemory

memory

mutator

mutator collector

mutator
mutator

mutator
mutator

mutator
mutator

mutator

Sequential

Parallel

memory

collector

5

mutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Sequential

Parallel

Is there a better way?

mutator collectormemory

function integrate(f, a, b, n) {
 Δ = (b-a) / n
 heights = tabulate(n, fn i => f(a + Δ/2 + i*Δ))
 return Δ * reduce(heights, fn (a,b) => a+b)
}

a b

fΔ

O(n) work
O(log n) span

Example: Numerical Integration

function msort(X) {
 if length(X) <= 1 return X
 L, R = split(X)
 sL, sR = par(msort(L), msort(R))
 return merge(sL, sR)
}

msort(X)

msort(L) msort(R)

merge(sL,sR)

O(n log n) work
O(logk n) span

Example: Mergesort

fork (spawn) join (sync)

Task-Local Heaps

fork (spawn)

merge heaps
into parent

fresh empty heaps

join (sync)

Task-Local Heaps

Disentanglement definition 
throughout execution, each task may only 
use data in local or ancestor heaps

Disentanglement definition 
throughout execution, each task may only 
use data in local or ancestor heaps

Disentanglement definition 
throughout execution, each task may only 
use data in local or ancestor heaps

Why do we care?
Hint: parallel GC

(will get back to this soon…)

fully general

disentangled

race-free

mutation-free

What programs are disentangled?

Intuition

• if entangled, must have read down-pointer
• down-pointer must have been created by

concurrent write

• so, program has read/write race

x

y

theorem [Westrick et al., POPL 20]
all race-free programs are disentangled

y = malloc()
*x = y
...

...

...
z = *x

Proof Sketch

• single-step invariant: 

if location X accessible without a race, then
neighbors(X) are in root-to-leaf path

• carry invariant through race-free execution

many benign races

all disentangled

(and likely others too)

Disentanglement in the Wild
BFS

betweenness centrality

Bellman-Ford

k-Core

Page Rank

maximal independent set

eccentricity estimation

quickhull

deduplication

sorting

minimum spanning forest

suffix array

Barnes-Hut

nearest neighbors

ray casting

Ligra

PBBS

fully general

disentangled

race-free

mutation-free

What programs are disentangled?

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

Is there a better way?

memory

collectormutator

mutator
collector

mutator
mutator

mutator
mutator

mutator
mutator

collector
collector

collector

collector
mutator

P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12

Heap Scheduling
• goal: assign heaps to processors

• each processor manages its own
memory

Heap Scheduling fork

steal

……

surrender
(left done first)

……

• goal: assign heaps to processors

• each processor manages its own
memory

• integrate closely with thread
scheduling (work-stealing)

• fork: new heap on left,  
assign to same proc

• steal: new heap on right, 
assign to new proc

• surrender: at join, 
give heaps to sibling

Heap Scheduling
• goal: assign heaps to processors

• each processor manages its own
memory

• integrate closely with thread
scheduling (work-stealing)

• fork: new heap on left,  
assign to same proc

• steal: new heap on right, 
assign to new proc

• surrender: at join, 
give heaps to sibling

P0 P1 P2

P4

P5 P6

P7

P8 P9 P10

P11

P12

Collection Policy
algorithm
- each processor p has local counter Lp

- when cumulative size of p’s heaps exceeds k·Lp:

- processor p performs GC on its heaps

- set Lp to amount of memory that survives

theorem [Arora et al., POPL 21]
a race-free program with work W and sequential
space R* requires O(P·R*) space and O(W + P·R*)
work, including costs of memory management

Key ideas:

• after surrender, heaps resemble sequential execution

• left-before-right, or right-before-left?

• “unordered reachable space” R* allows for both

• local counters Lp cannot exceed R*

Disentangled Garbage Collection
• every pointer points up or down

• disentanglement: no cross-pointers

• leaves are active tasks with GC roots 
(think of these as up-pointers)

• write-barrier remembers down-pointers

• snapshot-at-fork summarizes up-pointers from
stolen children

• closure of right-side forked task is good enough  
(doesn’t violate local R* bound!)

• write-barrier preserves reachability

…

…

…

Disentangled Garbage Collection

internal

- has to be concurrent GC

- non-moving mark-sweep

local

- no concurrency

- compactifying (copying) GC

MaPLe
• based on MLton compiler for Standard ML

• full Standard ML language, extended with fork-join library

• used by 500+ students at Carnegie Mellon University each year

github.com/MPLLang/mpl

val par: (unit -> ‘a) * (unit -> ‘b) -> ‘a * ‘b

Sorting Shootout

~24x speedup over
C++ std::sort

2nd fastest, only behind
C++/Cilk

40% faster than Go

70% faster than Java

Speedups

�

��

��

��

��

��

��

FH
QWU
DOL
W\

GH
GX
S

GP
P

JUH
S

PV
RUW QQ

SD
OLQ
GUR
PH

SUL
PH
V

TX
LFN
KX
OO

UDQ
GR
P UD\

UHY
HUE

VX
IIL[
�DU
UD\

WRN
HQ
V

PBBS-style
benchmarks

70 procs

relative to MLton

Space Overheads

�

�

�

�

�

�

FH
QWU
DOL
W\

GH
GX
S

GP
P

JUH
S

PV
RUW QQ

SD
OLQ
GUR
PH

SUL
PH
V

TX
LFN
KX
OO

UDQ
GR
P UD\

UHY
HUE

VX
IIL[
�DU
UD\

WRN
HQ
V

PBBS-style
benchmarks

70 procs

relative to MLton

Thanks!

github.com/MPLLang/mpl

