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Research on parallel computing has historically revolved around compute-intensive applications drawn
from traditional areas such as high-performance computing. With the growing availability and usage of
multicore chips, applications of parallel computing now include interactive parallel applications that mix
compute-intensive tasks with interaction, e.g., with the user or more generally with the external world. Recent
theoretical work on responsive parallelism presents abstract cost models and type systems for ensuring and
reasoning about responsiveness and throughput of such interactive parallel programs.

In this paper, we extend prior work by considering a crucial metric: fairness. To express rich interactive
parallel programs, we allow programmers to assign priorities to threads and instruct the scheduler to obey a
notion of fairness. We then propose the fairly prompt scheduling principle for executing such programs; the
principle specifies the schedule for multithreaded programs on multiple processors. For such schedules, we
prove theoretical bounds on the execution and response times of jobs of various priorities. In particular, we
bound the amount, i.e., stretch, by which a low-priority job can be delayed by higher-priority work. We also
present an algorithm designed to approximate the fairly prompt scheduling principle on multicore computers,
implement the algorithm by extending the Standard ML language, and present an empirical evaluation.
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1 INTRODUCTION

Due to recent advances in hardware, multicore computing has become the rule, rather than the
exception, in consumer desktops as well as mobile devices such as tablets, smartphones and even
smart watches. These developments have led to increased interest in languages and techniques for
writing parallel programs. Many languages, libraries and systems have been developed, including
NESL [Blelloch et al. 1994], Cilk [Frigo et al. 1998], Fork/Join Java [Lea 2000], Habanero Java [Imam
and Sarkar 2014], TPL [Leijen et al. 2009], TBB [Intel 2011], X10 [Charles et al. 2005], parallel
ML [Fluet et al. 2011, 2008; Guatto et al. 2018; Raghunathan et al. 2016; Sivaramakrishnan et al.
2014], and parallel Haskell [Keller et al. 2010; Kuper et al. 2014].

These languages and systems for cooperative threading allow the user to express parallelism at
an abstract level without directly specifying how to map tasks onto processors, and leave it to a
scheduler to determine the mapping. The focus of nearly all of this work has been on running a
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compute-intensive job on the cores of a machine as quickly as possible, i.e., maximizing throughput.
This focus on compute-intensive workloads is partially historical, owing to the traditional use of
parallelism in high-performance computing.

Another line of work, largely in the systems community, develops techniques for competitive
threading. Systems and applications for competitive threading focus on hiding the latency of
blocking operations by multiplexing independent threads. This multiplexing is useful even on a
uni-processor, especially in interactive applications (e.g., [Blake et al. 2010; Flautner et al. 2000;
Gao et al. 2014; Hauser et al. 1993]). Key performance metrics for competitive threading include
responsiveness—how long each thread takes to respond to a user—and fairness—whether the threads
receive fair distributions of CPU time (this may mean giving them equal time or dividing CPU time
according to the weight or priority of threads).

While each of these two approaches to threading have been researched extensively, they have
historically remained as two largely separate lines of research, with competitive threading confined
mostly to the systems community and cooperative threading to the parallelism community. The
advances in multicore computers challenge this order, because the workloads of multicore and
parallel hardware today do not consist of purely computational or purely interactive workloads
but also include applications that are interactive and involve compute-intensive parallel tasks. For
example, a game might perform compute-intensive tasks to implement visual effects while it also
interacts with the user. Recent work by Muller et al. [2017, 2018] has developed programming-
language theory for such interactive parallel applications by considering languages that combine
interaction and parallelism, and by allowing parallel tasks to have different priorities. Their work
allows, for example, a parallel compute-intensive task to run in the “background” concurrently with
a high-priority interactive task. They introduce a scheduling principle called prompt scheduling that
can be used to reason about the response time and throughput of such computations and provide
an operational semantics that implements this principle.

The prior work on responsive parallelism [Muller et al. 2017, 2018] shows that it is theoretically
possible to achieve both responsiveness and throughput. In this paper, we build on that work to
account for fairness while maintaining provable guarantees on response time by presenting fairly
prompt scheduling. Fairness has been the subject of a large body of work in the systems community
(e.g. [Demers et al. 1989; Goyal et al. 1996; Waldspurger and Weihl 1994]), where the focus has
been on coarse-grained threads and largely excluded parallel workloads. Fairness continues to
be challenging to achieve even in production operating systems, especially in the presence of
both interactive and computational workloads [Nieh et al. 1994], which have essentially opposing
demands from the schedulers.

As an example of a highly parallel application where fairness plays a crucial role, consider a robot
path planning system which runs two or more parallel path planning algorithms in a hierarchical
fashion [Knepper et al. 2010]. A high-level planner runs infrequently to find an efficient path
using a set of waypoints (e.g. which hallways to use to go between rooms in a building) while
a low-level planner runs frequently to plan the detailed path to the next waypoint, which may
involve navigating around obstacles such as furniture. Each planning algorithm itself is parallel,
and so many planning threads must share resources with a high-priority interaction loop that
periodically reads sensor values and outputs commands to motors. Such an application could not be
encoded in the priority model of prompt scheduling because the two planning computations could
starve each other. The application could be coded directly using low-level threading libraries which
provide both priorities and fairness, but this would require manually writing complex concurrent
code and provide no guarantees on responsiveness.

Intuitively, the guarantee a programmer would desire from a fair scheduler would be a bound on
how much the execution time of a low-priority computation can be impacted by higher-priority
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work in the system. We refer to this increase in execution time as a computation’s stretch: if a
computation takes 4 times longer to execute than it would in isolation, its stretch is 4. Using
techniques presented in this paper, the motion planning example above can be programmed easily
as three parallel computations (two planners and an interaction loop) running at three priorities (see
Section 6.3.1 for specific details of our implementation of the example). If the high- and low-level
planners are equally computationally intensive and we wish for the low-level planner to run at 4
times the rate of the high-level planner, the programmer might specify that the high-level planner
can tolerate a stretch of 6 while the low-level planner can only tolerate a stretch of 1.5 (both must
be stretched somewhat to allow for the other planner and the interaction loop to run).

In this paper, we will more formally define mechanisms for specifying fairness that allow
programmers to reason about and appropriately tune the maximum amount of stretch experienced
by low-priority computations. We show that this reasoning is sound for all schedulers that follow
a scheduling principle we call “fairly prompt”. Fairly prompt scheduling extends the prompt
scheduling of prior work by also requiring schedulers to devote enough processing time to lower-
priority work to achieve the desired fairness (or stretch). Prior systems based on prompt scheduling,
in which higher-priority jobs are always executed, cannot guarantee any finite bound on stretch: a
series of long-running high-priority jobs could delay a low-priority computation indefinitely.

In addition to presenting and bounding fairly prompt scheduling, we also describe a concrete
algorithm based on this principle. We evaluate the algorithm by implementing it as an extension
of Standard ML and considering a suite of benchmarks. We also provide a qualitative analysis by
considering two larger case studies, including one based on the motion planning example above.

The contributions of this paper include the following.

o The fairly prompt scheduling principle for scheduling interactive parallel programs.

e An offline scheduling theorem showing that an abstract scheduler obeying the fairly prompt
principle respects an upper bound on the execution and response time of threads.

o A scheduling algorithm that implements the key ideas of fairly prompt scheduling while also
considering practical concerns.

e An implementation of the scheduler and a threading library as an extension to Standard ML.

e A suite of parallel interactive benchmarks and an empirical evaluation.

2 PRELIMINARIES

In this section, we give a brief overview of the threading model considered in this paper, and then
review related definitions and notations on which we will build. This section does not discuss
extending the models with fairness; that is the subject of Section 3.

2.1 Threading Model

In this paper, we assume a program consists of threads, each of which is assigned a priority p.
Priorities are drawn from a set R. Priorities are ordered, i.e. we may write p; < p, to indicate that a
thread of priority p; is lower-priority than a thread of priority p,. We write p; < p, if p; and p,
may be the same. The order < may be total or partial, i.e., it is not necessary to specify the full
ordering of thread priorities.

Threads may depend on each other in two ways, through spawns and joins. A thread a may spawn
another thread b; thereafter, thread b will run in parallel with the remainder of thread a. A thread a
may also join with thread b; the join operation will wait for thread b to complete before thread a
proceeds. This model is sufficient to encode many threading models, such as fork-join, async-finish
and futures, which are used in real-world parallelism libraries. In particular, the formal model and
scheduling algorithm presented in this paper could be considered a blueprint for extending the
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PriML language [Muller et al. 2018] with fairness. In PriML, programs are parallelized using a
threading construct similar to futures. Each future is assigned a priority. The set of priorities and
their ordering (which may be a partial order) is specified by the programmer. However, PriML, as
it currently exists, does not support any notion of fairness, scheduling threads strictly in priority
order. The threading library we describe in Section 5.3, and the example programs we implemented
it (Section 6) are inspired by PriML, but the ideas of this paper are more general and can apply to
any language and threading model that is compatible with the assumptions described above.

2.2 A DAG Model for Priorities

In the formal development of this paper, as is standard for such developments, we represent a
parallel computation using a directed acyclic graph, or DAG. In such a model, vertices of the DAG
represent sequential operations taking a uniform amount of time (e.g. processor instructions) and
edges represent dependences between operations. Our model and related notations are built on
those of Muller et al. [2018], which we now briefly review.

