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Introduction

Dynamic Algorithms

HeaviestEdgeBetween( M )

modify input U
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o Lots of work on sequential algorithms with unit changes.
> e.g., single edge insertion/deletion

@ More efficient to apply many changes simultaneously.
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Contributions

In a forest of size n, how efficiently can we recompute some desired
property after applying a batch of m changes (insertions/deletions of
edges/vertices)?
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Background: Parallel Tree Contraction

Miller, Reif (1985)
rake and compress
O(n) work

O(log n) rounds
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Dynamizing Parallel Tree Contraction
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Measuring Performance
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Measuring Performance
Tetatic(processors = 1)

o Work Improvement:
Tupdate(processors = 1)
o Benefit of dynamism alone.
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m/n (number of changes relative to forest size)
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Measuring Performance

@ Speedup: Tstatic(prOCessors = 1)

Tupdate (processors = P)
o Combined benefit of dynamism and parallelism on P processors.
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Conclusion

Summary
@ We dynamized parallel tree contraction.

@ The resulting algorithm is efficient both in theory and practice.

Closing Thoughts
@ Some parallel algorithms are amenable to dynamization.

» Take advantage of independent subproblems.
» How many more examples are there?

@ Are there general purpose techniques for automatic dynamization?
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End

Thank You!

Questions?
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Clustering Hierarchy
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