Parallel Dynamic Tree Contraction
via Self-Adjusting Computation

Umut Acar'? Vitaly Aksenov>® Sam Westrick!

LCarnegie Mellon University, USA
2Inria, France

3ITMO University, Russia

July 2017

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017

1/9

Introduction
Dynamic Algorithms

HeaviestEdgeBetween u

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 2/9

Introduction

Dynamic Algorithms

HeaviestEdgeBetween(M)

modify input U

HeaviestEdgeBetween(W‘\% >

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 2/9

Introduction

Dynamic Algorithms

HeaviestEdgeBetween(M)

modify input U

HeaviestEdgeBetween(W‘\% >

o Lots of work on sequential algorithms with unit changes.
> e.g., single edge insertion/deletion

@ More efficient to apply many changes simultaneously.

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 2/9

Contributions

In a forest of size n, how efficiently can we recompute some desired
property after applying a batch of m changes (insertions/deletions of
edges/vertices)?

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 3/9

Contributions

In a forest of size n, how efficiently can we recompute some desired
property after applying a batch of m changes (insertions/deletions of
edges/vertices)?

Work Span
Construction O(n) O(log?(n)))
Update O (mlog ™) O(log(n + m) log(m))

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 3/9

Contributions

In a forest of size n, how efficiently can we recompute some desired

property after applying a batch of m changes (insertions/deletions of
edges/vertices)?

Work Span
Construction O(n) O(log?(n)))
Update O (mlog ™) O(log(n + m) log(m))
1« m >
log n < mlog - ntm >

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 3/9

Contributions

In a forest of size n, how efficiently can we recompute some desired
property after applying a batch of m changes (insertions/deletions of
edges/vertices)?

Work Span
Construction O(n) O(log?(n)))
Update O (mlog ™) O(log(n + m) log(m))
1< m > n
log n < mlog - ntm b n
(optimal) (optimal)

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 3/9

Background: Parallel Tree Contraction

Miller, Reif (1985)
rake and compress
O(n) work

O(log n) rounds

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Miller, Reif (1985)
rake and compress
O(n) work

O(log n) rounds

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Miller, Reif (1985)
rake and compress
O(n) work

O(log n) rounds

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Round 0
e Miller, Reif (1985)
@ rake and compress
/
e O(n) work 4
e g "
e O(log n) rounds Round 1

Y

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Round 0
e Miller, Reif (1985)
@ rake and compress
[
e O(n) work
NS "
e O(log n) rounds Round 1

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Round 0
e Miller, Reif (1985) ;
@ rake and compress Round 1 AN m
e O(n) work Y
e O(log n) rounds
Round 2 c 4 7
J

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Round 0
e Miller, Reif (1985) ;
@ rake and compress Round 1 AN m
e O(n) work Y
e O(log n) rounds

Round 2 c’/f\f
J

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Background: Parallel Tree Contraction

Round 0

Miller, Reif (1985) . 7
rake and compress Round 1 e N
O(n) work

O(log n) rounds

Round 2 L;/I\f
J

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 4/9

Dynamizing Parallel Tree Contraction

Algorithm

Dynamization

» Dynamic Algorithm

=] & = E DA
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

Dynamizing Parallel Tree Contraction

Parallel o Parallel ?
Dynamization

Algorithm » Dynamic Algorithm

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 5/9

Dynamizing Parallel Tree Contraction

Parallel
Algorithm

Dynamization

Parallel v

» Dynamic Algorithm

=] & = E DA
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

Dynamizing Parallel Tree Contraction

d Ik
h
2 f g 7
a o @
/)
" I
m
<,
Y

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 5/9

Dynamizing Parallel Tree Contraction

d o
I
2 f g i
a C

j
p

Ce "
yj

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 5/9

Dynamizing Parallel Tree Contraction

ky
% I
h
3 f g i
“ @
j
i L 2
A b/ N L
/ Y
m m
C‘/{\/ c L
{ J
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 5/9

Dynamizing Parallel Tree Contraction

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

d K d k
I J/
b : 4
P f g i 5 J ¢ i Y
a 0 ®
4 Y
/] : 2
A i N @
g Y
ty my
C‘/{\/ c L
J /
July 2017 5/9

Dynamizing Parallel Tree Contraction

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

d k a k
I J/
b é 4
P f g i 5 J ¢ i Y
a a $
Y y
n I i J/
N L Y m
J yj
m m
C‘/{\/ c L
J {
July 2017 5/9

Dynamizing Parallel Tree Contraction

b h
N L Y m
/ i
/)
m
C‘/{\/ 4 S "
j oj
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017 5/9

Measuring Performance

=] & = E DA
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

Measuring Performance
Tetatic(processors = 1)

o Work Improvement:
Tupdate(processors = 1)
o Benefit of dynamism alone.

260

100

10

.0001 .001 .01 .03 A 1

m/n (number of changes relative to forest size)

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

July 2017

6/9

Measuring Performance

@ Speedup: Tstatic(prOCessors = 1)

Tupdate (processors = P)
o Combined benefit of dynamism and parallelism on P processors.

30 m/n =
« 0.001
25 0.003
20 = 0.01
/ +0.03
15
10
5
0
0 5 10 15 20

P (number of processors)

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017

6/9

Conclusion

Summary
@ We dynamized parallel tree contraction.

@ The resulting algorithm is efficient both in theory and practice.

Closing Thoughts
@ Some parallel algorithms are amenable to dynamization.

» Take advantage of independent subproblems.
» How many more examples are there?

@ Are there general purpose techniques for automatic dynamization?

Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction July 2017

7/9

End

Thank You!

Questions?

=] & = E DA
Umut Acar, Vitaly Aksenov, Sam Westrick Parallel Dynamic Tree Contraction

Clustering Hierarchy

Umut Acar, Vitaly Aksenov, Sam Westrick

Parallel Dynamic Tree Contraction

S