Formally, a DAG g is a triple (77, Ej, Es). The first component is a collection of threads, each of
which is associated with a thread symbol, for which we use the metavariables a, b, ¢ and variants,
and with a priority p. An element of 7 is written a < . The thread itself, written i, is a sequence

P
of vertices i = uy - up - U3 - . .. - Uy, all of which must occur in sequence. We write Priog(u) to refer
to the priority of the thread in g to which u belongs.
For each thread u; - ... - uy,, there exist edges (u, u2), . . ., (un—1, 4,) to indicate the sequential

dependences between instructions in the thread. Inter-thread dependences are indicated with
additional edges, which are collected in the second and third components of the DAG triple. The
set E; contains edges of the form (a, u) indicating that vertex u waits for thread a to complete. This
is a shorthand for the edge (¢, u) where t is the last vertex of thread a. The set E; contains edges
of the form (u, a) indicating that vertex u spawns thread a. This is a shorthand for the edge (u, s)
where s is the first vertex of thread a.

For two vertices u and u’, we write u J u’ if u is an ancestor of 4’ in a graph, meaning u must
execute before u’. If neither ¥ J u’ nor 4’ J u then u and u’ may execute in parallel.

Scheduling results for responsiveness, in this paper and in prior work, quantify over well-formed
DAGs. Intuitively, well-formed DAGs do not have priority inversions: threads at one priority do not
depend on lower-priority work along their critical path. Such a priority inversion would mean that
the execution time of a high-priority thread might depend on the amount of lower-priority work,
breaking the efficient scheduling guarantees later in this section.

Definition 1. ADAG g = (7, Es, E;) is well-formed if for all threads a < uy-...-u, € 7 ,ifu Ju,
P
and u 2 uy then p < Priog(u).

Exactly how to ensure a DAG is well-formed is outside of the scope of this paper. PriML is
equipped with a type system that rules out priority inversions, ensuring well-typed programs
will produce well-formed DAGs. The threading library we describe in Section 5.3 detects priority
inversions at runtime and throws an exception.

Given a number P of processors, a schedule is an assignment of vertices to processors over
a sequence of time steps such that no vertex is executed before any of its ancestors (we say a
vertex is ready if all of its ancestors have been executed). The offline scheduling problem for a
DAG is to construct a short schedule for the DAG. Constructing the optimal schedule is NP-hard
in general [Ullman 1975]. As a result, offline scheduling results in the literature generally show
that schedules that obey a certain scheduling principle come within a constant factor of optimal.
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Probably the most famous such result is Brent’s Theorem [Brent 1974] which gives a schedule that
is 2-optimal for standard DAGs without priorities or responsiveness requirements.

Muller et al. [2017, 2018] proposed the prompt scheduling principle, which extends classic ideas
like Brent’s to prioritized DAGs. A prompt schedule is one that does not execute a thread if there
is a higher-priority thread that is ready and not already being executed. Furthermore, it does not
leave a processor idle if there remains a ready thread not being executed.

In a prompt schedule of a well-formed DAG, the response time of a thread of priority p can be
given a bound that does not depend on the amount of work at priorities lower than p. Formally,
leta < s- ...t beathread. The response time T(a) of a is the number of time steps between

p

when s becomes ready and when ¢ is executed, inclusive. We write Wy to refer to the number of
vertices of priorities belonging to a set R. The competitor work W ,({ a) refers to the number of
vertices at priority at least p that may occur in parallel with vertices of thread a:

Wy, (¢ a) SuegludsAtDuA Priogu) £ pll

The a-span S,(% a) is the length of the longest path ending at ¢ consisting of non-ancestors of s.
Under these definitions and assumptions, the response time of a thread can be bounded by terms
that include only competitors. Intuitively, at each step during which thread a is active, we are either
executing P vertices at a’s priority or higher, or we are making progress on the a-span.

TaEOREM 1 (MULLER-ACAR-HARPER). Let g be a well-formed DAG with a thread a < i € g. For
P

any prompt schedule of g on P processors,

W%p(% a)

T(a) < —p +S:(3a)

3 SCHEDULING WITH FAIRNESS
3.1 The Fairness Criterion

In the introduction, we motivated the idea of fairness using the notion of stretch: one may wish to
specify that, for example, a computation at a low priority should take no more than four times as
long to run as it would if that computation had the machine to itself. In our scheduling principle
and the design of our algorithm, we will accomplish the desired stretch by allotting processor
resources to priorities according to the stretch specified by the programmer: if a priority p is to
have stretch s(p), the scheduler will ensure that threads at that priority, when available to run, get
at least 1/s(p) of the compute time. Of course, this means that in order for a programmer-defined
set of stretch constraints to be feasible, it must be the case that > ,¢ R#p) < 1. This motivates the
concept of the fairness criterion, which indicates the fraction of computing resources allotted to
each priority. A fairness criterion F is a mapping from priorities to real numbers in the range
[0, 1], summing to 1. A fairness criterion F states that computations at a priority p should be given
the opportunity to use at least a fraction F(p) of the available processing time. The reader may
note that, as defined above, fairness criteria happen to be discrete probability distributions over
priorities, a fact we will take advantage of later when defining a fair scheduling principle.

The fairness criterion is a convenient formalization of fairness for designing the scheduling
principle and scheduling algorithm, and so most of the rest of the paper will be framed in terms of
the fairness criterion rather than the more intuitive notion of stretch. We will, however, show in
Section 3.3 that the connection drawn between the two above is valid: under any fairly prompt
scheduler and a fairness criterion F, a computation at priority p will experience a stretch of at

1
most o)
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3.2 A Fair and Prompt Scheduling Principle

We introduce a new scheduling principle called the fairly prompt scheduling principle, which
extends the prompt scheduling principle with the notion of fairness criteria developed above. A
fairly prompt scheduler is parametrized by a fairness criterion F and is defined by two properties:

e When threads of all priorities are present in the system, the scheduler should devote, on
average, the fraction F(p) of processor cycles to threads at priority p.

This property is sufficient to ensure that the execution time of a job at priority p is not stretched by
more than a factor of 1/F(p) due to higher-priority jobs, but leaves open the question of what to
do when a particular priority is unavailable (i.e., has no threads available in the system). This leads
to the second property:
e When a chosen priority is unavailable, this priority should “donate” its unused CPU cycles to
the highest available priority !.
We note that donation of cycles slightly complicates the intuitive relationship between fairness
criterion, as described, and stretch. Consider a program with the three priorities (H)igh, (M)edium
and (L)ow, with the following fairness criterion.

0.7 p=H
F(p)=4 02 p=M
0.1 p=L

Suppose that, for a time, there are no threads of priority H in the system. Under fairly prompt
scheduling, all of H’s cycles will be donated to M, resulting in a 0.9/0.1 distribution of resources
between M and L. If one interprets the fairness criterion F to mean “M should receive twice as many
cycles as L”, this distribution might seem unfair. However, we consider the goal of our principle
to be maintaining stretch rather than the relative speeds of different threads, and so the fairness
criterion F should instead be read to mean “a computation at M should stretch no more than 5%
and a computation at L should stretch no more than 10x. This guarantee is upheld by our system.
Note that this guarantee would be upheld even if cycles were not donated from inactive priorities;
donations can only improve the stretch of threads (in this case, a computation at M experiences a
much higher level of service than it expects).

The fairly prompt scheduling policy above is flexible enough to encode many application-specific
scheduling policies. For example, if T is the highest priority, we can encode a form of prompt
scheduling in which as many processors as possible are devoted to the highest-priority work
available, followed by the next-highest, and so on. The fairness criterion for such a policy would
be F(T) =1and F(p) =0forallp # T.

For concreteness, we will describe how to construct a fairly prompt schedule given a sequence
of time steps and a set of P processors. At each time step, each processor is assigned a priority
probabilistically according to the fairness criterion F (which, we have noted earlier, may be thought
of as a probability distribution). Processors attempt to execute a ready vertex at their assigned
priority. Processors that are unable to execute a vertex at their assigned priority default to the
“prompt” policy and execute the highest-priority ready vertex.

The use of probability in the definitions of fairness and fairly prompt schedules merits further dis-
cussion. Formal definitions of fairness, for example in the model checking community (e.g., [Francez
1986]), are often stated as properties of infinite executions (e.g., that every process executes infinitely
many times over an infinite interval). The notion of fairness described here diverges from such

UIf priorities form a partial, rather than total, order, “highest available priority” could be interpreted as “any priority p such
that no priority higher than p has available work”. In practice, we implement this by performing a topological sort to derive
a total order on priorities consistent with the partial order, and using the total order for scheduling purposes.
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definitions in two important ways. First, the number of processes and (in general) the lengths of
schedules are finite. Second, our notion of fairness places requirements on the relative frequency at
which threads execute, as opposed to simply requiring that they execute eventually. Consider the
fairness criterion defined above for the priorities {H, M, L}. For a program that runs for 12 time
steps on 2 processors, it is impossible to exactly meet such a fairness criterion because 0.1 X 24 is
not an integral number of processor-steps. Given a finite, discrete number of processors and time
steps, we could guarantee that the fairness criterion is met to within some approximation, but we
instead choose to introduce probabilistic reasoning and to guarantee that the fairness criterion is
met exactly in expectation. As the number of processors or time steps approaches oo, we would
intuitively expect the distribution of work to converge to the fairness criterion.

3.3 Bounding Response Time

We now bound the response time of threads in fairly prompt schedules. We will do this using
two theorems. Theorem 2 bounds the response times of threads in terms of their share of the
fairness criterion, that is, it bounds the amount by which a job is “stretched”, justifying the intuitive
connection between stretch and the fairness criterion. This theorem gives a straightforward bound
that does not consider the additional CPU cycles that may be “donated” from other priorities;
this makes it useful for thinking about threads at lower priorities that are less likely to receive
such donations. Next we show another result, Theorem 3, which shows how the response times of
higher-priority threads can benefit from donated cycles.

In showing both results, we need not develop new cost metrics because, intuitively, fairness
doesn’t cause high-priority threads to depend on any work they otherwise wouldn’t. Fairness only
“inflates” the response time bounds to account for the fraction of cycles devoted to lower-priority
work according to the fairness criterion. We introduce a convenient shorthand for summing the
fairness criterion over a set of priorities:

F(R) £ 3,er F(p)

We will also use the notation 4 p to denote the set {p’ € R | p’ £ p}.

We also note that the bounds in this section are given as expected values. Since fairly prompt
schedules are defined probabilistically, their analysis is also probabilistic and it is not possible to
give exact bounds.

First, we show that the response time of a thread at priority p is “stretched” by no more than 1/F(p)
relative to its expected execution time if the system contained only threads at priority p. The
intuition behind this result is that, from the perspective of a thread (or collection of threads) at
one priority p, a fairly prompt schedule on P processors appears the same as a greedy schedule
(one that always executes ready threads when possible) on P - F(p) processors. In this way, the
result is very much like the offline scheduling bound of Arora et al. [2001], which concerns
multiprogrammed environments in which only a fraction of the total processors may be available to
a parallel computation at any given step. Our bound must include the thread’s competitor work at
priority p, but otherwise the bound and proof are quite similar to those of Arora et al.

THEOREM 2. Let g be a well-formed DAG. Leta < s-...-t € g be such that for allu € g whereu 3 t
P
andu 3 s, it is the case that Priog(u) = p. For any fairly prompt schedule on P processors,

1 1

(Wip1(Fa) +Sa(ka@) - (P= 1)) +1

Proor. Consider the portion of the schedule from the step in which s becomes ready (exclusive)
to the step in which ¢ is executed (inclusive). At each step, each processor samples the fairness

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 81. Publication date: August 2019.



81:8 Stefan K. Muller, Sam Westrick, and Umut A. Acar

criterion independently, so we may model each step as P “processor-steps” happening in sequence,
in which one processor samples the fairness criterion and attempts to execute a vertex. At each
processor-step, collect a token from the relevant processor if it is assigned to priority p at that step.
If the processor successfully works on a vertex of priority p at that step, place a token in the “work”
bucket; otherwise, place a token in the “idle” bucket. Let B,, and B; be the numbers of tokens in
the work and idle buckets, respectively, immediately after a is executed. We will bound B,, and B;
separately. Each token in B,, corresponds to work done at priority p, so B,, < W(,)({ a).

We now bound B; by S,(3 a) - (P — 1). For this part of the proof, we work in whole steps, not
processor-steps. Let step 0 be the step after s is ready, and let Exec(j) be the set of vertices that have
been executed at the start of step j. Consider a step j in which a token is added to B;. For any path
ending at ¢ consisting of vertices of g\ Exec(j), the path starts at a vertex of priority p that is ready at
the beginning of step j. By the fair principle, this vertex must be executed in step j, so the length of the
path decreases by 1 and so S, (g \ Exec(j+1)) = Sa(g\ Exec(j)) — 1. Therefore, the maximum number
of steps in which By increases is S, (g\ Exec(0)), and so B; < S,(g\ Exec(0))-(P—1) since at most P—1
processors can be idle while thread a is active. Let Fs = g\{u # s | u 3 s}. Because }s D g\ Exec(0),
any path excluding vertices in Exec(0) is contained in % s, and S,(g \ Exec(0)) < So(% s), so
By < Salts) - (P—1) =Sa(¢a) - (P - 1).

Let B = B,, + B;. By construction, once B tokens have been placed, a has finished executing.
Let T, be a random variable representing the number of processor-steps required to place B tokens.
Whether a token is placed at each processor-step can be modeled by a geometric distribution
with p = F(p), and so E[T,] = %. The number of steps to place B tokens is [%] < Tff + 1. By
monotonicity and linearity of expectation we have

E[Tps]

E[T(a)]<T+1=P_F(p)

+1 Wip)( a) + Sa(a) - (P=1)) +1

<2 (
P-F(p)
O

The above result considers a collection of threads at a single priority in isolation. This result is
useful as an upper bound on the execution time of long-running computations because, as long
as work at that priority is always available, these threads are guaranteed to receive at least a
fraction F(p) of the processor cycles. The result is less useful for jobs that may idle, and therefore
give up some of their CPU time, but also benefit from donations from other priorities. Theorem 3
bounds the expected response time of such a thread a at priority p. Thread a may run on cycles
devoted to priority p, but it may also run on cycles devoted to higher priorities if work at those
priorities is unavailable. Thus, consider the processor cycles which are intended to be devoted to
priorities p” A p. At each such cycle, if there are any threads ready at a priority not less than p,
one will be executed on this cycle: either the processor will choose a thread at priority p’ if one is
available, or if not, it will execute the highest-priority thread available which, by assumption, has
priority not less than p. Thus, for cycles in this category, the schedule is greedy with respect to
work at priority not less than p. In expectation, a fraction F(4 p) of cycles fall into this category.
So the response time for thread a is simply inflated to account for the fact that only % of cycles

are being spent on this work in expectation.

THEOREM 3. Let g 3 a < i be a well-formed DAG. For any fairly prompt schedule on P processors,
P

1 (Wga)
ET(a)] < ( 2
F(# p) p
Proor. Let s and t be the first and last vertices of a, respectively. Consider the portion of the
schedule from the step in which s becomes ready (exclusive) to the step in which t is executed

+S.(2 a)) +1
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(inclusive). At each step, collect a token from every processor attempting to work on vertices of
priorities in 4 p. If the processor is attempting to work at a priority not less than p, but is unable
to, place a token in the “low” bucket. If it attempting to work at a priority not less than p and
succeeds, place a token in the “high” bucket. Let B; and By, be the final number of tokens in the low
and high buckets, respectively, when a finishes executing. Each token in By, corresponds to work
done at priority not less than p, and thus By, < W ,({ a). We may bound B; by P - S,({ a) using a
technique similar to that in the proof of Theorem 2 (and identical to that of Theorem 4 of [Muller
et al. 2018]); we omit the details.

The argument that E[T(a)] < (B + By) + 1 proceeds as in the proof of Theorem 2. O

1
P-F(£p)

4 ALGORITHM

The fairly prompt scheduling principle described in Section 3 does not immediately lead to a
practical algorithm for scheduling threads: its analysis assumes that the DAG is known before
execution (which is not feasible in practice) and making scheduling decisions globally requires
high synchronization overhead. In this section, we present an algorithm that is designed around
the fairly prompt principle’s guidelines for ensuring fairness and promptness: processors should
choose priorities according to the fairness criterion, attempt to work at the chosen priority if it is
available and otherwise work at the highest available priority. Dividing processor time according
to the fairness criterion ensures that each priority will have enough time to meet its desired stretch
and donating unused cycles to the highest available priority ensures that high-priority interactive
tasks receive the best possible service without harming fairness. To achieve this combination of
fairness and promptness in practice, we divide the run of a program into rounds. At the beginning of
each round, the processor picks a primary priority by sampling the fairness criterion. The scheduler
attempts to work on threads at the primary priority until a specified interval, called the scheduling
quantum, has passed. At this point, the processor chooses a new primary priority, thus beginning a
new round of scheduling.

To meet the promptness requirement, when a processor’s primary priority is unavailable, it
temporarily defaults to working on threads of the highest locally available priority. We use the
term current priority to refer to the priority at which a processor is currently working, which may
differ from the primary priority if it is donating time.

Once a processor’s current priority has been established, in order to be fairly prompt, the scheduler
must work on a thread at the current priority if one is available. This requirement is typically
known as the greedy principle and is vital to ensuring that the desired stretch of a computation
is obeyed: if a thread is available at a processor’s current priority but the processor is for some
reason unaware of it and mistakenly donates a cycle, the task’s stretch increases. Achieving this in
practice while keeping scheduling overhead low requires ensuring that threads at each priority
are balanced across processors. For this task, we use ideas from the sender-initiated private deques
variant of work stealing [Acar et al. 2013]. In this algorithm, each processor executes threads which
are stored in a processor-local set. Work stealing algorithms migrate tasks from busy processors to
idle ones. The algorithm we use is sender-initiated in that processors periodically attempt to send
extra threads to processors which are idle.

4.1 Parameters and Definitions

Before we give a more detailed description of the scheduling algorithm, we introduce some notations
and definitions used in the description. In particular, the way threads are treated in the algorithm
deserves additional explanation.
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1 type bank

> insert : bank * thread -> unit
; remove : bank -> thread

split : bank -> thread_set

Fig. 1. The thread bank interface.

Threads. The units of work handled by the scheduler are threads. Each thread has an associated
priority, which is accessible with the function priority. Threads may be executed with the function
execute, which runs the thread until it terminates, spawns, or suspends. Executing a thread returns
a set of zero, one, or two threads which have become enabled (zero if the thread terminates or
suspends waiting for an unavailable resource, one if it can be rescheduled immediately, and two if
it spawns a new thread).

In the description of the algorithm, we assume that threads return within a short, bounded
amount of time. In practice, we enforce this with periodic interrupts (described in more detail in
Section 5.2).

Parameters. The scheduler is parametrized by the number of processors, P; the number of
priorities, R; the length of a round, roundQuantum; the time interval between work sending (“dealing”)
attempts, dealInterval; and a fairness criterion, fc which is a probability distribution over priorities
as described in Section 3.

Processor-local state. Each processor has access to several local variables which store the state
of the scheduler at that processor. The variable nextRound is used to record the time at which
the processor should switch to a new primary priority. The variable nextDeal records the time
at which the processor should next attempt to deal threads to another processor. The variable
primaryPriority records the primary priority of the current round, and currentPriority records
the priority at which the processor is actually working. Each processor maintains a set ioThreads
of I/O-blocked threads which have resumed since the last iteration of the scheduling loop. We will
not discuss the mechanism by which these sets are populated, but we follow the method described
in [Muller and Acar 2016].

Finally, each processor maintains local collections of threads which we call thread banks. The
interface for thread banks is shown in Figure 1. Each processor uses R thread banks, one for each
priority. When new threads are spawned, they are inserted into the appropriate bank. Threads are
removed from banks to be executed locally. When a processor deals work to another processor, it
splits its bank and sends the resulting set of threads.

4.2 The Scheduler Loop

The core of the scheduling algorithm is the scheduling loop. The loop runs on each processor and,
on each iteration, selects a thread to run and runs it until it terminates. Note that an iteration of
the scheduling loop is different from a round: a single round will likely encompass many iterations
of the loop.

Pseudocode for the scheduling loop of a single processor is shown in Figure 2. On each iteration
of the loop, the processor performs the following.

(1) Ifit is time to start a new round, draw a new primary priority and set the next switch time
(lines 18-20).

(2) Handle any threads previously suspended on I/O operations which have resumed since the
last iteration (lines 21-24).
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// Parameters

2 int P // number of processors

int R // number of priorities
time roundQuantum

time deallnterval
fairness_criterion fc

scheduleloop(p): // p = identifier of processor
// Processor-local state
bank banks[R]
time nextRound
time nextDeal
priority primaryPriority
priority currentPriority
thread_set ioThreads

repeat:
if now() > nextRound:
nextRound := now() + roundQuantum
primaryPriority := fc.random()

for t in ioThreads:
insert(banks[priority(t)], t)
refuseWork(p, banks, priority(t))
ioThreads := {}
if now() > nextDeal:
nextDeal := now() + deallnterval
dealAttempt(p, banks, currentPriority)
t := getWork(p, banks, primaryPriority)

if t = NULL:

t := getWork(p, banks, findHighestPrio(banks))
if t != NULL:

currentPriority := priority(t)

enabled := execute(t)

for t' in enabled:
insert(banks[priority(t')], t')
refuseWork(p, banks, priority(t'))

Fig. 2. Scheduler loop pseudocode.

(3) Attempt a deal if it is time to do so (lines 25-27).

(4) Attempt to get work at the primary priority (line 28).

(5) If the previous step was unsuccessful, determine the highest locally available priority and get
work at it (lines 29-30).

(6) If a thread is found, execute it and handle any new threads it enables (lines 31-36).

Whenever new work at a priority r is added to the thread banks (steps 2 and 6 above), refuseWork
is called to signal that this processor has work at priority r so that another processor will not
attempt to send it work at this priority.

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 81. Publication date: August 2019.



81:12 Stefan K. Muller, Sam Westrick, and Umut A. Acar

type mailbox

2 tryClaim : mailbox -> bool

3 send : mailbox * thread_set -> unit
open : mailbox -> unit

close : mailbox -> thread_set

i1 //Global (shared) state
» mailbox mailboxes[P, R]

4+ dealAttempt(p, banks, prio):

5 g := select random processor
¢ m := mailboxes[q, prio]
if tryClaim(m): Fig. 4. The mailbox interface.

send(m, split(banks[priol)) getWork(p, banks, prio):

? 2 refuseWork(p, banks, prio)

10 refuseWork(p, banks, prio): , t := remove(banks[priol)
11 threads := close(mailboxes[p, priol) ‘ if t = NULL:
iz for t in threads: 5 open(mailboxes[p, priol)
13 insert(banks[prio], t) . return t
Fig. 3. Load balancing operations. Fig. 5. Pseudocode for retrieving local threads.

Two main elements of the scheduling algorithm, and several auxiliary functions called but not
defined in the pseudocode, require further discussion. First, we describe the load balancing strategy,
including the implementations of dealAttempt and refuseWork. Next, we detail how processors find
work locally, including the implementations of getWork and findHighestPrio.

4.3 Load Balancing and Mailboxes

In order to accomplish load balancing, we require busy processors to periodically attempt to deal
(send) threads to other processors. Pseudocode for the dealAttempt function is shown in Figure 3.
When attempting a deal, a processor p picks another processor g at random and checks if q is
accepting threads at p’s current priority. If so, it splits its bank of that priority and sends the resulting
threads to processor g. Sending and receiving threads is facilitated by P - R shared mailboxes, where
each processor has one mailbox for each priority. The interface for mailboxes is shown in Figure 4.
Each mailbox is either closed (unavailable to receive threads), open (available to receive threads),
claimed (waiting to receive threads), or full (holding a set of threads). Before sending threads to a
mailbox, the mailbox must first be successfully claimed, which only succeeds if the mailbox is open
and not already claimed. This guarantees that if multiple processors attempt to concurrently send
threads to the same mailbox that only one succeeds.

The function refuseWork, defined in Figure 3, is used by a processor to (a) check for threads dealt
by other processors, and (b) signal that the processor is no longer accepting work at a particular
priority. Refusing work is accomplished by closing the mailbox and adding any returned threads to
the appropriate thread bank.

4.4 Thread Banks and Local Scheduling

The main work of a processor in our algorithm is retrieving threads from the local thread bank
at the current priority, executing them and returning newly spawned threads to the appropriate
thread banks. Once a priority is selected, the task of finding work at that priority is done by the
auxiliary function getWork, shown in Figure 5. The function uses refuseWork to retrieve work (if
any) at that priority from the appropriate mailbox, and add it to the thread bank. Next, a thread
from the thread bank is selected with remove and returned, to be executed by the current processor.
If no such thread is available, the function re-opens the mailbox and returns NULL.
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Selection of threads in remove and split. The choice of which threads to execute locally and
which to send to other processors can have a substantial impact on performance. For scheduling
algorithms based on work stealing, it is advantageous to prefer working locally on “young” (recently
spawned) threads, thus leaving “old” threads available to be sent for load-balancing. This preference
amortizes the cost of sending work (because older threads tend to transfer larger amounts of work)
and utilizes existing data locality amongst threads [Acar et al. 2002, 2013; Arora et al. 2001; Blumofe
and Leiserson 1999]. We therefore specify that remove returns the youngest thread, and split
returns a set of oldest threads in the bank.

In Section 5.2, we describe in more detail how our implementation tracks the age of threads and
efficiently ensures that appropriate threads are chosen. In particular, we do not implement thread
banks with standard double-ended queues, or deques. Deques rely upon LIFO behavior at the bottom
(young end) of the deque in order to maintain the age relationship of threads efficiently. However,
our algorithm has two cases in which a thread inserted into a thread bank has no guaranteed age
relationship with the existing threads in the bank: (1) when a thread spawns work at a different
priority than its own, and (2) when a previously I/O-blocked thread resumes. In both cases, a
general insertion (not just a “push”) is required.

Finding the highest available priority. One final detail is the implementation of the function
findHighestPrio which returns the highest priority at which the corresponding bank is not empty.
Note that this is entirely a local notion: the function findHighestPrio does not search for the highest
available priority across all processors, but rather only looks for the highest available priority
amongst the banks stored locally at the current processor.

A naive implementation of findHighestPrio could simply inspect every bank, beginning with the
highest priority used in the program. We describe a more optimized implementation in Section 5.2.

4.5 Relationship Between the Scheduling Principle and Algorithm

In designing the algorithm of this section, we were guided by the fairly prompt scheduling principle
of Section 3. Our goal was to develop a scheduler that, in practice, approximates the responsiveness
guarantees of an offline fairly prompt schedule. We show this through the implementation in
Section 5 and the empirical evaluation of Section 6. We leave to future work a proof of the specific
guarantees of the algorithm. Instead, in the rest of this section, we describe, at the level of intuition,
why we would expect our scheduling algorithm to meet the fairly prompt scheduling bounds in
common cases. We also briefly study a case in which the algorithm’s behavior might not match the
theoretical bound.

To understand the behavior of the algorithm at a high level, assume that the number of threads
at each priority significantly exceeds the number of processors. Under this assumption, we may
model the system as |R| separate instances of work stealing running in a time-sharing fashion
according to the fairness criterion. For intuition as to why such a system should achieve fairness and
responsiveness, consider the important result of Arora et al. [2001] that shows that if a randomized
work stealing scheduler runs a computation with work W and span S concurrently with other
processes on a machine with P processors and is given an average of P4 processors by the operating
system, it runs in time O (% + %). This result suggests that the instance of work stealing for

priority p should run in time O (%(m + %p)), which begins to look like the bound of Theorem 3.
Note that the above intuition is not the basis of a proof, in part because modeling the scheduler as |R|
separate instances of work stealing breaks down when threads spawn threads at other priorities
and when priorities “donate” spare CPU cycles to other priorities.

There is one important case in which not all priorities have many threads available, contrary to

our assumption. Suppose that a priority p is given a sizable fraction of the fairness criterion F, but
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1 signature PRIORITY =

2 S18 .
1 signature SCHEDULER =
type t o
> si
val top : t f e task
5 val bot : t P

4 type handle
. 5 val insert : Priority.t * task -> handle
val new : unit -> t
. 6 val suspend :
val new_lessthan : t -> t -> unit . X .
(Priority.t * task -> unit) -> unit

s end
10 val installDist : (t -> int) -> unit

Fig. 6. Simplified priority and scheduler interfaces

has only one thread available. This thread will be in the thread bank of one processor. Processors do
not consider whether they have threads of a priority in their thread banks when choosing a primary
priority, and so each processor will assign p as its primary priority during approximately F(p) of
its rounds. However, only the one processor that owns the p-priority thread will actually work on
this thread, and so priority p will, in practice, receive only a fraction F(p)/P of cycles. We do not
expect this to be a performance issue in practice. In general, well-structured parallel computations
have many more threads than processors. High-priority interactions may use only a small number
of threads, but we have seen empirically that the performance of such interactions is fairly robust
to receiving only small percentages of CPU time (see Figure 9).

5 IMPLEMENTATION

We have implemented the scheduling algorithm on top of a parallel extension to the MLton compiler
for Standard ML, which was developed as part of Spoonhower’s PhD thesis [Spoonhower 2009].
This compiler was a good base for our implementation for several reasons. MLton is a mature, whole-
program optimizing compiler which produces fast sequential code. The parallel extension to MLton
was developed a number of years ago, but is being actively maintained and improved [Guatto et al.
2018; Raghunathan et al. 2016]. Furthermore, MLton makes it easy to develop custom schedulers
written directly in Standard ML with the use of its built-in library for user-level threads. This
library does not provide scheduler implementations, but allows programs to represent paused
computations and switch between them at runtime.

The main scheduler code consists of approximately 600 lines of ML code. The thread bank
implementation is approximately an additional 75 lines. The remainder of this section describes
the implementation details of the scheduler, as well as various optimizations we implemented for
better practical performance.

5.1 Scheduler Interface

The low-level interfaces for the priority library and scheduler are shown in Figure 6 (with some
details simplified for space reasons). The priority interface provides a type of priorities, a pre-
defined top and bottom priority, and facilities for creating new priorities and defining the ordering
between them. It also provides the function installDist allowing the programmer to install a
fairness criterion, specified as a function from priorities to integers (the integers are summed
over all priorities and normalized to 1.0). The scheduler interface provides low-level control over
the scheduling queues; a programmer would not interface with this directly, but rather through
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higher-level threading libraries built on top of this interface. The operation insert is a wrapper
around the corresponding queue operation. A thread can also call suspend f to yield control back
to the scheduler. Before scheduling another thread, the scheduler calls the provided function f
(which may, e.g., add the thread back to the queue for later rescheduling).

5.2 Implementation Details and Optimizations

Thread banks and fork potential. As described in the previous section, we wish to choose which
threads in a bank to execute locally and which to send to other processors based on their “age” in the
computation DAG. To accomplish this in practice, we implement thread banks as doubly-linked lists,
sorted in increasing order of fork potential, inspired by a related concept used by Acar et al. [2013].
Each thread v has an associated fork potential f(v) = 27%(®) where d(v) is the fork-depth of thread
v in the dependency graph (where the initial thread has depth 0, and every other thread has depth
1 + max,, d(u) for its predecessors u). Fork potential is a good approximation of a thread’s “size”
in that a thread with high fork potential is more likely to spawn additional work. We implement
the thread bank split operation by selecting the set of threads at the “back” of the bank (those
with highest fork potential) which comprise at least i of the total fork potential of the bank. Since
banks typically remain small in well-behaved parallel programs (e.g. at most 100 threads), this is
done simply with a linear scan through the bank. The remove operation simply pops the thread
of smallest fork potential, and insert searches for the appropriate place in the list in order to
maintain sorted order. Note that threads often spawn (or enable) other threads at the same priority,
in which case we know that the new thread has smaller fork potential than any other thread in the
corresponding bank and may be simply pushed onto the front of the list. Thus, in the common case,
insertions are quite fast. The expense of maintaining the order of the thread bank is incurred only
by splits and out-of-order insertions, which are much rarer in well-behaved programs. Pathological
programs that violate these assumptions (e.g., by spawning many more threads than expected or
frequently spawning threads at other priorities) would artificially inflate the work and (because
the scheduler operations are sequential) span of the computation by the extra time spent in the
scheduler. The response time and fairness bounds would degrade proportionally.

Finding the highest priority. To implement findHighestPrio efficiently, we use a heuristic which
avoids unnecessary linear scans through the priorities. Each processor maintains its highest cur-
rently available priority in a global variable, the top-priority cell. The function findHighestPrio first
checks the bank of the top priority to see if it has work. Processors update their own top-priority
cell when they insert work at higher priorities, and atomically update other processors’ cells on
deals. If a processor executes its last thread at its top priority, the value in the cell will become out
of date and the next check may require a full linear scan.

Interrupts. The scheduling algorithm of Section 4 assumes that the user code returns to the
scheduler frequently in order to ensure that round switches and deals happen properly. Most
well-written parallel code is fairly fine-grained, i.e. sequential computations do not run for long
without spawning or synchronizing. However, to ensure proper load balancing and responsiveness
even in the presence of long-running sequential computations, we use periodic interrupts delivered
by interval timers to return control to the scheduler. When a thread is interrupted to return to
the scheduler, the scheduler pushes the continuation of the running thread onto the thread bank
so that it may be continued at a later time (possibly immediately if a priority switch does not
occur). We determined experimentally that these interrupts should be at a finer granularity than
the round-switch quantum. Specifically, our implementation performs interrupts at 1ms intervals
and switches rounds at 5ms intervals. We set the deal interval to an even finer granularity, 100
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1 signature THREAD =

2 sig
exception IncompatiblePriorities
type 'a t
5 val spawn : (unit -> 'a) -> Priority.t -> 'a t
6 val join c'at > 'a
end

Fig. 7. Signatures for the threading library.

microseconds; deals will occur at this frequency when the program code frequently returns to the
scheduler (coarser-grained code will still perform deals at the interrupt interval).

Requests. Sender-initiated algorithms such as ours perform well in situations where work on
a small number of processors must be distributed. This is useful for distributing high-priority
computations, which may be generated at one processor and need to be balanced onto the others.
Sender-initiated algorithms are less useful when most processors have work and so most randomly
targeted deal attempts will fail. We improve our implementation’s performance in this case by
adding an element of receiver-initiated algorithms in the form of requests. Each processor has a
request cell. Processors which are idle at a particular priority may request work at that priority by
writing their processor ID and the requested priority into a random processor’s request cell. When
a busy processor deals work, it will first check its request cell. If a request is present, it will attempt
to deal work to the requesting processor instead of targeting randomly.

5.3 Programmer-Facing Threading Library

As discussed earlier in this section, programmers interact with a higher-level thread library imple-
mented using the low-level operations exposed by the scheduler (Figure 6). We have implemented
a threading library that exposes a threading construct similar to futures. As shown in Figure 7, the
library exposes a first-class type 'a t of threads with the return type 'a. The operation spawn f p
spawns a new thread at priority p to run the function f. The operation join t waits for thread t to
finish and returns its return value. If blocking on t would create a priority inversion, it raises the
exception IncompatiblePriorities. We will not dwell here on the implementation details of the
threading library, as they are relatively straightforward.

6 EVALUATION
We evaluated the implementation against three criteria:

(1) (Fairness) Does the stretch experienced by low-priority jobs approximately match what
would be expected from the fairness criterion under Theorem 27

(2) (Promptness) When appropriate, does the scheduler execute high-priority work quickly?

(3) (Speedup) When focusing solely on parallel computational tasks, does the scheduler achieve
good parallel speedup?

The last item, speedup, has not been a focus of this paper thus far, but is still important. We have
defined stretch as the execution time of low-priority parallel tasks relative to their execution time
if they were executed alone. A good scheduler should therefore achieve good speedups on purely
computational tasks and still stay within the expected stretch when these tasks are combined with
work at other priorities.
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We perform this evaluation on a set of benchmarks combining interactive applications with
standard parallel algorithms. At the end of the section, we describe two larger applications that
show the power and flexibility of the system described in this paper.

6.1 Experimental Setup

All experiments were run on a machine with 1TB of main memory and 72 Intel Xeon cores running
at 2.4GHz. We used up to 70 cores, reserving two for the experiment scripts and other background
processes. When running on P cores, the Parallel MLton runtime pins P system-level worker
threads to P cores. In the version of Paralle] MLton we use, garbage collection is sequential and
stops all processors. Because the time spent on GC is thus orthogonal to the scalability of our
scheduling algorithm, we subtract the time spent on GC (typically under 150ms per run) for all
reported execution times. We do not subtract GC time from response times.

Evaluation framework. For testing our interactive benchmarks, we use a driver program, written
in C, which shares pipes and network connections with the benchmark application. The driver
simulates interactions as specified by an “event trace” consisting of a sequence of interactive actions,
encoded in a domain-specific language. Our interactive benchmarks respond to inputs with console
output. When the driver initiates an event, it adds an entry in a buffer with the start time and
expected response. A separate thread in the driver reads the output of the program and checks it
against the buffer entries. When a line of output matches the expected response for an event, the
thread records the time difference and uses it to compute the average response time.

6.2 Benchmarks

To gain a controlled experimental setting for doing a thorough quantitative evaluation of the
scheduler, we use a set of orthogonal benchmarks, in which computations at different priorities do
not affect each other, allowing us to tune them independently.

Each of our orthogonal benchmarks consists of some combination of compute kernels and
interactive kernels. Each of the kernels operates independently of the others, and they may all
be run at any priority. All of the compute kernels and one of the two interactive kernels are
themselves parallel. The set of kernels was chosen to cover both predictable workloads, where the
parallel structure is relatively static, and unpredictable workloads, where the parallel structure
is determined dynamically during computation. For the compute kernels, we also consider both
compute-intensive and memory-intensive workloads.

The remainder of this section is structured as follows. In Sections 6.2.1 and 6.2.2, we describe
the interactive and compute kernels we use in the orthogonal benchmark evaluation. The first
experiment we describe (Section 6.2.3) evaluates how well our scheduler preserves the desired
fairness guarantees by comparing the stretch of low-priority jobs to the expected stretch. We can
only compare to the theoretically optimal stretch rather than the performance of another system
because we are not aware of another fair cooperative threading system that would provide an
apples-to-apples comparison. The next experiment (Section 6.2.4) gives a more direct comparison
to two cooperative parallel systems, both of which are also based on Standard ML, but designed for
more specific use cases. This experiment focuses on the response time of high-priority tasks and the
overall speedup of low-priority parallel computation, and places our performance in the context of
that of comparable systems. This experiment shows that our very general system can compete with
more specialized ones (i.e. that one is not paying a high price for this generality when one is not
using it). Finally, in Section 6.2.5, we compare this paper’s approach to two well-known cooperative
threading systems, Cilk and Go. These systems are not designed for interactive applications, so
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these results are not meant to be a direct apples-to-apples comparison, but rather they highlight
the need for specialized schedulers for handling interactive workloads.

6.2.1 Interactive Kernels. The two interactive kernels are Terminal echo (abbreviated “Term” below)
and Network echo (abbreviated “Net”).

Terminal echo. The kernel repeatedly accepts a line of text on standard input and echoes it back
to the user on standard output. This kernel is sequential and predictable.

Network echo. The kernel listens for network connections in a main, single-threaded loop. For
each connection, the loop spawns a new thread to handle this client. Each such thread interacts
with the client as in terminal echo above, accepting a line of text over the socket and echoing
the text on standard output. This kernel is parallel and unpredictable, since the parallel structure
depends on the incoming connections.

6.2.2 Compute Kernels. There are five compute kernels: Fibonacci (abbreviated “Fib”), Unbalanced
Tree Search (“UTS”), Dense Matrix Multiplication (“DMM”), Breadth-First Search (“BFS”) and
Sample Sort (“Sort”).

Fibonacci. A naturally parallel recursive algorithm computes the 45! Fibonacci number. While

this is not an efficient algorithm for computing Fibonacci numbers, it generates many parallel tasks
quickly with little to no allocation, making it an excellent representation of a computation-intensive,
predictable parallel workload.

Unbalanced Tree Search (UTS). UTS [Olivier et al. 2006], designed as an adversarial test of load
balancing, explores a tree where, at each node, the number of children is randomly selected from
a geometric distribution. This results in a high degree of imbalance, stressing the scheduler’s
distribution of work. The tree we use has depth 11 and average branching factor 4.0. Since our
random number generation is fairly inexpensive, we add a small sequential Fibonacci computation at
each node to increase the work. This benchmark is highly unpredictable and computation-intensive.

Dense Matrix Multiplication (DMM). This is a parallel, recursive implementation of Strassen’s
algorithm for matrix multiplication, which we use to multiply two 2048 x 2048 matrices. This
benchmark is still more compute-intensive than memory-intensive, and also results in a fairly
predictable parallel structure, but is less artificial than Fibonacci.

Breadth-First Search (BFS). This benchmark performs a breadth-first search of a randomly gen-
erated graph with 15M nodes and 240M edges. The graph is stored using a compact, array-based
adjacency list representation. This benchmark is memory-intensive, with a somewhat unpredictable
parallel structure based on the graph structure.

Sample Sort. Our implementation of sample sort is based on that of Blelloch et al. [2010], and
is highly optimized to make maximum use of parallel processing and hierarchical caches. As a
benchmark, it is memory-intensive but with a more predictable structure than BFS. The benchmark
sorts a random sequence of length approximately 128M.

6.2.3 Measuring Fairness. The primary feature that sets our scheduler apart from existing schedul-
ing algorithms is its ability to guarantee a pre-defined stretch for low-priority computations based
on the given fairness criterion. This is the feature we evaluate in our first experiment. For this
experiment, we use a set of benchmarks with three priorities. The top priority runs an interactive
kernel, and the bottom priority runs a compute kernel. The middle priority acts as a time sink. It
runs a very large, massively parallel computation which is not expected to finish or idle during the
experiment. It will therefore collect any cycles donated by the top priority, allowing us to view the
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Table 1. Execution times and stretch (T70/T7bo) for three-priority benchmarks, run with 50 interactions per
second. Each benchmark has a large computation running at medium priority.

50-0-50 50-25-25

High prio. Low prio. Tﬁ) (s) Tp0(s) Stretch Ty (s) Stretch

Fibonacci 0.40 0.93 231 2.00 4.96
UTS 0.40 0.85 2.13 2.03 5.13
Terminal DMM 0.53 1.31 2.47 3.23 6.11
BFS 0.65 2.55 3.93 6.13 9.46
Sample Sort 1.01 2.80 2.77 6.09 6.03
Fibonacci 0.40 0.90 2.23 2.02 4.99
UTS 0.39 0.90 2.32 1.97 5.06
Network  DMM 0.50 1.33 2.66 3.49 6.95
BFS 0.73 2.47 3.39 6.15 8.43
Sample Sort 1.01 2.77 2.74 6.50 6.42
Expected Stretch 2.00 4.00

low-priority computation in isolation. Each benchmark runs until the low-priority computation
completes, and then terminates.

We ran each combination of compute and interaction kernels with three different fairness criteria,
written in the form “H-M-L”, where H is the percentage of cycles devoted to the high priority, M to
the middle priority and L to the low priority. The expected stretch of the low-priority computation
for each fairness criterion is therefore 100/L. We ran each experiment on 70 cores and the driver
program interacted with the interactive kernel 50 times per second. For this evaluation, we ran
each benchmark with the fairness criterion 0-0-100 (i.e. devoting all cycles to the low-priority
computation) to measure the baseline for computing stretch, which we denote Tﬁ). We then ran
them with the fairness criteria 50-0-50 and 50-25-25, aiming for stretches of 2 and 4, respectively,
while keeping the cycles allocated to the top priority constant.

Table 1 gives the baseline T7b0 and the 70-core execution time (T7¢) in seconds and the stretch for
50-0-50 and 50-25-25. The ratios between the actual and desired stretch are shown graphically in
Figure 8 (note that, by definition, the expected and desired stretch for 0-0-100 are identical). If the
scheduler is being perfectly fair, these ratios should be 1.0. For the compute-bound benchmarks
(Fibonacci, UTS and DMM), the ratios stay very close to 1. For the memory-bound benchmarks,
the ratios go as high as 2.5. We do not expect perfect fairness because context switching between
threads, which is necessary for a fair scheduler, always introduces some overhead not accounted for
by our theoretical model, which assumes that scheduling decisions and allocation can be performed
instantaneously. This overhead includes the overhead of preemption itself, as well as other effects
like disrupting temporal locality. These increase the time necessary to complete the tasks, which in
turn impacts their stretch. The effect on locality, in particular, may explain why the memory-bound
benchmarks suffer more overhead.

Furthermore, we would expect that the impact of small context-switching overheads would
increase the smaller a computation’s fairness criterion (in the extreme limit, think of the overhead
of context-switching to a thread for just one quantum and then doing other work for a long period
of time). This explains why the computation deviates more from perfect fairness under a 50-25-25
criterion than a 50-0-50 one.
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Fig. 8. Normalized execution times for the low-priority computation, calculated as LT70/100T716.

Table 2. Parallel speedup of computation-only benchmarks on our scheduler and Spoonhower Work Stealing
(SWS), as well as the relative performance of our scheduler. Higher is better.

4 procs 32 procs 70 procs
Comp. SWS Ours SWS Ours Qs SWS Ours Qus
Fib. 29X 2.6x 091 16.8Xx  15.3x 091 33.5%x  29.7x 0.88
UTS 23X 25X 1.08 13.6Xx 13.6X 1.00 26.6X 24.6X 0.93
DMM  1.6x 21x 1.29 87x 11.6x 1.32 14.0x 22.2x 159

BFS 25X 24X 0.98 19.0x 14.3x 0.75 375X 19.4x 0.52
Sort 44x 44x  0.99 29.6x 26.5x 0.89 62.6x 50.0x 0.80

6.2.4 Measuring Scalability and Response Times. In the next set of experiments, we compare our
scheduler to two existing cooperative parallelism systems based on MLton, in order to place the
response times and speedups of our scheduler in the context of results for similar approaches.
The first comparison system is Spoonhower’s original work stealing scheduler, on which our
implementation is built [Spoonhower 2009]. This scheduler is quite effective at balancing purely
computational tasks, and so makes a good baseline for comparing the scaling of computation
times. The second comparison is with the responsive scheduler of [Muller et al. 2017], which was
also based on Spoonhower’s framework and schedules interactive workloads to optimize for both
computation and response time, but only for programs with two priorities.

For the comparison to Spoonhower Work Stealing (SWS), we use benchmarks consisting of only
a compute kernel (because SWS was not designed to handle interactive programs). Table 2 shows
the parallel speedup for each compute kernel on both our scheduler and SWS. Each speedup shown
is with respect to the serial baseline, a sequential version of the same compute kernel compiled with
unmodified MLton. That is, the speedup is calculated as %, where T; is the computation time of the
serial baseline and Tp is the computation time of the parallel benchmark on P cores. The table also
shows the ratio between the speedup of our algorithm and that of SWS: a ratio of 1.0 indicates that
the two are equal, and higher values show an improvement of our algorithm over SWS. For smaller
numbers of cores, our scheduler is highly competitive with Spoonhower on most benchmarks, and
even performs substantially faster on DMM. At 70 cores, our performance begins to decline for the
BFS and Sample Sort benchmarks, indicating that there is still some work to be done to improve
the scalability of our work stealing algorithm for these memory-intensive computations.
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Table 3. Parallel speedup and response time of two-priority, winner-take-all benchmarks on our scheduler
and Muller-Acar-Harper (MAH). Lower is better for response time, higher is better for speedup.

1 proc resp. time (ms) 70 proc Speedup
Comp. MAH Ours 2 MAH Ours Sus
Terminal interaction
Fib. 2.6 2.6 1.03 25.5x  30.3x 1.19
UTS 2.6 2.6 0.99 15.7x  229x 146

DMM 2.8 2.5 0.91 18.7x 21.1x 1.13
BFS 199.6 2.7 0.01 12.4x  19.1x 1.54
Sort 13.8 2.5 0.18 348X 49.0x 1.41

Network interaction

Fib. 2.6 2.5 0.98 245X  32.1x 131
UTS 2.6 2.6 0.98 16.3x  21.0x 1.29
DMM 2.6 2.5 0.97 19.8x  20.9x  1.05
BFS 9.7 2.6 0.27 11.4x  19.2x  1.68
Sort 3.5 2.6 0.73 33.7x 49.3x 147

Promptness requires that when work at the primary priority is unavailable, the processor works
on the highest available priority. We show this using benchmarks with one high-priority interactive
kernel and one low-priority compute kernel, run with a winner-take-all policy (the high priority
interaction is always chosen as the primary priority and the low priority computation is only
run when no interactive thread is ready) and a driver that interacts with the benchmark at 50
interactions per second. Because there is relatively little high-priority work and the policy is
winner-take-all, we would expect to see the large majority of CPU cycles spent on computation,
but see the scheduler quickly switch to handling interaction when it occurs.

Table 3 shows the parallel speedups and response times for each benchmark, along with the
same measurements for the winner-take-all scheduler of prior work (MAH). The serial baseline
used for the speedups included only the sequential version of the compute kernel, again compiled
with unmodified MLton. In all benchmarks, our scheduler matches or out-performs the specialized
scheduler in both response time and speedup. Furthermore, the performance of our scheduler in
these experiments is comparable to that of Table 2, indicating that very few cycles (only those that
are necessary to complete the interaction) are devoted to the interaction, as required by promptness.

The experiments above show that, without priorities and fairness requirements, the scaling
and response times of our scheduler are usually competitive with prior approaches. In order to
show that these properties are not unduly harmed by the addition of more priorities and fairness
requirements, we return to the three-priority benchmarks of the previous subsection. Table 4 shows
the 70-core speedup for the 0-0-100 fairness criterion and the normalized speedups for the other two
fairness criteria. The normalized speedup is the parallel speedup multiplied by the expected stretch.
This normalization accounts for the fact that the scheduler is not expected or allowed to devote all
of its processing time to the low-priority task being measured. The maximum normalized speedup
in all cases is 70X on 70 cores. The speedups are lower than those for the purely computational
benchmarks reported in Table 2, but not drastically so, indicating a modest performance penalty
for using interaction and priorities. The response times for the benchmarks are also reported in
Table 4 for the 50-0-50 and 50-25-25 criteria. Response times for 0-0-100 are quite poor: they range
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Table 4. Normalized speedups (100Ts/LT7¢) and response times for three-priority benchmarks, run with 50
interactions per second. Each benchmark has a large computation running at medium priority.

0-0-100 50-0-50 50-25-25

High prio. Low prio. Ts (s) Speedup Speedup RT (ms) Speedup RT (ms)

Fibonacci 11.67 28.9% 25.0% 4.7 23.3% 8.4
UTS 5.61 14.1X 13.3% 4.2 11.0% 6.1
Terminal DMM 7.48 14.2X 11.4X% 4.6 9.3X 6.3
BES 8.43 13.0% 6.6X 3.3 5.5% 6.1
Sample Sort 34.67 34.3% 24.8% 22.2 22.8X 35.4
Fibonacci 11.67 28.9% 25.9% 5.3 23.2X% 7.0
UTS 5.61 14.4X% 12.4X 3.9 11.4X% 6.6
Network DMM 7.48 14.9x 11.2X% 4.7 8.6X 6.8
BES 8.43 11.6X 6.8% 3.5 5.5X 6.1
Sample Sort 34.67 34.3% 25.1% 6.2 21.3% 18.0
B 54550
m 252550
40 7 m 50050
B 502525

20 4
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Fig. 9. Response times for 50 interactions per second on three-priority benchmarks.
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as high as 800ms, and in many cases, events are dropped entirely, as is to be expected when no
cycles are devoted to the interaction (though, because of promptness, idle processors will work on
high-priority tasks). Response times are otherwise quite good, remaining well under 5ms except
for the very intensive Sample Sort computation.

Finally, we show how many cycles are needed to guarantee responsive interaction For this
experiment, we also measured the response times for fairness criteria 25-25-50 and 5-45-50. The
results for 50 terminal interactions per second are shown in Figure 9. As expected, mean response
times are higher when very few cycles are devoted to interaction, though they remain under 50ms,
showing that for applications where responsiveness is not critical, few cycles need to be devoted to
handle infrequent bursts of interaction. We repeated this experiment for 10 and 100 interactions per
second with broadly similar results, showing that the scheduler is able to scale well with interaction
rate. As these results are similar to those shown in Figure 9, we omit them.
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Table 5. Computation and response times of the Fibonacci-network benchmark using our system, Cilk and
Go. Lower numbers are better.

Procs Ours Cilk Go

1 Computation time 74.6s oo 295s
Response time 26 ms — 3723.1 ms

4 Computation time 18.8s 14.7 s 8.4s
Response time 26ms 6603 ms 744.6 ms

3 Computation time 9.7 s 6.6 44s
Response time 26ms 217.0ms 385.0 ms

33 Computation time 2.9 s 1.7s 1.6s
Response time 25ms 0.1 ms 227.8 ms

70 Computation time 1.5s 0.8s 1.0s
Response time 27ms 0.1ms 140.7 ms

6.2.5 Comparison to Cilk and Go. To show the practicality of our approach, we compare our algo-
rithm against two widely used systems for fine-grained parallelism, Cilk and Go. This comparison
shows the cost of our approach relative to well-engineered throughput-oriented systems and, since
neither Cilk nor Go provides the ability to prioritize threads, demonstrates the benefit of priority
scheduling for response time. These results are not meant to be taken as a direct comparison: there
are many extra variables when comparing between approaches based on different languages and
systems that provide different sets of features.

Cilk [Frigo et al. 1998] extends C with primitives for creating and synchronizing lightweight
threads. We use the version of the Intel Cilk Plus scheduler that is integrated with gcc version
6.4.0. Go [Go Authors 2018] provides the ability to perform function calls, called goroutines,
asynchronously. Our comparisons use Go version 1.6.2.

We performed the comparison to Cilk and Go using a benchmark that runs the Fibonacci compute
kernel in parallel with the Network interactive kernel. To ensure that the Cilk and Go versions
of the benchmark ran for long enough to accurately measure response time, we increased the
Fibonacci input to 48 and computed the result modulo a large number (to not overflow the integer
data type). The results are shown in Table 5 for 1, 4, 8, 32 and 70 cores. Exact results are not shown
for Cilk on one core because Cilk does not preempt blocked program threads, so blocking on I/O
will block the entire processor. The response time of the Cilk code on fewer cores is quite poor.
Connections are accepted quickly because the code that accepts connections is running in a tight
loop on an essentially-dedicated processor. However, when this loop spawns a new Cilk thread to
handle an incoming connection, that thread must wait to be stolen by an idle core—the scheduler
has no way to prioritize these threads over Fibonacci threads. The response times improve with
more cores because of the greater chance of the interactive thread being scheduled at any point
in time. The Fibonacci computation scales well, but not as well as Cilk computations typically
scale, because as soon as an interaction thread migrates to a processor, that processor will not
perform any more computation due to the lack of latency hiding. The computation in Go scales
better (relative to the typical performance of the two languages) because it hides latency, but its
response times are again significantly worse than ours because Go does not explicitly prioritize
interactive threads. As with Cilk, response times improve on more cores, but not to the same extent
because interaction threads will never have an entire processor dedicated to them.
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6.3 Applications

The previous subsection focused on small benchmarks that provide for controlled quantitative
evaluation. We now consider larger, more complex applications. These applications demonstrate
the flexibility and scalability of our approach, but are not as amenable to precise quantitative
evaluations, and are presented more as qualitative case studies.

6.3.1  Motion Planning. We consider a motion planner for a robot which uses two planning al-
gorithms organized in a hierarchical fashion [Knepper et al. 2010]. A collection of threads at low
priority runs a parallel version of the A* search algorithm to compute a coarse-grained plan con-
sisting of a series of landmarks leading toward the goal. The A* algorithm maintains a priority
queue of nodes which it expands in order. The details of how we parallelize the algorithm are not
central to the paper, but at a high level, we split the queue when it grows past a certain threshold
and create a new thread to process part of the queue, capping the total number of threads by the
number of cores. Because local decisions of which node to expand may not be globally optimal,
this algorithm achieves parallelism at the cost of optimality.

At medium priority, several instances of the Rapidly exploring Random Trees (RRT) algo-
rithm [LaValle 1998] compute detailed paths to the nearest landmark. Each instance of RRT is
sequential, but deploying several instances simultaneously and taking the best result leads to more
optimal plans. Finally, a high-priority interaction loop polls the paths and attempts to execute the
most efficient one.

The motion planner differs from our orthogonal benchmarks in several significant ways: it
exhibits substantial computation (not just small bursts of interaction) at multiple priorities, and
fairness is crucial to balance the long- and short-term planners. In addition, the planner is not
orthogonal: the interaction loop interacts closely with both the A* and RRT threads. While we
are able to observe speedup from our parallel version of A*, and some improvement in planning
by using multiple simultaneous RRT computations, parallelizing search algorithms is an area of
research in itself, and so this application is not yet suitable for a thorough quantitative analysis.
We will, however, report some qualitative results based on our experience running the planner on
various numbers of processors and under various fairness criteria.

We tested our planner in the context of a simulated environment using a map from a standard
set of 2-dimensional motion planning benchmarks taken from video games [Sturtevant 2012]. In
keeping with the ratio suggested by Knepper et al. [2010], we ran the motion planning simulation
with a fairness criterion that assigns four times as many cycles to the short-term planner as to the
long-term planner. The interaction loop was given the same number of cycles as the short-term-
planner. This corresponds to a stretch of 6 for the long-term planner and a stretch of 1.5 for the
short-term planner.

Under this fairness criterion, the robot generally moves smoothly toward the goal without
stopping frequently to replan. When the stretch of the short-term planner is increased (e.g. the
stretches of the two planners are equal), this planner does not run quickly enough and the robot
pauses frequently. Conversely, when the stretch of the long-term planner is increased, the robot
moves smoothly but becomes stuck easily if it drifts off of the plan at all, because the long-term
planner is starved and not easily able to correct the plan. When all cycles are allocated to the
interaction loop, both planners are starved and the robot does not make progress.

6.3.2  Photo Viewer. Our photo viewer application, derived from a benchmark from prior work [Muller
et al. 2017], displays JPEG images from a local folder, and allows the user to scroll forward and
backward, and to jump to images out of order. When a new image is selected, the next 8 images are
decoded by low-priority threads. The interaction with the user occurs in a high-priority foreground
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Fig. 10. Response time results for the photo viewer.

thread. When the user selects a new image (either by scrolling or jumping), the foreground thread
checks if the image has already been decoded and either displays the decoded image or decodes it
and displays it immediately.

The third-party libraries we use for decoding and rendering images are not thread-safe, and so
we are only able to run the photo viewer on one core, using threads for latency hiding rather than
parallelism. Still, latency hiding can be quite beneficial in this benchmark, if the thread waiting
for user input properly yields to the background decoding threads, and these background threads
properly yield to each other. Thus, even on one core, this benchmark provides a good test of our
scheduler’s promptness. Because high-priority events (responding to user input and decoding
immediately-requested images) are rare, a winner-take-all strategy is appropriate.

In our tests of the photo viewer, we directed the driver program to request a series of 10 images,
out of 100 total images, each of which is 4.3MB in size and takes approximately 225ms to load from
file and decode. Figure 10 shows response times for four interaction rates (1, 2, 5 and 10 requests per
second) and three types of traces: in-order access, random access and a mix of the two. The y-axis
is the response time on a log scale, measured from when the driver requests the image to when
the decoded image is displayed on the screen. For in-order traces where requests are made slowly
enough to use pre-decoded images, response times are within a handful of milliseconds. These
response times show that the interaction thread properly donates its spare cycles to decoding,
and quickly wakes up and responds to interaction when necessary. As expected, the benefit of
pre-decoding images decreases when viewing the photos in a random order or scrolling faster than
the viewer can decode.

7 RELATED WORK

Scheduling techniques for optimizing throughput and responsiveness, and ensuring fairness have
been studied extensively in several communities including parallel computing, operating systems,
and queueing theory. In this section, we discuss the closely related work and its relation to this
paper and refer the interested readers to excellent surveys and books (cited below) on these areas
for broader discussions.

Parallel Scheduling. Parallel schedulers aim to minimize the completion time of a parallel compu-
tation. Many results have been shown for parallel scheduling, including on runtime [Acar et al. 2018,
2013; Agrawal et al. 2014; Arora et al. 2001; Blumofe et al. 1996; Blumofe and Leiserson 1999; Brent
1974; Burton and Sleep 1981; Eager et al. 1989; Frigo et al. 1998; Greiner and Blelloch 1999; Halstead
1985; Muller and Acar 2016; Tardieu et al. 2014; Ullman 1975], space usage [Blelloch et al. 1999;
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Blumofe and Leiserson 1998; Narlikar and Blelloch 1999], cache utility [Acar et al. 2002; Blelloch
et al. 2011; Blelloch and Gibbons 2004; Chowdhury and Ramachandran 2008], and granularity
control [Acar et al. 2018, 2016]. Nearly all of these schedulers implement the greedy scheduling
principle [Brent 1974; Eager et al. 1989], which requires keeping processors as busy as possible,
but differ in the precise assignments of tasks to processors. All these schedulers can be viewed
as cooperative schedulers because they don’t treat threads as competing for the same resources
but schedule them cooperatively with the goal of maximizing throughput. Other work has shown
that scheduling based on priorities [Imam and Sarkar 2015; Wimmer et al. 2013, 2014] can improve
throughput in some applications.

The primary focus of parallel scheduling, and the papers above, has been to maximize throughput
or speedup. Recent work [Muller et al. 2017, 2018] extends traditional parallel scheduling to maxi-
mize responsiveness of interactive threads. That work proposed the prompt scheduling principle,
which specifies the assignment of threads to processors, but does not present a scheduling algorithm
for generating the assignment efficiently. In this paper, we extend prompt scheduling with fairness.
We also present and evaluate a scheduling algorithm that implements the new scheduling principle.

Operating Systems Community. Scheduling has been studied extensively in the operating sys-
tems community, where criteria such as responsiveness, CPU utilization, and throughput are all
considered. A classic book [Silberschatz et al. 2005] presents a comprehensive overview of this
work. More recently, there has been significant interest in making operating systems work well
on multicore machines [Baumann et al. 2009; Boyd-Wickizer et al. 2008] by reducing contention
within the OS and by distributing resources to jobs so that they can run effectively. The goal of OS
scheduling differs from ours, because OS schedulers operate at the level of system threads, rather
than the lightweight user-level threads that we consider. Dependencies between processes, a major
focus of parallel scheduling, are also less central to OS scheduling.

Fairness in particular has been a focus of research in the systems community. Lottery schedul-
ing [Waldspurger and Weihl 1994] and fair queueing (e.g., [Demers et al. 1989; Goyal et al. 1996] are
two mechanisms that, like our scheduler, schedule threads or jobs fairly given assigned weights. In
the case of lottery scheduling, these weights are the distribution of tokens (“tickets”) to individual
threads, not to entire priority classes as in our system. Fair queueing models also accept weighted
jobs, but schedule jobs deterministically based on their weight. Goyal et al. [1996] propose a mecha-
nism for scheduling hierarchical classes of jobs, in which each class has a weight. At each non-leaf
node of the hierarchy, a fair decision is made on which of the node’s children to schedule based on
their weights. Our scheduling algorithm could be seen as an example of such a hierarchy where
the classes are priorities. All of this work focuses on scheduling coarser-grained jobs and so uses
very different scheduling strategies from our fine-grained model. The Linux kernel’s “completely
fair scheduler”, for example, shares our goal of minimizing a process’s deviation from an “ideal”
execution time. It does so using per-process data structures that record metadata about prior
execution times. This metadata allows the scheduler to use heuristics such as boosting the priority
of tasks that have yielded some of their time by sleeping, but the technique would not scale to the
magnitude of threads generated by fine-grained parallel programs. Furthermore, we are not aware
of any efforts to bound the theoretical performance and fairness of the scheduling algorithms and
heuristics used in operating systems.

Real-Time Systems Community. Scheduling is also an important concern in real-time computing.
Traditionally, the real-time scheduling community focused on scheduling sequential tasks, and on
taking advantage of parallelism at the task level. Recently there has been more interest in scheduling
tasks that are themselves parallel [Li et al. 2014, 2016, 2017; Mattheis et al. 2012; Saifullah et al.
2014a, 2013]. Most of this work, however, considers highly structured (e.g., synchronous dataflow)
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computations. For example, Saifullah et al. [2014b] consider scheduling a set of real-time tasks
where each task is a parallel computation. The idea is to decompose the task’s dependency graph
into a set of sequential pieces which can then be executed separately. This approach requires prior
knowledge of the parallel structure of the task. Another prevailing assumption is that tasks arrive
independently according to some process. Our work differs from real-time scheduling in that we
consider fully general and online computations. In particular, we make no assumption on the
structure of the jobs and don’t assume that they are known ahead of time.

Queueing Theory Community. In queueing theory, there has been long history of work on
scheduling for responsiveness of jobs. Harchol-Balter’s book [2013] presents a comprehensive
overview. This work typically assumes that a continuous stream of independent jobs arrive online
according to some stochastic process and aims to minimize the response time between when a
job arrives and completes. Although the goal of minimizing the response time is shared with our
work, the arrival assumptions do not fit parallel interactive applications, where work is created
by a program and dependencies between threads matter. In this community, jobs are also usually
assumed to be sequential.

8 CONCLUSION

We present techniques for writing parallel programs that allow threads to be assigned arbitrary
priorities and appropriate requirements on stretch, and propose a scheduling principle, called fairly
prompt scheduling, for executing such programs. We have proven bounds for the execution and
response times of threads under fairly prompt schedules. In particular, these bounds show that
fairness prevents low-priority jobs from being starved or unduly delayed.

Our implementation of a scheduling algorithm based on work stealing and the empirical evalu-
ation of this implementation show that the priority model and scheduler are robust and general
enough to express a variety of benchmarks that mix interactive and compute-intensive tasks.
This class of benchmarks broadens the traditional benchmarking suites with interactivity. The
measurements show that the algorithm performs well in practice, successfully maintaining the
specified fairness, while ensuring responsiveness of interactive tasks, and maximizing throughput
of compute-intensive ones. Moreover, for applications that use some or none of our priority and
fairness facilities, the scheduler is competitive with existing schedulers specialized to those domains,
indicating that one doesn’t pay for the features of our more general scheduler if one isn’t using
them. The results thus suggest that it is possible to combine two prevailing models of threading,
cooperative and competitive threading, efficiently under one roof.
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